
HARDWARE SECURITY AND IP
CORE PROTECTION OF CE

SYSTEMS

Ph.D. Thesis

By

DIPANJAN ROY

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
OCTOBER, 2018

HARDWARE SECURITY AND IP
CORE PROTECTION OF CE

SYSTEMS

A THESIS

Submitted in Partial Fulfillment of the
requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

DIPANJAN ROY

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
OCTOBER, 2018

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled HARD-
WARE SECURITY AND IP CORE PROTECTION OF CE SYSTEMS in the partial
fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSO-
PHY and submitted in the DISCIPLINE OF COMPUTER SCIENCE & ENGINEER-
ING, Indian Institute of Technology Indore, is an authentic record of my own work car-
ried out during the time period from December 2015 to October 2018 under the supervision
of Dr. Anirban Sengupta, Associate Professor, Indian Institute of Technology Indore.

The matter presented in this thesis has not been submitted by me for the award of any
other degree of this or any other institute.

Signature of the Student with date
(DIPANJAN ROY)

This is to certify that the above statement made by the candidate is correct to the best
of my knowledge.

Signature of Thesis Supervisor with date
(Dr. ANIRBAN SENGUPTA)

DIPANJAN ROY has successfully given his Ph.D. Oral Examination held on

Signature of Chairperson (OEB)

Date:

Signature of External Examiner

Date:

Signature of Thesis Supervisor

Date:

Signature of PSPC Member #1

Date:

Signature of PSPC Member #2

Date:

Signature of Convener, DPGC

Date:

Signature of Head of Discipline

Date:

V

VI

Acknowledgements

I express my sincere gratitude to Dr. Anirban Sengupta, my Ph.D. Supervisor in Com-
puter Science and Engineering, at Indian Institute of Technology Indore, India, for his
stimulating guidance, continuous encouragement and supervision throughout my research
work. Without his support, this challenge would not have been completed.

I am extremely thankful to Dr. Abhishek Srivastava and Dr. Manavendra Mahato,
PSPC members, at Indian Institute of Technology Indore, India, for their feedback on the
progress on my research throughout these years.

I am extremely thankful to Head, Discipline of Computer Science and Engineering for
the support.

I also wish to extend my thanks to Prof. Pradeep Mathur, Director, IIT Indore, for
providing infrastructural facilities to work in.

Special thanks are due to my lab colleague, Deepak Kachave for his moral support
during this work.

I would like to thank Indian Institute of Technology Indore, for giving me this wonder-
ful opportunity to pursue Ph.D.

I cannot end this list without thanking my sister Shravani and my parents without
whose honest opinions, feedback, complaints and suggestions this thesis would not have
been completed.

Dipanjan Roy

VII

Dedicated To My Parents

Abstract

In the modern era of Consumer Electronics (CE), use of Intellectual Property (IP) cores in
global supply chains have become an inexorable part of complex System on Chip (SoC)
design process. Use of IP cores not only speed up the design productivity massively but
also decrease the design period immensely. Importing these IP cores from third-party IP
(3PIP) vendors by the system integrator or SoC designer has become a standard industry
de facto. Earlier, IP vendors have mainly prioritized on the performance and functionality
of an IP core but neglected IP security. As evident, in a typical IP design flow, specification
only includes performance and functionality but totally overlooks an important dimension
i.e., security/protection. With the increasing popularity and prevailing usage of IP cores in
SoC, rivalry between multiple IP core vendors have also multiplied, which invites security
threats like infringement of IP core, IP piracy, dishonest claim of ownership, insertion of
hardware Trojan, etc. Similar to an untrustworthy 3PIP vendor, an adversary may also be
present in a foundry. He/she can launch reverse engineering attack to extract the gate-level
netlist of an IP core. The objective is to counterfeit the IP core, insert Trojan logic, etc.
Sometimes an attack can also be launched on the secured IP core by removing its security
features. Therefore this mandates robust security and protection mechanisms.

Strong security and protection of IP core are expected to become the key focus in recent
years due to the involvement of globalization in the SoC design process. This dissertation
proposes different solutions to secure and protect hardware/IP cores of CE systems from
multiple attacks. To be specific, this thesis provides seven different methodologies for
generating secured IP cores for CE systems at the architectural level. It solves the prob-
lem of (a) fraudulent claim of ownership, IP piracy and IP cloning for DSP IP core by
proposing a novel watermarking methodology which is easily adaptable by any (Computer
Aided Design) CAD tool. The experimental results over the standard applications indicate
an average reduction in the final embedding cost of 6% compared to a recent approach.
(b) Tampering or removal of the implanted signature in the IP cores by inserting a robust
and distributed triple-phase watermarking methodology which is encoded through 7 vari-
ables and dispersed over three different phases. The experimental results over the standard

XI

applications indicate it yields zero delay and minimal area overhead compared to the base-
line and achieves average cost reductions of 7.38% and 6.25% compared to two similar
approaches. Further, it achieves 3.4 × 1043 and 2.8 × 1019 times more tamper tolerant
than similar approaches. (c) Abusing the rights of the IP core buyer and seller for DSP
kernel applications by implanting IP seller’s watermark and IP buyer’s fingerprint in the
design, thus provides symmetrical IP core protection. Experimental results indicate an
average 1% design cost overhead compared to baseline (unprotected) design and <1%
design cost overhead compared to a non-symmetrical approach. (d) Reverse engineering
attack for DSP kernel by transforming the architecture of an application into a non-obvious
one through a robust multi-stage structural obfuscation methodology. Experimental results
over the standard applications indicate an improvement in the power of obfuscation by 22%
and reduction in obfuscated design cost by 55% is achieved compared to recent prior work.
(e) SAT (Boolean Satisfiability) and removal attacks of the functionally obfuscated DSP
IP core by integrating a custom light-weight Advance Encryption Standard (AES) core in
the design. The AES module utilizes <1% of the available design logic elements of the
FPGA. (f) Reverse engineering attack on the JPEG (Joint Photography Expert Group) IP
core by generating a low-cost structurally obfuscated design. The design cost of the pro-
posed obfuscated JPEG CODEC IP core is reduced by 5% and enhanced the robustness by
76% compared to a non-obfuscated design. (g) Hardware Trojan detection by generating a
low-cost Trojan secured datapath architecture for DSP kernel, which explores the optimal
vendor allocation and loop unrolling factor through Particle Swarm Optimization (PSO)
based Design Space Exploration (DSE). The results generated indicate that a detection rate
of 100% was achieved while handling such Trojans. Therefore, all approaches incur very
minimal design overhead compared to the baseline (unprotected) design and achieve a sig-
nificant reduction in design overhead and improvement in security/robustness compared to
the current state-of-the-art.

