

1

DFT-2023
IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems

Fault Secured JPEG-Codec Hardware Accelerator with Piracy Detective Control using Secure Fingerprint Template

Authors: Rahul Chaurasia, Abhinav Reddy Asireddy, Anirban Sengupta

Speaker Name: Rahul Chaurasia

Post-Doc Researcher, TRF

Computer Science and Engineering

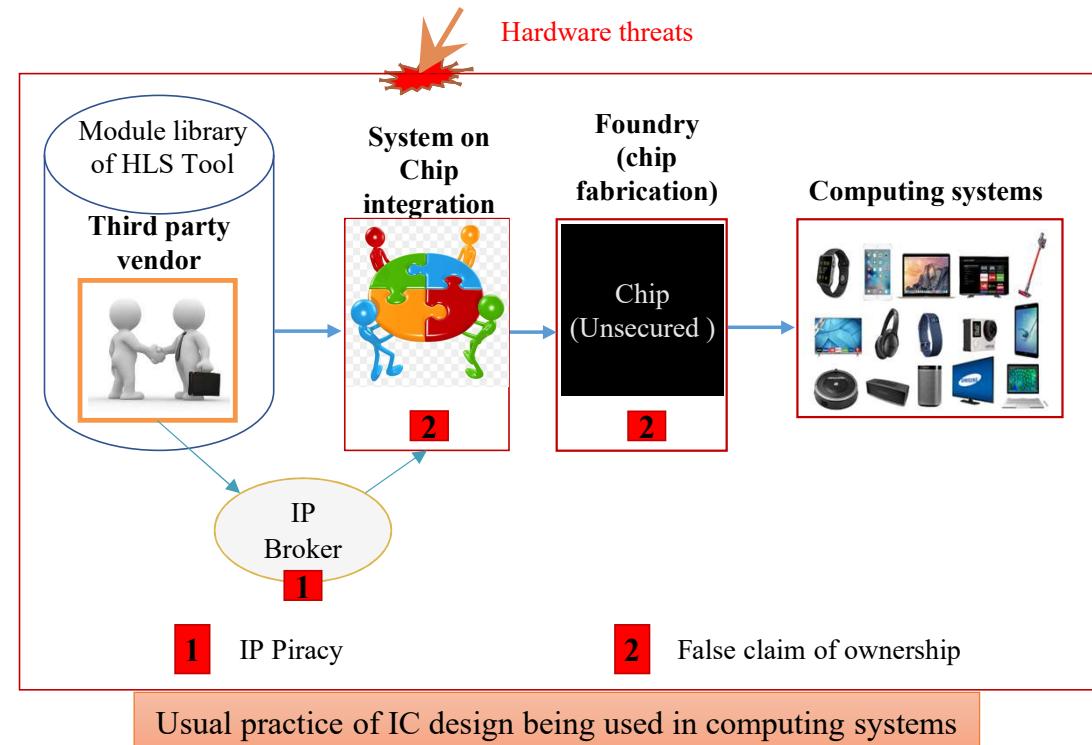
Indian Institute of Technology, Indore, India

Outline

- ❑ Introduction
- ❑ Contemporary Approaches
- ❑ Overview of Proposed Methodology
- ❑ Discussion on Proposed Methodology
- ❑ Results and Analysis

Introduction

- Hardware accelerators form key components of SoCs used in computing/CE systems.
- Highly **computationally intensive** nature of application.
- JPEG-codec is widely used in medical applications and digital imaging devices for tasks related to image processing (*compression and decompression*).
- The correct functionality of hardware design may be affected due to **occurrence of faults** (vulnerabilities emanating from SEU).
- **Globalized supply chain** involves untrustworthy third-party IP (**3PIP**) vendor houses.
- Designing its hardware accelerator is not sufficient as it necessitates protection from hardware security threats also.
- **Robust and seamless detective security control.**



IC: Integrated circuit, **SoCs:** system-on-chips, **CE:** Consumer Electronics, **SEU:** single event upsets

Threat Model:

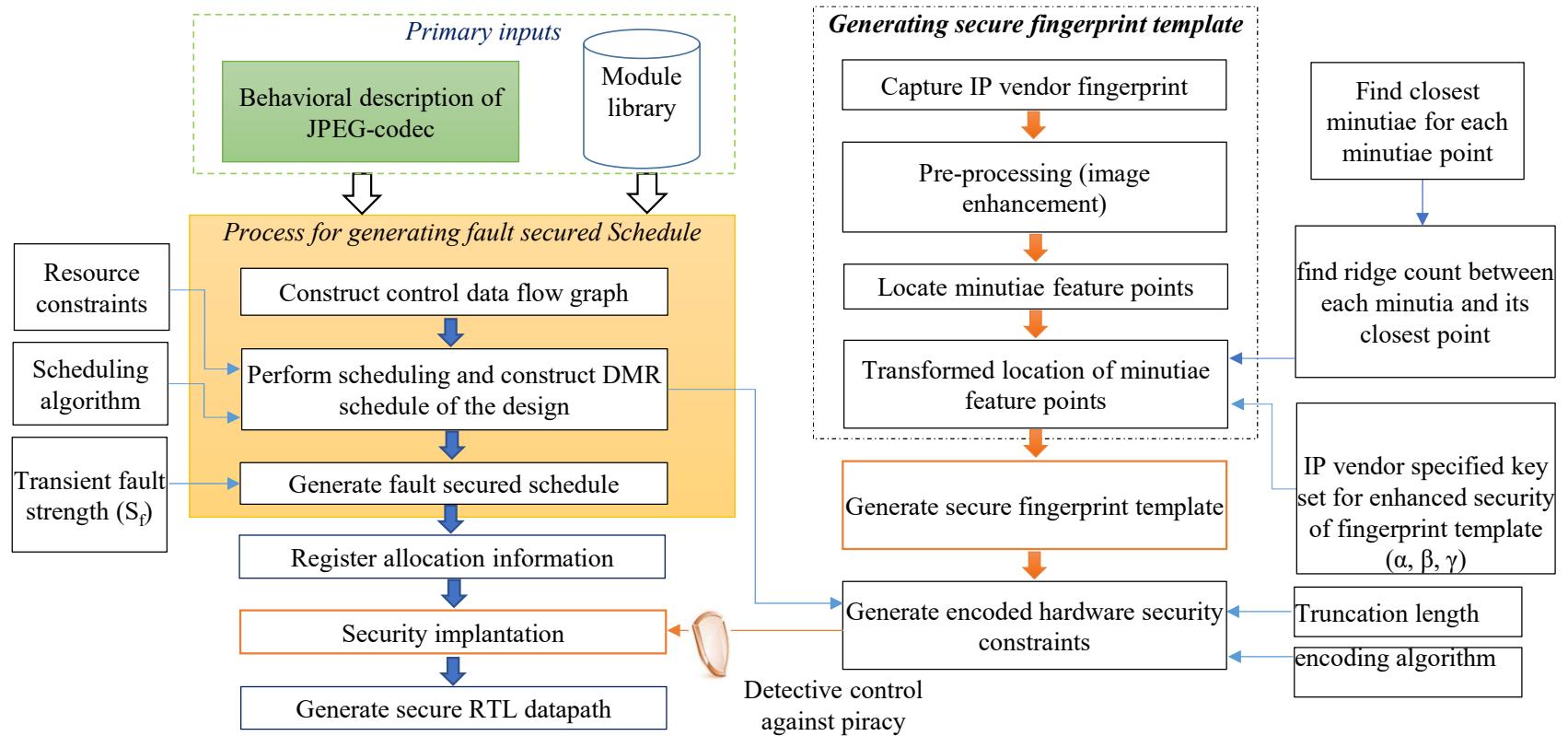
Cont.

- ❑ In untrustworthy IP design houses, an attacker or an IP broker may attempt to produce pirated IP versions without the knowledge of original IP owner.
- The pirated/tampered designs could be hazardous as they may contain malicious logic, thereby causing integrity and reliability hazards.
- ❑ An adversary may also attempt to achieve piracy evasion by exactly regenerating and copying the original security signature into fake/pirated design versions.

Novel Contributions

- a) A novel methodology for generating transient fault secured JPEG-codec hardware accelerator with seamless piracy detective control has been proposed.
- b) The proposed approach ensures the detection of pirated design versions through the embedded key controlled secure fingerprint template of the IP vendor as countermeasure.
- c) The proposed generated secure fingerprint template is capable of offering higher tamper tolerance and lesser probability of coincidence than related works [5]-[10].

Advantages of Generating Secure Fingerprint Template


- Multiple non-linkable larger secure fingerprint templates can be generated.
- For an adversary regeneration of secure fingerprint template is not possible.
- Generates larger template size (by choosing larger key).