XII

List of Publications

SCI Journals (12)

P1. A. Sengupta, D. Roy, S. P Mohanty, ”Triple-Phase Watermarking for Reusable IP
Core Protection during Architecture Synthesis”, IEEE Transactions on Computer
Aided Design of Integrated Circuits & Systems, vol. 37 (4), Apr 2018, pp. 742
755, Impact factor ∼ 2.

P2. A. Sengupta, D. Roy, S. P Mohanty, P. Corcoran, ”DSP Design Protection in CE
through Algorithmic Transformation Based Structural Obfuscation”, IEEE Trans-
actions on Consumer Electronics, vol. 63 (4), Nov 2017, pp. 467 476, Impact
factor ∼ 1.7.

P3. A. Sengupta, D. Roy, S. P Mohanty, P. Corcoran, ”Low-Cost Obfuscated JPEG
CODEC IP Core for Secure CE Hardware”, IEEE Transactions on Consumer Elec-
tronics, Accepted, Aug 2018, Impact factor ∼ 1.7.

P4. A. Sengupta, D. Kachave, D. Roy, ”Low Cost Functional Obfuscation of Reusable IP
Cores used in CE Hardware through Robust Locking, IEEE Transactions on Com-
puter Aided Design of Integrated Circuits & Systems, Accepted, 2018, Impact
factor ∼ 2.

P5. D. Roy, A. Sengupta, ”Obfuscated JPEG Image Decompression IP Core for Protect-
ing Against Reverse Engineering”, IEEE Consumer Electronics, vol.7 (3), May
2018, pp. 104 - 109 , Impact factor ∼ 1.15.

P6. D. Roy, P. Sarkar, A. Sengupta, MK Naskar, ”Optimizing DSP IP Cores using Design
Transformation”, IEEE Consumer Electronics, vol.7 (4), May 2018, pp. 104- 109
, Impact factor ∼ 1.15.

P7. D. Roy, A. Sengupta, ”Low-overhead multi-level watermark for Protecting DSP
Core, IEEE Consumer Electronics, Accepted, Impact factor ∼ 1.15.

XIII

P8. D. Roy, A. Sengupta, ”Low Overhead Symmetrical Protection of Reusable IP Core
using Robust Fingerprinting and Watermarking during High Level Synthesis, Else-
vier Journal on Future Generation Computer Systems, vol. 71, Jun 2017, pp.
89101, Impact factor ∼ 4.8.

P9. A. Sengupta, D. Roy, ”Protecting an Intellectual Property Core during Architec-
tural Synthesis using High-Level Transformation Based Obfuscation IET Electron-
ics Letters, vol. 53 (13), Jun 2017, pp. 849 - 851, Impact factor ∼ 1.23.

P10. A. Sengupta, D. Roy, ”Anti-Piracy aware IP Chipset Design for CE Devices: Robust
Watermarking Approach, IEEE Consumer Electronics, vol. 6(2), Apr 2017, pp.
118 - 124 Impact factor ∼ 1.15.

P11. A. Sengupta, D. Roy, ”Automated Low Cost Scheduling Driven Watermarking Method-
ology for Modern CAD High-Level Synthesis Tools, Elsevier Journal of Advances
in Engineering Software, vol. 110, Aug 2017, pp. 26-33, Impact factor ∼ 3.0.

P12. A. Sengupta, D. Roy, S. Bhadauria, ”Low cost optimized Trojan secured schedule at
behavioral level for single & Nested loop control data flow graphs”, Elsevier Journal
on VLSI Integration, vol. 58, Jun 2017, pp. 378-389, Impact factor ∼ 1.0.

Invited Book Chapter (1)

P13. A. Sengupta, D. Roy, Low Cost Dual-Phase Watermark for Protecting CE Devices
in IoT Framework, Springer Book: Security and Fault Tolerance in Internet of
Things, 2018.

Peer- Reviewed Conferences (3)

P14. D. Roy, A. Sengupta, Reusable Intellectual Property Core Protection for Both Buyer
and Seller, Proc. 36th IEEE Int. Conf. on Consumer Electronics, Las Vegas, Jan
2018, pp. 1-3.

P15. D. Roy, A. Sengupta, Low overhead symmetrical protection of reusable IP core using
robust fingerprinting and watermarking during high level synthesis, Cyber Security
Awareness Applied Research, IIT Kanpur- New York University, Accepted, Nov
2017.

P16. A. Sengupta, D. Roy, Multi-Phase Watermark for IP Core Protection, Proc. 36th
IEEE Int. Conf. on Consumer Electronics, Las Vegas, Jan 2018, pp. 1-3.

XV

Table of Contents

Acknowledgements VII

Abstract XI

List of Publications XIII

List of Figures XXV

List of Tables XXIX

Nomenclature XXXIII

Acronyms XXXV

1 Introduction 1
1.1 IP Cores: Heart of the CE Systems . 1

1.2 VLSI Design Abstraction Levels . 3

1.3 Background on HLS . 5

1.3.1 Scheduling . 6

1.3.2 Allocation . 6

1.3.3 Resource binding . 6

1.4 Security of IP Cores . 7

1.4.1 Fraudulent claim of ownership . 8

1.4.2 Tampering/removal of implanted signature 8

1.4.3 Abusing rights of IP buyer and seller 8

1.4.4 Reverse engineering of IP core . 9

1.4.5 Unlocking a functionally obfuscated netlist 9

1.4.6 Insertion of malicious hardware logic 9

1.5 Organization of the Thesis . 10

XVII

2 State-of-the-Art 11
2.1 State-of-the-Art on IP Core Attacks . 11
2.2 Objective of the Thesis . 16
2.3 Summary of Contributions . 17

3 Single-Phase IP Core Watermarking of CE Systems 21
3.1 Problem Formulation . 22

3.1.1 Threat model . 22
3.1.2 Input & Output . 22

3.2 Proposed Methodology . 22
3.2.1 Signature encoding rules . 23
3.2.2 Watermark embedding process . 24
3.2.3 Properties of proposed watermark 25

3.3 Proposed Signature Detection Process . 26
3.3.1 Inspection . 26
3.3.2 Verification . 26

3.4 Motivational Example . 27
3.4.1 Demonstration of proposed watermarking approach 27
3.4.2 Threat scenarios . 29
3.4.3 Resolution of ownership conflict through proposed approach 31