Contemporary Approaches

- **Hardware watermarking approach:** [5], [6] watermark is generated using auxiliary signature variable combinations. It provides the piracy detection by embedding the watermark of IP vendor.
 - Vulnerable if the relevant information such as digit encoding into security constraints, signature size and combinations of digits are leaked to an adversary, s/he can replicate and re-use it. This renders the watermark a weaker secret mark.
- **Digital Signature:** [7] digital signature is generated through encoding, SHA-512 and RSA encryption.
 - Involves complex computation during signature generation and also results into higher design cost.
- **Hardware steganography** [8] address the IP counterfeiting threat by embedding the secret stego-constraints into the design. These stego constraints are generated based on stego-keys, encoding rules and entropy threshold parameter.
 - Vulnerable if the encoding rules and the secret value of chosen entropy threshold are leaked to an adversary.
- **Facial and Palmprint biometric** [9], [10] based hardware security approach embeds IP vendor's authentic facial/palmprint biometric constraints into the design. The approaches [9], [10] offers more robust security than [5]-[8].
 - Generates lesser number of hardware security constraints (resulting into higher probability of coincidence and lower tamper tolerance ability of the design) than proposed approach.
 - On the contrary, the proposed methodology using secure fingerprint template is capable of generating a greater number of hardware security constraints than [5]-[10], thereby enabling more robust security.
 - Approaches [5]-[8] do not associate naturally unique identity of IP vendor.
 - The proposed approach is able to achieve more robust security at almost negligible design cost overhead.

SHA: Secure Hashing Algorithm

Proposed Methodology: Design Flow

Overview: Behavioral synthesis-based design flow of the proposed methodology

RTL: Register transfer level

Module 1: Generating Fault Secured Schedule for JPEG-codec

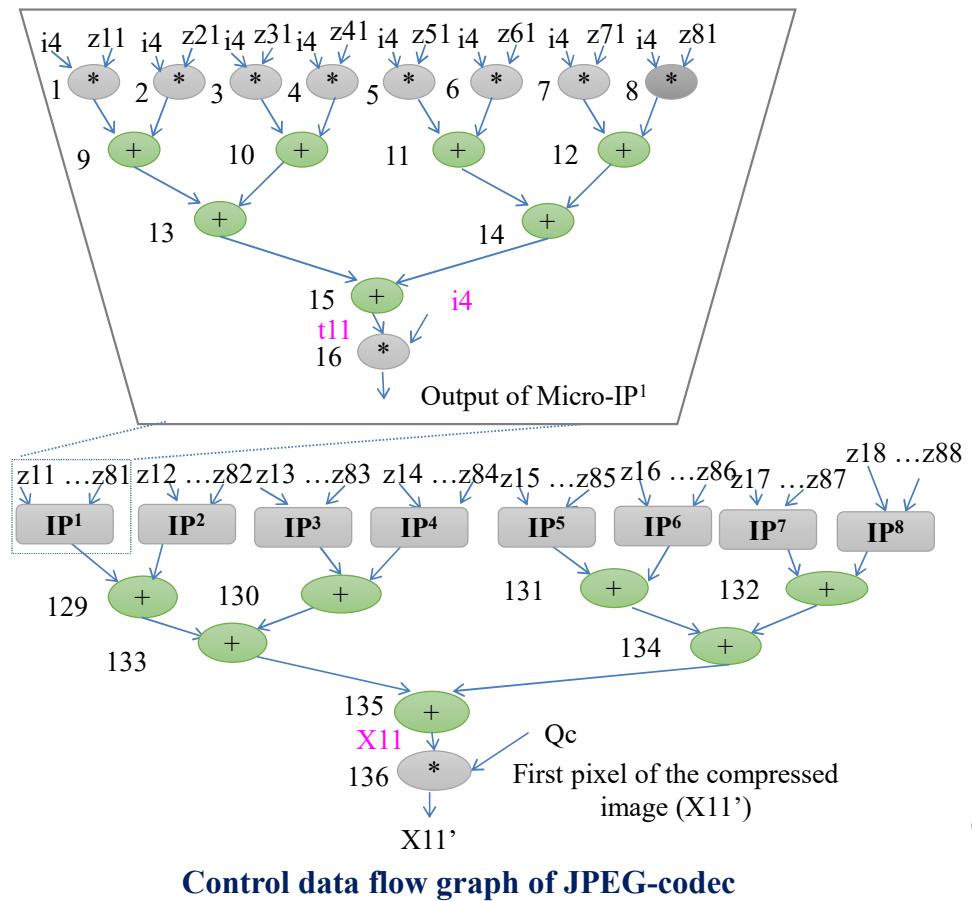
- In order to do so, firstly its behavioural description/transfer function is transformed into control data flow graph (CDFG):

Step1: Transform the input image (to be compressed) into matrix form.

Step2: Perform matrix slicing and generate non-overlapping matrix or block, each of size 8×8 .