3.5 Summary . 32

4 Multi-Phase IP Core Watermarking of CE Systems 33
4.1 Problem Formulation . 34

4.1.1 Threat model . 34
4.1.2 Input & Output . 34
4.1.3 Target platform . 34

4.2 Proposed Methodology . 35
4.2.1 Watermark encoding . 36
4.2.2 Process of implanting watermark 36
4.2.3 Tamper tolerance ability of proposed watermark 38
4.2.4 Proposed signature detection . 39
4.2.5 Properties of generated watermark 40

4.3 Motivational Example . 42
4.4 Threat Scenarios of Fraudulent Ownership 46

4.4.1 Extracting unintended signature 47
4.4.2 Inserting unauthorized signature 47

XVIII

4.4.3 Tampering original signature in the design 48
4.5 Summary . 48

5 Symmetrical IP Core Protection of CE Systems 51
5.1 Proposed Approach: Problem Formulation, Threat Model and Target platform 53

5.1.1 Problem formulation . 53
5.1.2 Threat model . 53
5.1.3 Target technology/platform . 54

5.2 Proposed Methodology . 54
5.2.1 Evaluation models . 54
5.2.2 Proposed signature encoding . 55
5.2.3 Proposed signature implanting process 58
5.2.4 Signature detection process . 61
5.2.5 Properties of generated signatures 61

5.3 Motivational Example . 62
5.3.1 Example of fingerprint implanting 63
5.3.2 Example of watermark implanting 66

5.4 Summary . 68

6 Multi-Stage Structural Obfuscation to Secure IP Core used in CE Systems 69
6.1 Formulation, Threat Model and Evaluation Models 71

6.1.1 Problem formulation . 71
6.1.2 Threat model . 71
6.1.3 Evaluation models . 71

6.2 Proposed Methodology . 72
6.2.1 Redundant operation elimination process 75
6.2.2 Logic transformation process . 76
6.2.3 Tree height transformation process 77
6.2.4 Loop unrolling process . 79
6.2.5 Loop invariant code motion process 81

6.3 Exploring PSO-driven Low-Cost Structural Obfuscation 82
6.3.1 Overview of PSO-DSE . 82
6.3.2 Initialization of particle . 82
6.3.3 Movement of particle using velocity 84
6.3.4 Terminating criteria of PSO . 85

6.4 Motivational Example . 85
6.5 Summary . 87

XIX

7 SAT and Removal Attack Resilient Functional Obfuscation to Secure IP Core
of CE Systems 89
7.1 Possible Attacks and Threat Model . 90

7.1.1 Possible attacks . 90
7.1.2 ILB-based functional obfuscation 93
7.1.3 Threat model . 97

7.2 Proposed Methodology . 97
7.2.1 Designing a light-weight AES module 97
7.2.2 Mitigating SAT attack . 98
7.2.3 Mitigating removal attack attack 100

7.3 Summary . 102

8 Obfuscation to Secure Multimedia Processor IP Core of CE Systems 103
8.1 Overview of the Proposed Approach . 104

8.1.1 Threat model and problem formulation 104
8.1.2 Proposed obfuscation and its steps 105
8.1.3 Proposed DSE framework for low-cost obfuscated JPEG CODEC

IP core . 106
8.2 Proposed Methodology of Obfuscated JPEG CODEC IP Core 107

8.2.1 Overview of JPEG process . 108
8.2.2 Overview of proposed methodology for compression 111
8.2.3 Generating non-obfuscated DFG of JPEG compression 111
8.2.4 Constructing obfuscated JPEG compression IP core 113
8.2.5 Overview of proposed methodology for decompression 114
8.2.6 Constructing obfuscated JPEG decompression IP core 115

8.3 Proposed Design of JPEG CODEC IP Core 116
8.3.1 Designing of obfuscated JPEG compression IP core 117
8.3.2 Designing of obfuscated JPEG decompression IP core 119
8.3.3 End to End demonstration of JPEG CODEC through the designed

IP core . 121
8.4 Summary . 122

9 Hardware Trojan Secured IP Core for CE Systems 123
9.1 Threat Model and An Example . 125

9.1.1 Threat model . 125
9.1.2 Example of a Trojan infected 3PIP module 126
9.1.3 Why detection of such Trojan is difficult? 127

XX

9.2 Formulation and Evaluation Models . 127

9.2.1 Problem formulation . 128

9.2.2 Evaluation models . 128

9.3 Proposed Methodology for Trojan Security Aware DSP IP Core 130

9.3.1 Particle encoding . 131

9.3.2 Preprocessing of unrolling factor candidates 131

9.3.3 Designing DMR schedule . 131

9.3.4 Distinct vendor allocation rules 133

9.3.5 Example of designing a Trojan secured single loop application . . . 136

9.4 Generating Low-Cost Trojan Secured Design through PSO-DSE 137

9.4.1 Justification of PSO . 137

9.4.2 Initialization of Particle . 139

9.4.3 Particle Movement using Velocity 139

9.4.4 Velocity clamping . 140

9.4.5 Terminating condition . 140

9.5 Summary . 141

10 Results and Analysis 143
10.1 Experimental Results: Single-Phase IP Core Watermarking of CE Systems . 143

10.1.1 Analysis of design cost . 144

10.1.2 Comparison of design cost . 144

10.2 Experimental Results: Triple-Phase IP Core Watermarking of CE Systems . 147

10.2.1 Evaluation of robustness . 147

10.2.2 Evaluation of tamper-tolerance ability 149

10.2.3 Evaluation of design cost . 150

10.3 Experimental Results: Symmetrical IP Core Watermarking of CE Systems . 154

10.3.1 Result of the proposed approach in terms of design Cost, security
and implementation complexity 154

10.3.2 Comparison of the proposed symmetrical IP Core protection ap-
proach with a non-symmetrical approach 158

10.4 Experimental Results: Multi-Stage Structural Obfuscation to Secure IP
Core of CE Systems . 161

10.4.1 Result of the proposed multi-stage obfuscation approach 161

10.4.2 Comparative analysis . 165

10.5 Experimental Results: Obfuscation to Secure Multi-media Processor IP
Core of CE Systems . 166

XXI

10.6 Experimental Results: Hardware Trojan Secured IP Core of CE Systems . . 170
10.6.1 Experimental setup and benchmarks 170
10.6.2 Analysis of results . 171
10.6.3 Comparison with related prior research 172

11 Conclusion 175

References 177

XXII

List of Figures

1.1 Design process of SoC based CE systems 2

1.2 Design process of SoC based CE systems 3

1.3 Possible attacks on DSP IP core based CE systems and their proposed de-
fense mechanisms . 7

3.1 Proposed watermarking methodology . 23

3.2 Proposed signature detection process . 26

3.3 Unscheduled CDFG of FFT unrolled twice (UF = 2) 28

3.4 Watermark embedded scheduling of FFT CDFG unrolled twice (UF = 2)
with two multiplier (blue nodes), two adders (green nodes), one subtractor
(orange nodes) and one comparator (red node). 30