Step3: Transform each 8×8 block of pixels using 2-D DCT transformation using following function:

$$X = (I^*Z) * I'$$


Step4: Compute the first pixel value of the transformed matrix, 'X11'.

$$X11 = (d11 * i4) + (d12 * i4) + (d13 * i4) + (d14 * i4) + (d15 * i4) + (d16 * i4) + (d17 * i4) + (d18 * i4)$$

$$d11 = (i4 * z11) + (i4 * z21) + (i4 * z31) + (i4 * z41) + (i4 * z51) + (i4 * z61) + (i4 * z71) + (i4 * z81)$$

Step5: Now compression using a quantization coefficient Q_c .

where X denotes the DCT transformed matrix, I denotes the 2-D-DCT coefficient matrix, Z denotes the 8×8 block of pixels of input image and I' denotes the transpose of I .

Control data flow graph of JPEG-codec

Cont.

Schedule of Macro IP of JPEG-codec using [3+, 3*]

CS	Opsn assign to M1	Opsn assign to M2	Opsn assign to M3	Opsn assign to A1	Opsn assign to A2	Opsn assign to A3
1	1	2	3			
2	4	5	6	9		
3	7	8	17	10	11	
4	18	19	20	12	13	
5	21	22	23	25	26	14
6	24	33	34	27	29	15
7	35	36	37	28	41	
8	38	39	40	42	30	
9	49	50	51	43	44	45
10	52	53	54	31	57	46
11	55	56	65	58	59	47
12	66	67	68	60	61	
13	69	70	71	73	74	62
14	72	81	82	75	77	63
15	83	84	85	76	89	
16	86	87	88	90	78	
17	97	98	99	91	92	93
18	100	101	102	79	105	94
19	103	104	113	106	107	95
20	114	115	116	108	109	
21	117	118	119	121	122	110
22	120	16	32	123	125	111
23	48	64	80	124	129	
24	96	112		130	126	
25				131	133	127
26	128					
27				132		
28				134		
29				135		
30	136					

- Subsequently, dual modular redundant (DMR) design is formed.
- Next the DMR design is scheduled using LIST scheduling algorithm.
- Next, transient fault secure schedule is generated from DMR scheduled design by employing the fault security rules and by considering transient fault strength (S_f):

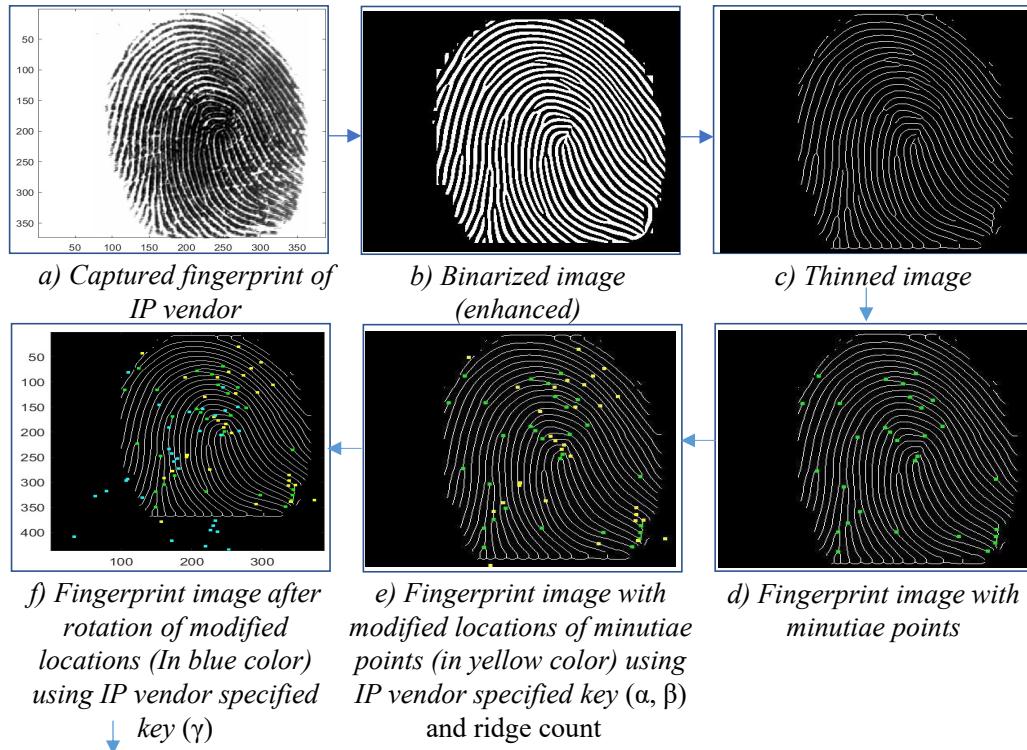
Cont.

Fault security rules:

- **Rule1-** allocate opn $(X) \in U_{OG}$ and opn $(X') \in U_{DP}$ to different operators based on availability.
- **Rule2-** in case if allocation of distinct operators is not possible, then have the same allocation for X' (by way of X) in U_{DP} such that:

$$t(X') - t(X) > s_f \quad (1)$$

- **Rule3-** if the condition in (1) does not comply, then push X' (with its successors) $\in U_{DP}$, one control step down at a time and continue the process till rule1 or rule2 holds true.


- We assume that transient fault due to single event upset (SEU) affects multiple cycles.

‘ U_{OG} ’ : Original unit and ‘ U_{DP} ’ : Duplicate unit

TABLE I
Fault Secured Schedule for JPEG-codec using [3+, 3*]

Control steps	Opns. assign to M ¹	Opns. assign to M ²	Opns. assign to M ³	Opns. assign to A ¹	Opns. assign to A ²	Opns. assign to A ³
C1	1	2	3			
C2	4	5	6	129		
C3	7	8	9	130	131	
C4	10	11	12	193	132	
C5	13	14	15	194	133	134
C6	16	17	18	225	195	135
C7	19	20	21	136	137	
C8	22	23	24	196	138	
C9	25	26	27	197	139	140
C10	28	29	30	226	198	141
C11	31	32	33	227	142	143
C12	34	35	36	199	144	
C13	37	38	39	200	145	146
C14	40	41	42	228	201	147
C15	43	44	45	148	149	
C16	46	47	48	202	150	
--	--	--	--	--	--	--
--	--	--	--	--	--	--
C49				267	263	240
C50	256					
C51				264		
C52				268		
C53				270		
C54	272					

Module 2: Secure Fingerprint Template Generation

Binarized secure template corresponding to fingerprint image with transformed locations of minutiae points post applying subsequent translation using keys (δ and γ)

Process for generating secure fingerprint template

Input: Minutiae points (n) with their dimensions and key set $\{\alpha, \beta, \gamma\}$

Output: Secured fingerprint template of IP vendor

Start:

$\delta = |\alpha| + |\beta| * 2^8$ /*keys α, β, γ are 8 bit and δ is of 16-bit size respectively.

for $i = 1 \rightarrow n$ do

$dist_i \leftarrow \infty$

/* below for loop is to find closest point from each minutia (x_i, y_i)

for $z = 1 \rightarrow n$ do

 if $i \neq z$ then

$dist = \text{Euclidian distance between } (x_i, y_i) \text{ and } (x_z, y_z)$

 if $dist_i > dist$ then

$dist_i \leftarrow dist$

$j = z$

 Endif

 Endif

Endfor

/* **translation** using keys α, β and ridge line count (Rc_{ij})

$x_i' \leftarrow x_i + \alpha * Rc_{ij} * \text{Cos}(\beta + \cot^{-1}(x_i - x_j / y_i - y_j))$

$y_i' \leftarrow y_i + \alpha * Rc_{ij} * \text{Sin}(\beta + \cot^{-1}(x_i - x_j / y_i - y_j))$

/* security enhancement through **rotation** (w.r.to origin) using key γ

$x_i'' \leftarrow x_i' * \text{Cos}(\gamma) - y_i' * \text{Sin}(\gamma)$

$y_i'' \leftarrow x_i' * \text{Sin}(\gamma) + y_i' * \text{Cos}(\gamma)$

/* final **translation** using key γ and δ

$x_i_{\text{new}} \leftarrow |x_i'' + \delta * \text{Cos}(\gamma)|$

$y_i_{\text{new}} \leftarrow |y_i'' + (\gamma)|$

Endfor

End

Pseudo code for generating secure fingerprint template

- The proposed approach exploits the following features of transformed fingerprint to compute secure template:
 - i) co-ordinates of minutiae points (x_i, y_i)
 - ii) orientation (θ)
 - iii) type of minutiae i.e., ridge ending or bifurcation

Module 3: Hardware Security Constraints Generation

- The process of generating constraints for hardware security accepts the following inputs:
 - IP vendor chosen strength of secure fingerprint template,
 - Encoding algorithm
 - Storage variable information and their ordering corresponding to fault secured JPEG design.

❖ The generated secure template using IP vendor specified concatenation order of minutiae points, transformation functions and key set is:
“110101110001001001110111011111.....11100011010” (893 bits).