4.1 Overview of proposed triple-phase watermarking approach 34

4.2 Design process of proposed triple-phase watermark 37

4.3 Signature detection process of proposed triple-phase watermark 40

4.4 Corresponding to the DWT benchmark: (a) data flow graph, (b) scheduled
data flow graph based on 3(+), 3(*) . 42

4.5 Corresponding to the color interval graph of the input application: (a) be-
fore implanting watermark, (b) after implanting watermark 44

4.6 Corresponding to the proposed triple phase watermark: (a) after implanting
1st phase watermark, (b) after implanting 1st and 2nd phase watermark . . . 44

4.7 Final watermarked design after implanting 1st, 2nd and 3rd phase watermark 47

5.1 Proposed Symmetrical IP core Protection during high level synthesis. . . . 52

5.2 Design flow of the proposed symmetrical IP core protection during 56

5.3 Scheduling of MESA DFG with 2 adders and 3 multipliers (after implant-
ing proposed fingerprint) . 63

5.4 Scheduling of MESA DFG with 2 adders and 3 multipliers (with no buyer
signature implanted) . 64

XXIII

5.5 Colored interval graph with additional edges as fingerprinting constraints
indicated through blue dotted line . 65

5.6 Final colored interval graph incorporating buyer fingerprint (additional edges
in blue dots) and seller watermark (additional edges in red dotted line) . . . 68

6.1 Proposed Symmetrical IP core Protection during high level synthesis. . . . 70

6.2 Flowchart of the proposed multi-stage structural obfuscation approach . . . 73

6.3 Original non-obfuscated loop-based CDFG 74

6.4 Original non-obfuscated CDFG scheduled based on 3(+), and 4(*) 74

6.5 Equivalent circuit of non-obfuscated scheduled CDFG 75

6.6 Algorithm of the proposed ROE based obfuscation 76

6.7 Redundant operation elimination based obfuscated CDFG 76

6.8 Algorithm of the proposed LE based obfuscation 77

6.9 Logic transformation based obfuscated CDFG 78

6.10 Algorithm of the proposed THT based obfuscation 78

6.11 Tree height transformation based obfuscated CDFG 79

6.12 Algorithm of the proposed LU based obfuscation 79

6.13 Loop unrolling based obfuscated CDFG 80

6.14 Algorithm of the proposed LICM based obfuscation 80

6.15 Loop invariant code motion based obfuscated CDFG 81

6.16 PSO driven DSE process for low-cost obfuscated design 83

6.17 Obfuscated CDFG after employing multi-stage HLTs 86

6.18 Low-cost obfuscated IP design scheduled with 3(+) and 1(*) 86

6.19 Equivalent circuit of multi-stage structurally obfuscated IP design 87

7.1 Overview of the proposed approach . 90

7.2 Corresponding to the sensitization attack: (a) Isolated key gates K1 and
K2, (b) Run of key gates K1 and K2, (c) Concurrently mutable key gates
K1 and K2 . 91

7.3 ILB based functional obfuscation approach 93

7.4 Sample ILB structures . 94

7.5 ILB based functionally obfuscated FIR benchmark 96

7.6 Countermeasure of SAT-attack based on custom AES module 97

7.7 Block diagram of the designed lightweight custom AES module 98

7.8 Block diagram of the key generator of the AES module 99

7.9 AES module integrated functionally locked FIR benchmark 101

XXIV

7.10 Example of a reconfigured ILB based on a sample encrypted output (11001101.)
from the AES circuit . 102

8.1 Generic overview of JPEG process . 107

8.2 Obfuscated JPEG compression IP core . 110

8.3 Non-obfuscated DFG of JPEG image compression for calculating first pixel
of the compressed image (X ′11) . 112

8.4 Obfuscated DFG of JPEG image compression for calculating first pixel of
the compressed image (X ′11) . 113

8.5 Obfuscated JPEG decompression IP core 114

8.6 Proposed hardware and software design flow using JPEG compression IP . 117

8.7 Block diagram representation of data-path unit of proposed low-cost ob-
fuscated JPEG CODEC IP core . 120

8.8 Proposed hardware and software design flow using JPEG decompression IP 121

8.9 Depiction of end to end process of JPEG image compression and decom-
pression through the proposed JPEG hardware 121

9.1 Design cycle of a SoC involving 3PIP core 124

9.2 A Trojan infected BCD adder; Note: it will be triggered when ’En’=0 . . . 126

9.3 Overview of proposed low-cost Trojan secured design 130

9.4 Algorithm for preprocessing of unrolling factors 131

9.5 Corresponding to the FIR application: (a) the C-code for unrolling factor 2
, (b) equivalent CDFG for unrolling factor 2 132

9.6 DMR CDFG of FIR benchmark for unrolling factor 2 133

9.7 Scheduling and Binding of FIR for: (a) Xi = 2(+), 2(*), 2(<), U=2, I=4,
Av = 00; LDMR

T = 45080 ns and ADMR
T = 13064 au, (b) Xi = 2(+), 2(*),

2(<), U=2, I=4, Av = 01; LDMR
T = 43080 ns and ADMR

T = 17996 au, (c)
Xi = 2(+), 2(*), 2(<), U=2, I=4, Av = 10; LDMR

T = 45080 ns and ADMR
T

= 13064 au, (d) Xi = 2(+), 2(*), 2(<), U=2, I=4, Av = 11; LDMR
T = 45070

ns and ADMR
T = 15096 au . 135

9.8 Proposed design flow of low-cost Trojan secured DMR schedule 138

10.1 Graphical representation of design cost comparison between proposed single-
phase watermark approach, [30] and [51]. 145

10.2 Graphical representation of Pc comparison between proposed approach,
[30] and [51]. 148

XXV

10.3 Graphical representation of design cost comparison between proposed triple-
phase watermark approach, [30] and [51]. 151

10.4 Variation of embedded cost overhead (%) for different benchmark sizes.(Note:
For the proposed approach embedding cost overhead (%) decreases with
the increment in parallelism of different application) 160

XXVI

List of Tables

3.1 IP core seller’s signature and its decoded constraints 28

3.2 Demonstration of signature detection of watermarked IP core for resolving
ownership conflict . 31

4.1 “Timing table for non-critical operations” (before embedding watermark) . 42

4.2 “Functional unit allocation” table (before embedding watermark) 42

4.3 “Register allocation” table (before embedding watermark) 43

4.4 Vendor signature and its decoded meaning 45

4.5 “Timing table for non-critical operations” (after embedding 1st phase wa-
termark) . 45

4.6 “Functional unit allocation” table (after embedding 2nd phase watermark) . 45

4.7 “Register allocation” table (after embedding 3rd phase watermark) 46

5.1 Fingerprint and its meaning . 63

5.2 Timing table for register allocation after implanting ‘x’ & ‘y’ but before
implanting ‘z’ digits as fingerprint constraints 64

5.3 Timing table for register allocation after embedding additional edges as
fingerprint constraints . 65

5.4 Watermark and its meaning . 67

5.5 Final timing table for register allocation after implanting fingerprint and
watermark . 67

7.1 Resource usage of AES module integrated FIR IP core 100

8.1 Scheduling and binding of operations for low-cost obfuscated JPEG com-
pression IP core . 118

10.1 Used module library . 144

10.2 Comparison of proposed approach with [30] in terms of design area, exe-
cution latency and design cost. 145

XXVII

10.3 Comparison of proposed approach with [51] in terms of design area, exe-
cution latency and design cost. 145

10.4 Comparison of proposed approach with [51] in terms of design area, exe-
cution latency and design cost. 146

10.5 Comparison of probability of coincidence between proposed, [30] and [51]
for W=80 . 148

10.6 Comparison of total number of possible signature combinations between
proposed, [30] and [51] . 149

10.7 Comparison of design area, execution latency and design cost between pro-
posed and baseline design . 150

10.8 Comparison of design area, execution latency and design cost between pro-
posed, [30] and [51] . 150

10.9 Comparison of storage hardware and watermark implanting time between
proposed, [30] and [51] . 152

10.10Comparison of vendor allocation between proposed, [30] and [51] 153

10.11Solution of symmetrically protected IP core design through the proposed
approach (F = 30 and W = 30) . 155

10.12Probability of coincidence (Pc) as strength of watermark 155

10.13Variation of hardware area, execution latency and design cost with the in-
crement of fingerprint size . 157

10.14Variation of hardware area, execution latency and design cost with the in-
crement of watermark size after implanting fingerprint 157

10.15Comparison of proposed symmetrical IP core design with baseline IP design 158

10.16Comparison of proposed symmetrical IP core design with IP core design
of [30] . 158

10.17Comparison of proposed symmetrical IP core design with IP core design
of [30] and baseline in terms of storage hardware (register) and signature
creation time . 159

10.18Module and Gate level comparison of original non-obfuscated design and
proposed multi stage obfuscated design w.r.t. the motivational example . . . 162

10.19Results of proposed low-cost, obfuscated solution for different particle size 163

10.20Measuring power of obfuscation for each HLT technique 163

10.21Comparison of proposed obfuscated design with non-obfuscated design in
terms of hardware area, execution latency and design cost 164

10.22Comparison of proposed obfuscated design with [32] in terms of hardware
area, execution latency and design cost 164

XXVIII

10.23Comparison of proposed obfuscated design with [32] in terms of P obf . . . 165
10.24Device utilization summary of proposed JPEG CODEC IP cores w.r.t Intel

Cyclone II FPGA . 166
10.25Comparison between non-optimized obfuscated JPEG CODEC IP core with

proposed low-cost obfuscated IP core in terms of hardware area, execution
latency and design cost . 167

10.26Comparison between non-obfuscated JPEG CODEC IP core with proposed
low-cost obfuscated IP design in terms of area, latency cost and power of
obfuscation . 168

10.27Storage size, reduction percentage, MSE and PSNR of compressed image
for Q90 (Images 1 to 6 have been extracted from standard image datasets
[15] and [39]) . 168

10.28Storage size, reduction percentage, MSE and PSNR of compressed image
for Q70 (Images 1 to 6 have been extracted from standard image datasets
[15] and [39]) . 169

10.29Total hardware area and execution latency of the proposed approach 171
10.30Total hardware area and execution latency of [46] 173
10.31Comparison of proposed approach with [46] in terms of design cost 174
10.32Comparison of exploration time for various swarm size p 174

XXIX

Nomenclature

Xi Resource constraint
RD Dth Resource type

N(RD) Number of resource type RD

U/UF Unrolling factor
µm Mobility of an operation
Dw Watermarked IP core design

AT & LT Total area and execution time of symmetrically protected design
Acons & Lcons User provided area and execution time constraints
AOBF

T & LOBF
T Total area and execution time of obfuscated design

A(Ri) Area of resource type Ri

A(mux) Area of mux Ri

N(mux Number of mux used in the design
A(buffers) Area of storage units
N(buffers) Number of storage units used in the design

TOBF
body Single iteration execution delay of the loop body of obfuscated CDFG
TOBF
first delay to execute the first iteration of obfuscated CDFG
I total loop iteration (loop count)

AOBF
max & LOBF

max Maximum possible obfuscated area and latency in the design space
φ1/w1 & φ2/w2 User specified area and latency weightage factor

Cf (Xi) Design cost of the IP core with resource configuration Xi

Imax maximum number of pre-defined iteration count
δ number of iterations to check if no improvement in global best is found

r1 & r2 random number
b1 & b2 social and cognitive factor
ω Inertia weightt

V +
di

& Vdi New and current velocity of ith particle in dth dimension
Rdlbi

local best position of ith particle in dth dimension
Rdgb Global best position of dth dimension

R+
di

& Rdi New and current resource value/UF of ith particle in dth dimension
p Population size in PSO

P obf P obf
i Total Power of Obfuscation and after ith stage transformation

ni unique number of modified nodes due to ith stage transformation
nT total number of nodes before applying any transformation method

XXXI

N(HLT) Total number of HLT applied
Amax & Lmax Maximum possible area and latency in the design space

W/w Size of watermarking constraints
F Size of fingerprint constraints
Pc probability of coincidence
C Number of colors used in colored interval graph before watermark

Lproposed
T Total execution latency of the proposed approach

TA1 & TM1 Total execution latency of resource A1 and M1
Tt Tamper tolerance ability
V Number of variables used in encoding

Amax & Lmax Maximum possible area and latency in the design space
AJPEG

T & LJPEG
T Total area and execution time of obfuscated JPEG design

AJPEG
max & LJPEG

max Maximum possible obfuscated JPEG area and latency in the design space
T 2D-DCT coefficient matrix
M Input image matrix
i & j ith row, jth column component of the 2D-DCT matrix
X Transformed matrix after DCT processing
D Matrix (d11, d12, ..d88) transforms the rows of the M block
N Size of the DCT matrix
Q Quantization matrixx
X ′ 2D quantized 8x8 block
X ′′ decompressed 8x8 block
O IDCT block of X block
E Matrix (e11, e12, ..e88) transforms the rows of the X” block