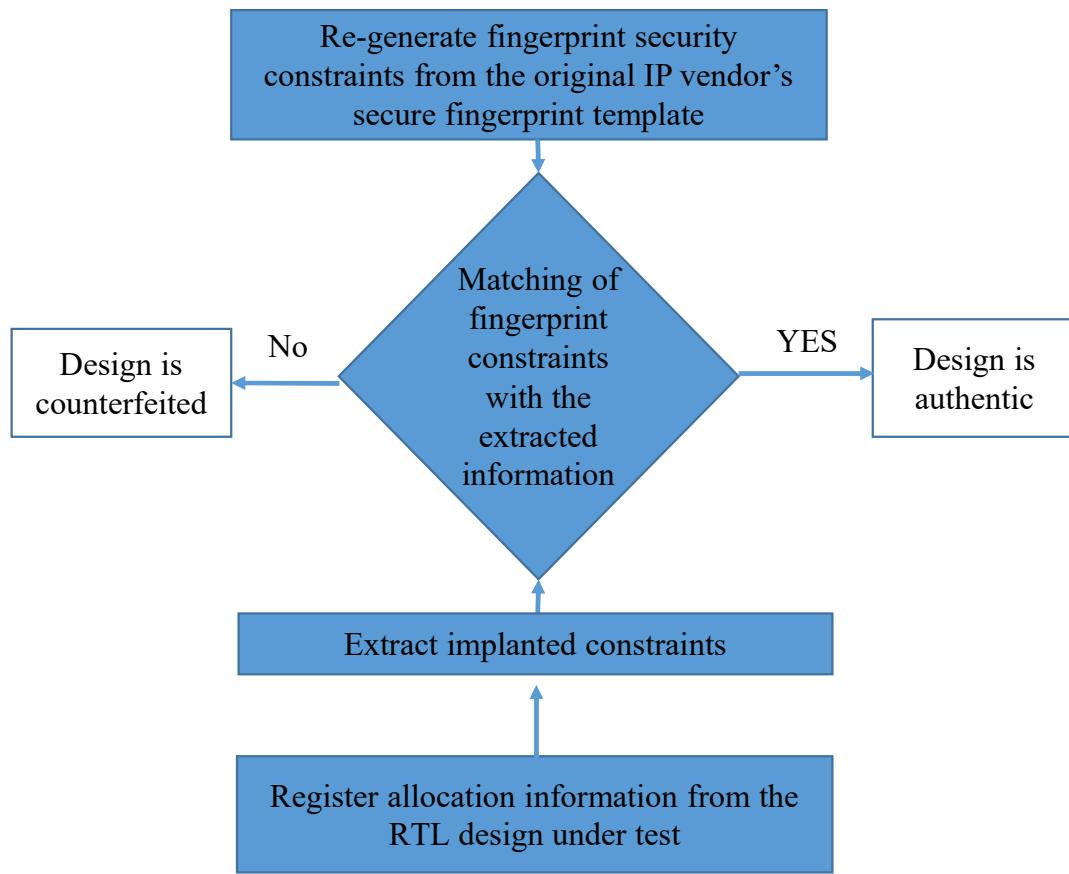
TABLE II
IP VENDOR SPECIFIED ENCODING ALGORITHM TO ENCODE SECURE FINGERPRINT TEMPLATE INTO HARDWARE SECURITY CONSTRAINTS

Bit	Fingerprint template encoding algorithm (For example)
0	Embedding the security constraints during register allocation between ‘even-even’ pairs of storage variable.
1	Embedding the security constraints during register allocation between ‘odd-odd’ pairs of storage variable.

TABLE III
GENERATED HARDWARE SECURITY CONSTRAINTS CORRESPONDING TO SECURE FINGERPRINT TEMPLATE BASED ON ENCODING

For '0'				For '1'		
<0, 2>	<0, 398>	<2, 18>	<1, 3>	<1, 399>	--	--
<0, 4>	<2, 4>	--	<1, 5>	<3, 5>	<3, 215>	--
--	--	--	--	--	--	--

Module 4: Generating Fault Secured JPEG-codec Hardware Accelerator with Piracy Detective Control


- To enable the detective control against piracy for fault secured JPEG, encoded hardware security constraints are covertly implanted during register allocation module of behavioral synthesis.

		Control steps (CS1 to CS25)																										
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Registers used (R ₁ to R ₂₀)	Storage variables (0 to 399)	1	0	129	256	256	320	320	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	368	384	384	392	392
2	1	128	256	256	320	320	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	368	384	384	392	392	
3	2	130	130	257																								
4	3	3	132																									
5	4	4	131	258	258	321																						
6	5	5	133																									
7	6	6	6	134	259																							
8	7	7	7	135																								
9	8	8	8	136	136	260	322	322	322	353	353	353	353	353	353	353	353	353	353	353	353	353	369					
10	9	9	9	9	137																							
11	10	10	10	10	138	261																						
12	11	11	11	11	139																							
13	12	12	12	12	12	262	262	262	323	323																		
14	13	13	13	13	13	141																						
15	14	14	14	14	14	142	142	263																				
16	15	15	15	15	15	15	15	143																				
17	16	16	16	16	16	16	144	264	264	324	324	354	354	354	354	354	354	354	354	354	354	370	385					
18	17	17	17	17	17	17	17	145																				
19	18	18	18	18	18	18	18	18	146	265																		
20	19	19	19	19	19	19	19	19	19	147																		

Register allocation information of fault secured JPEG-codec post implanting encoded fingerprint security constraints. Note: the details of only 20 registers (out of 146) and 25 control steps (out of 54) have been presented (for the sake of brevity).

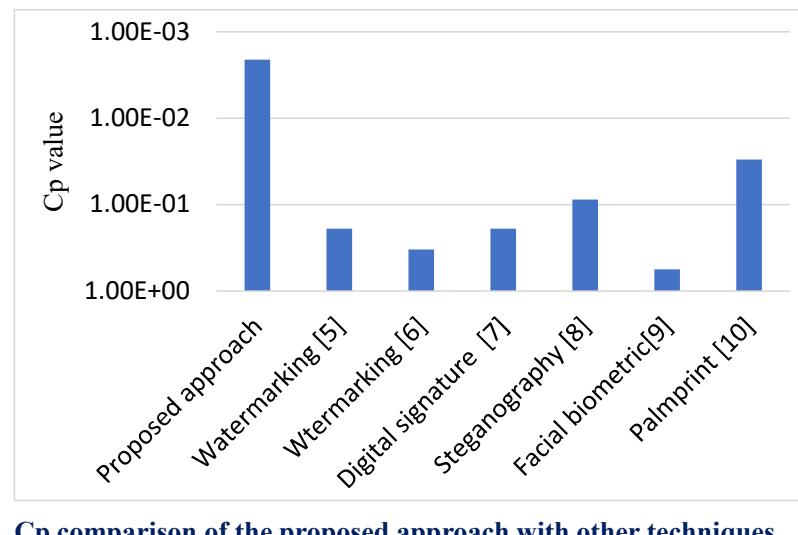
- Finally, the design with covertly implanted fingerprint security constraints is synthesized to generate secure register transfer level (RTL) datapath design.

Piracy Detection and Security Properties of Proposed Methodology

Security Properties:

- ❑ The proposed methodology comprises of several security layers, such as:
 - key set (α, β, γ) ,
 - Number of minutiae points and
 - Concatenation order of their features, concatenation order of IP vendor selected minutiae points for generating final secure fingerprint template,
 - IP vendor chosen template size,
 - Encoding algorithm and
 - Ordering of storage variables for generating security constraints.
- ❑ All these security parameters are impossible to decode for an attacker to perform piracy evasion successfully

Results and Analysis


A. Security Strength Analysis:

- Robustness of the proposed methodology is analysed in terms of
- Probability of coincidence ‘Cp’ and
- Tolerance against tampering attack using brute-force (A_T).
- The probability of coincidence (Cp), which is a measure of false positive, is computed as follows [5], [7], [8]:

$$Cp = \left(1 - \frac{1}{R_m}\right)^K \quad (2)$$

TABLE IV
Variation in Cp and TT for Proposed Approach

# Constraints (K)	Cp	TT
256	1.7E-1	1.15E+77
512	2.9E-2	1.34E+154
768	5.1E-3	1.55E+231
893	2.1E-3	6.60E+268

‘K’: the number of implanted hardware security constraint and ‘ R_m ’ : the numeral value of registers used in baseline

Proposed Methodology: Design Flow

- The effort required for an attacker in guessing the exact signature by performing brute force-attack is evaluated using the following metric [5], [7]:

$$A_T = F^K \quad (3)$$

Where 'F^K': the signature space and 'F' : the number of variables in fingerprint template

B. Design Cost Analysis

Design cost is computed as follows [9], [5], [7], [8]:

$$C_d(R^c) = Q_1 \frac{\Psi_A}{\Psi_m} + Q_2 \frac{\omega_L}{\omega_m} \quad (4)$$

'R^c' :the resource constraints, Ψ_A and ω_L :the area and latency of the design respectively, Ψ_m and ω_m :maximum area and design latency, Q_1 and Q_2 : weighing factors for normalized area and design latency

TABLE V
Comparison of Tamper Tolerance w.r.t related Works [5]-[10]

#Security constraints (K)	Proposed		Hardware watermarking [5]		Automatic signature insertion [6]		Digital signature [7]		Hardware steganography [8]		Facial biometric [9]		Palmprint security [10]	
	A _T	K	A _T	K	A _T	K	A _T	K	A _T	K	A _T	K	A _T	
256	1.1E 77	120	1.3E 36	40	1.0E 12	30	1.0E 9	125	NA	60	1.1E 18	155	8.9E 73	
512	1.3E 154	160	1.4E 48	80	1.2E 24	60	1.1E 18	203	NA	81	2.4E 24	182	6.8E 86	
768	1.5E 231	200	1.6E 60	120	1.3E 36	120	1.3E 36	317	NA	83	9.6E 24	227	2.0E 108	
893	6.6E 268	240	1.7E 72	160	1.4E 48	240	1.7E 72	355	NA	84	1.9E 25	231	1.6E 110	