PSNR(A,B) Peak Signal to Noise ratio for two images A and B of size M x N
MAXA Maximum pixel value in image A

MSE(A,B) Mean square error between image A and B
U1 & Un Unrolling factor value for outer most and inner most nested loop
Av Vendor allocation mode

V1 & V2 Two distinct vendors
ADMR

T & LDMR
T Total area and total execution delay of the DMR design

δ Latency of one CS
CDMR

body Number of CS required to execute the loop body of the DMR CDFG
CDMR

first Number of CS required to execute the first iteration of the DMR CDFG
A(R

Vj

i) Area of resource type Ri corresponding to vendor Vj
N(R

Vj

i) Number of resource Ri corresponding to vendor Vj
UOG & UDP operations of the original unit and the duplicate unit

XXXII

Acronyms

3PIP Third-party IP
AES Advance Encryption Standard

ALAP As Late As Possible
ARF Auto Regression Filter

ASAP As Soon As Possible
ATPG Automatic Test Pattern Generator
CAD Computer Aided Design

CDFG Control and Data Flow Graph
CE Consumer Electronics

CED Concurrent Error Detection
CIG Color Interval Graph

CODEC Compression and decompression
CS Control Step

DCT Discrete Cosine Transformation
DFG Data Flow Graph
DMR Dual Modular Redundant
DSE Design Space Exploration
DSP Digital Signal Processor
DWT Discrete Wavelet Transformation
EDA Electronics Design Automation
ESL Electronic System-level
EWF Enhance Write Filter
FDS Force Direct Scheduling
FFT Fast Fourier Transformation
FIR Finite Impulse Response

FPGA Field Programmable Gate Array
GDS Graphic Database System
HDL Hardware Description Language
HLS High-level Synthesis
IC Integrated Circuit

ICT Information and Communication Technology
IDCT Inverse Discrete Cosine Transformation

XXXIII

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

IIR Infinite Impulse Response
ILB IP core Locking Block
IP Intellectual Property

ITS Intelligent Transportation System
JPEG Joint Photography Expert Group
LFSR Linear-Feedback Shift Register
LICM Loop Invariant Code Motion
LMS Least Mean Square
LT Logic Transformation

LUT Lookup Table
LU Loop Unrolling

MERO Multiple Excitation of Rare Occurrences
MPEG Moving Picture Expert Group
MSE Means Squared Error
NC Noise Cancellation
PoO Power of Obfuscation

PSNR Peak Signal-to-Noise Ratio
PSO Particle Swarm Optimization
RE Reverse Engineering

ROE Redundant Operation Elimination
RTL Register Transfer Level
SAT Boolean Satisfiability

SCPA Semiconductor Chip Protection Act
SoC System on Chip
THT Tree Height Transformation
UF Unrolling Factor

VLSI Very Large Scale Integration

XXXIV

Chapter 1

Introduction

The colossal influence of modern CE on the daily lives of citizens around the world

continues to expand. From smartphones to smart TV, home gateways and routers, set-top

box to smart kitchen appliances followed by multi-spectral cameras to smart-speakers is

taking the world by storm [60, 27]. Continuous innovations in CE industries accompanied

by Information and Communication Technology (ICT) make smart city, smart healthcare,

Intelligent Transportation System (ITS) a reality thereby making human lifestyle smarter,

more sophisticated and fast-paced.

These CE systems are designed using SoC platforms which integrate various system

modules such as memory (SRAM, Flash), A-to-D converter, custom processor or co-processor,

application specific processors (such as DSP), A/V codecs, wireless modems, etc. (shown

in Fig. 1.1). Among these modules, DSP kernels in the form of reusable IP core is at the

heart of every SoC based CE devices. (NOTE: All the abbreviations and their correspond-

ing full form are listed in ‘Acronyms’ section.)

1.1 IP Cores: Heart of the CE Systems

A reusable IP core (also known as soft IP core) is a piece of reusable logic block/cell. CE

systems are heavily reliant on several DSP IP cores for data-intensive or control-intensive

functions. These IP cores are used as a part of SoC design to achieve data/power intensive

computation at high speed, minimal silicon area and low power [8]. For example, a smart-

1

System

Specification
Design

Process Chip Fabrication

Algorithmic level

Logic Level

Layout Level

System Level

Register Transfer Level

Fabrication

Circuit Level

CE devices

CE SoC integrating
IP cores

Foundry

Figure 1.1: Design process of SoC based CE systems

phone always has a dedicated processor for handling calculation of image compression

and decompression (CODEC). The job of this application specific processor is to perform

repetitive mathematical tasks in real time. Therefore, the main processor of the smartphone

can be busy with handling tasks like incoming call, SMS, Email, Wi-Fi etc., while the cal-

culations related to image CODEC are delegated to this dedicated processor. It performs

the same calculation for a large set of data. Similar to JPEG CODEC IP core, other DSP

IP cores such as Discrete Cosine Transformation (DCT), Fast Fourier Transform (FFT),

Finite Impulse Response (FIR), Infinite Impulse Response (IIR) Filters etc., also play a

critical role in the successful operation of a CE system. Moreover, the motivation for using

a reusable IP core is to maximize design productivity while minimizing design time. The

current generation SoC designers amalgamate reusable IP cores which are mass-produced,

tested and verified by various companies thus the IP supply chain is distributed worldwide.

Importing these IP cores from third-party IP vendors by the system integrator or SoC

designer has become common industry practice. Previously, IP vendors primarily focused

on IP performance and IP functionality such as hardware optimization, power optimization,

energy efficiency, throughput while neglecting/overlooking the security aspects of an IP

cores. As evident, it can be observed that in a typical IP design flow, performance and

functionality is only included in the specification. However, prevailing usage of IP cores

in the SoC design process increases rivalry among multiple IP core vendors which invites

2

Defence/detect attacks

by protecting cores

Threats of CE systems

Hardware Trojan IP Counterfeiting

Secured DSP/MP IP

CE Devices

IP Piracy

Smartwatch Laptop

Video Cam

Smartphone
Tablet

Desktop

Scanner

Reverse
engineering

Key
unlocking

Tampering/
removal

Figure 1.2: Design process of SoC based CE systems

security threats of system breaching, Reverse Engineering (RE), fraudulent claiming of IP

core ownership/rights, IP piracy/counterfeiting, system trustworthiness, malfunctioning of

hardware etc. (shown in Fig. 1.2). Consequently, looking from the security perspectives,

an IP core has plenty of access points for possible attacks for an adversary. Hence, for a

trusted and secured SoC design, defense of IP cores is of ultimate significance [49, 54].

1.2 VLSI Design Abstraction Levels

Now the question is among all the levels of the design abstraction of an IP core, what is the

best possible level of providing security and protection to a DSP IP core. Before explaining

that, let’s discuss the abstraction levels in IP core design.

The Very Large Scale Integration (VLSI) consists of multiple design and test levels to

satisfy the required design specification. A design engineer accepts the user requirements

as constraints and translates them into specifications. The designing is performed once the

specifications have been determined. This process includes system level, high level, gate

or logic level, transistor or circuit level and physical and layout level. Each of this level is

3

described below (shown in Fig. 1.1) [36].

1. System level: A system is represented as a combination of processes, tasks, hardware

and software in this highest level of abstraction. It handles the overall execution of

the system and the flow of information within the system.

2. Architectural or Behavioral or Algorithmic level: The computations of each individ-

ual processor executed in a system is controlled at this level. The mapping sequences

between the inputs and the outputs of the processors are monitored here.

3. Register Transfer level: A system is specified as a combination of storage elements,

functional units and interconnecting units in this level. As this level represent each

element as a module, it is also known as the module level.

4. Logic or Gate level: A system is represented as a network of logic gates and flip-

flops in this level. This network of logic gates and flip-flops is known as gate-level

netlist or netlist of gates. In this level, the behavior of the system is specified in terms

of logic equations.

5. Circuit or Transistor level: A circuit is represented as a netlist of transistors in this

level. It mainly focuses on the issues related to the nature and number of transistors

used in a system.

6. Physical or Layout level: A circuit or a system specification is represented in terms

of individual transistors. It generates the Graphic Database System (GDS) file which

is a database file format used in fabrication to manufacture the Integrated Circuit

(IC).

The design process of an IC/IP proceeds from the higher level to the lower level. The

automation process of each abstraction level is known as synthesis. Specifying the design at

a higher abstraction level is an effective and beneficial way of handling design complexity.

The DSP IP cores used in CE systems are highly complex in nature as they execute com-

plex algorithms. Therefore, designing such complex DSP cores heavily relies on high-level

4

synthesis (HLS) or architectural synthesis. It works as the backbone of the design frame-

work. The reason being such complex DSP cores comprises of more than 10-100 thousand

logic gates thus initiating the design process of such applications from the lower abstraction

level is neither easy nor an industry de facto. Further, selecting/controlling the architecture

of these IP cores is equally important to generate a low-cost, power/area/latency efficient

design. This can be achieved through HLS framework with the integration of DSE module

(driven through intelligent evolutionary algorithms). This would not have been possible if

these design process were started at lower levels.

The next section gives a brief overview of the higher design abstraction levels i.e., HLS.

As the target of this thesis is to propose several security/protection approaches for DSP IP

cores therefore design process of these IP cores must start from either architectural level or

Register Transfer Level (RTL).

1.3 Background on HLS

HLS, also referred to as C synthesis, Electronic System-level (ESL) synthesis, algorithmic

synthesis, or behavioral synthesis is an automated design process that accepts the algo-

rithmic description of an application in the form of Data Flow Graph (DFG) or high-level

languages such as ANSI C, C++, SystemC and generates the RTL hardware description

language (HDL) that implements the same behavior [12, 42, 35, 65]. The hardware de-

scription comprises two units viz. datapath unit and control unit. The datapath unit in-

cludes functional units (adder, multiplier etc.), storage unit (register) and interconnecting

units (multiplexer, de-multiplexer) while the control unit is responsible for the coordination

of the data flow between different modules of the datapath [56].

In the early years, the primary objective of HLS was to give a better control over the

optimization of the design architecture [36, 12]. It helped the hardware designers to build

an efficient and optimized design with the relatively easy verification process.

HLS analyses the input code of the algorithm, performs constraint-based scheduling,

allocation and binding to generate the datapath architecture and the controller architecture

of the algorithm where each component is represented as a block/module in the design. This

5

is further synthesized to generate synthesized RTL netlist. Multiple academic tools (GAUT

[11], LegUp [7] etc.) as well as commercial tools (Vivado, Cyber-Workbench, Bluespec

etc.) are available as example. Each step of HLS is described below [11, 36, 21, 28].

1.3.1 Scheduling

It is the process of mapping the operations of the algorithmic description of the input appli-

cation onto a set of discrete time steps in such a way that all data dependencies/precedence

constraints are satisfied. In other words, scheduling divides the algorithmic behavior (can

be represented as a DFG) into multiple control steps where each step executes a part of the

input application. The number of execution steps increases with the decrement of avail-

able resources and vice versa. Several scheduling algorithms are available in the literature

such as, As Soon As Possible (ASAP), As Late As Possible (ALAP), List scheduling [21],

Force Direct Scheduling (FDS) [43] etc. Discussion on these algorithms is not relevant

considering the scope of the thesis.

1.3.2 Allocation

Allocation is the process of assigning available resources/operators to the corresponding

operations of the design. In other words, allocation decides which operation has been

executed through what hardware.

1.3.3 Resource binding

Binding is the process of providing interconnection between operators and registers through

buses, muxes and demuxes. This interconnection between operators/register can be realized

by generating a multiplexing scheme for each unit. Several algorithms are available for

performing binding such as clique partitioning, left edge algorithm etc [57]. Discussions

on these algorithms is available in the literature.

The protection/security protocols of complex DSP IP cores must be combined during

HLS design process. In other words, another dimension in the form of security/protection

6

DSP IP cores

for CE

Systems

Single-phase

watermarking

Symmetrical IP core

protection

Structural

obfuscation

Trojan detection

through DMR schedule
Triple-phase

watermarking

Proposed countermeasures

False claim of

ownership

Abusing IP rights of

buyer and seller
Reverse Engineering

Insertion of hardware

Trojan logic
Tampering/removal

of signature

Possible attacks

Figure 1.3: Possible attacks on DSP IP core based CE systems and their proposed defense
mechanisms

must be added to the existing HLS framework. The reasons being (a) the design over-

head due to security constraints/features can be handled easily during DSE, (b) the design

complexity of implanting security is lesser in HLS, (c) the protection/security algorithm

implanted in the higher design level will automatically propagate to the lower design level,

(d) the security algorithms merged with the HLS tool can always automatically generate a

low-cost protected DSP core.

1.4 Security of IP Cores

The significance of IP core protection at the architectural level is mentioned in the sub-

sequent sections. However, there is no single defense mechanism available to combat

all types of attacks. The thesis discusses the details of several attacks for reusable IP

cores (more specifically, DSP IP core) used in different CE devices and their possible de-

fense/detection techniques at the architectural level. The overview of typical attacks on

DSP IP cores based CE system and their proposed defense mechanism is shown in Fig.