TABLE VI
Fault Secured JPEG-CODEC Hardware Accelerator Design Cost Pre and Post Embedding Secure Fingerprint Template

Fingerprint template size	# of registers in baseline	# of registers in fingerprint implanted design	Design cost of baseline	Design cost of fingerprint implanted design	% Cost overhead
256 bits	146	146	0.2228	0.2228	0.00%
512 bits	146	146	0.2228	0.2228	0.00%
610 bits	146	146	0.2228	0.2228	0.00%
893 bits	146	147	0.2228	0.2229	0.04%

Conclusion

- The high-level synthesis based design methodology to generate fault secured JPEG-codec hardware accelerator design has been presented.
- The proposed methodology exploits IP vendor's fingerprint biometric information to generate secure fingerprint security constraints for enabling seamless piracy detection through the covertly embedded fingerprint constraints into the design during register allocation phase of HLS.
- Proposed methodology ensured more robust and seamless detective control against piracy at negligible design cost overhead.

References

- [1] C. Pilato, S. Garg, K. Wu, R. Karri and F. Regazzoni, "Securing hardware accelerators: a new challenge for high-level synthesis," *IEEE Embedded Syst. Lett.*, vol. 10, no. 3, pp. 77-80, Sept. 2018.
- [2] W. Hu, C. -H. Chang, A. Sengupta, S. Bhunia, R. Kastner and H. Li, "An Overview of Hardware Security and Trust: Threats, Countermeasures, and Design Tools," *IEEE Trans. Comput.-Aided Design of Integr. Circuits and Syst.*, vol. 40, no. 6, pp. 1010-1038, 2021.
- [3] "Single event upsets," Intel [online], Available: <https://www.intel.com/content/www/us/en/support/programmable/support-resources/quality/seu.html>, Nov. 2022.
- [4] A. Sengupta, S. P. Mohanty, F. Pescador and P. Corcoran, "Multi-Phase Obfuscation of Fault Secured DSP Designs With Enhanced Security Feature," *IEEE Trans. Consum. Electron.*, vol. 64, no. 3, pp. 356-364, Aug. 2018.
- [5] F. Koushanfar, I. Hong, and M. Potkonjak, "Behavioral synthesis techniques for intellectual property protection," *ACM Trans. Design Autom. Electron. Syst.*, vol. 10, no. 3, pp. 523–545, Jul. 2005.
- [6] E. Castillo, L. Parrilla, A. Garcia, U. Meyer-Baese, G. Botella and A. Lloris, "Automated Signature Insertion in Combinational Logic Patterns for HDL IP Core Protection," *2008 4th Southern Conference on Programmable Logic*, Bariloche, Argentina, 2008, pp. 183-186.
- [7] A. Sengupta, E. R. Kumar and N. P. Chandra, "Embedding digital signature using encrypted-hashing for protection of DSP cores in CE," *IEEE Trans. Consum. Electron.*, vol. 65, no. 3, pp. 398-407, Aug. 2019.
- [8] A. Sengupta and M. Rathor, "IP core steganography for protecting DSP kernels used in CE systems," *IEEE Trans. Consum. Electron.*, vol. 65, no. 4, pp. 506-515, 2019.
- [9] R. Chaurasia and A. Sengupta, "Symmetrical Protection of Ownership Right's for IP Buyer and IP Vendor using Facial Biometric Pairing," *2022 IEEE International Symposium on Smart Electronic Systems (iSES)*, Warangal, India, 2022, pp. 272-277.
- [10] A. Sengupta, R. Chaurasia and T. Reddy, "Contact-Less Palmprint Biometric for Securing DSP Coprocessors Used in CE Systems," *IEEE Trans. Consum. Electron.*, vol. 67, no. 3, pp. 202-213, Aug. 2021.
- [11] V. K. Alilou, "FingerPrint Matching: A simple approach MATLAB Central File Exchange," [Online]. Available: <https://www.mathworks.com/matlabcentral/fileexchange/44369-fingerprint-matching-a-simple-approach>, last accessed on dec. 2022.
- [12] S. S. Ali, V. S. Baghel, I. I. Ganapathi, S. Prakash, "Robust biometric authentication system with a secure user template," *Image Vis. Comput.*, vol. 104, pp.104004, 2020.
- [13] 15 nm open cell library. [Online], Available: <https://si2.org/open-cell-library/>, last accessed on Aug. 2022.
- [14] AMD Xilinx Versal Core. [Online], Available: <https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html>, last accessed on July, 2023.

Thank You