1.3.

7

1.4.1 Fraudulent claim of ownership

The designing process of an IP core for multi-modal CE designs involves a lot of man-

hours of research, investment, validation and effort. However, it can be infringed easily

causing a huge financial loss for an original IP owner. Thus IP piracy/forgery and false

claim of ownership is a surging security concern. The standard IP protection mechanisms

such as copyright, patent, trademark, industrial design rights etc., are not applicable to

reusable IP cores designs. In such cases implanting designers signature secretly in the IP

core during its design process is the most effective way of defense for an IP vendor. The

process of embedding the designer’s signature in an IP core design is known as hardware

watermarking. Unlike watermarking of the multimedia artifacts (i.e. image, audio, video

etc.), IP watermarking has zero tolerance towards the modification of the functionality of

the design. This makes IP watermarking more challenging than the watermarking of other

artifacts.

1.4.2 Tampering/removal of implanted signature

Embedding signature to protect IP ownership is vulnerable to tampering and removal at-

tack. In this process, an adversary tries to remove the additional design constraints im-

planted as owner signature completely or partially from the design. The objective is to

thwart its effect. Therefore for a rightful owner of an IP core, just implanting his/her sig-

nature into the IP core design is not enough. It should also have higher robustness and

aforementioned attack-resilient properties.

1.4.3 Abusing rights of IP buyer and seller

In the process of manufacturing an IP core, two entities are involved viz., seller and buyer.

An IP seller (also known as IP vendor) is the creator of an IP core whereas an IP buyer

(also known as IP user) is the purchaser of an IP core. In an IP core, an IP buyer may claim

exclusive buyer privilege so that the same IP copy could not be sold/distributed to his/her

rivals in the market. This is possible when an IP buyer obtains customized specifications

of an IP core from an IP seller, thus creating a unique one-to-one mapping between both

8

the entities. Therefore, a protected IP core design is needed which facilitates detection of

unlawfully redistributed/resold duplicates of an IP core by a deceitful IP seller as well as

protect the design from infringements such as piracy and false claim of ownership.

1.4.4 Reverse engineering of IP core

RE of an IP core is a process of identifying its design, structure and functionality. Using

RE one can identify the device technology, extract the gate-level netlist, and infer the IP

functionality. Though according to Semiconductor Chip Protection Act of 1984 (SCPA)

RE is a legal process for teaching, analysis and evaluation purpose, however, an attacker

can illegally use RE process for IP piracy, insertion of malicious Trojan logic, etc.

1.4.5 Unlocking a functionally obfuscated netlist

Functional obfuscation approach is a well-established countermeasure for RE attack for

combinational/sequential circuits. However, functional obfuscation for DSP IP core is a

new research direction now. In this process, locking blocks are inserted into the design to

generate a functionally locked DSP circuit/netlist. However, this approach is vulnerable to

SAT attack [58] and removal attack [68]. In the SAT attack, the objective is to identify the

correct key value of the locked netlist and in the removal attack, the objective is to remove

all the locking blocks to generate an unlocked circuit.

1.4.6 Insertion of malicious hardware logic

For reducing time to market of CE systems, major IP cores such as from digital signal

procession and multimedia are imported from third-party IP (3PIP) vendors. As these 3PIP

vendors are untrustworthy, there is a high possibility of containing malicious logic called

‘Hardware Trojan’ in their IP cores. These malicious logics causes malfunctioning/failure

of the complete CE system.

9

1.5 Organization of the Thesis

Rest of the thesis is organized as follows: chapter 2 discusses the current state-of-the-art on

DSP IP core defense/detection mechanism used in CE systems, followed by the objective

and summary of contributions of the thesis. Chapter 3 proposes an approach to solve the

problem of the fraudulent claim of ownership, IP piracy and IP cloning for DSP IP core

used in CE systems. Chapter 4 enhances the defense mechanism by solving the problem of

tampering or removal of the implanted signature. Chapter 5 proposes an approach to solve

the problem of abusing the rights of the IP core buyer and seller. The solution of reverse

engineering attack for DSP kernel is proposed in chapter 6. Further, chapter 7 enhances

the defense mechanism by solving the problem of nullifying the protection through SAT

and removal attacks of the functionally obfuscated DSP IP core. Chapter 8 discusses the

solution to the problem of reverse engineering attack on JPEG IP core. Chapter 9 proposes

a solution to the problem of designing a low-cost Trojan secured datapath architecture for

IP cores. The results of all the proposed approaches are tested and verified through various

well known benchmarks and implemented in CAD tool. The design cost analysis, security

analysis and comparative study (with baseline and related approaches) of all the proposed

approaches are reported in chapter 10. Finally, chapter 11 concludes the research work

presented in the thesis and provides the future scope of the work.

10

Chapter 2

State-of-the-Art

This chapter presents the state-of-the-art of various IP core attacks and their correspond-

ing defense/detection mechanisms. Thereafter, objective and summary of contributions of

the thesis are presented. (NOTE: All the abbreviations and their corresponding full form

are listed in ‘Acronyms’ section.)

2.1 State-of-the-Art on IP Core Attacks

The standard IP protection mechanisms such as copyright, patent, trademark, industrial de-

sign rights etc., are not applicable for reusable IP cores designs [50]. In this context, IP wa-

termarking is one of the most effective ways to countermeasure IP piracy, IP infringements

and false claim of ownership. Most of the IP watermarking approaches that are available

in the literature implant additional constraints during lower design abstraction level. For

example, authors in [71] have proposed a power watermark technique for the FPGA cores.

In this approach, the signature is detected at the power supply pins of the FPGA. With this

approach, it is possible to read the watermark only for a given device without any other in-

formation from the vendor of the product. In [40] a hierarchical watermarking method for

FPGA, IP protection is proposed. The authors implanted the watermark into the netlist and

bitstream of the design. In this way, the implanted watermark propagates entirely through

the design flow. Authors in [72] have proposed a power watermarking method that detects

the signature (watermark) at the power supply pins of the FPGA. They integrated the sig-

11

nature into functional parts of the watermarked core and detected it from a voltage trace

with high reliability.

As mentioned earlier, these approaches are not useful for protecting IP core digital sig-

nal processing and multimedia application as they embed the watermark in lower design

steps. In that context, the advantages of implanting watermark at the higher abstraction

level are mentioned earlier. Nevertheless, very limited literature exists for IP core water-

marking where the designer’s secret signature is implanted at the higher design abstraction

level [30, 50, 33]. In [30], initially, the owner’s secret signature has been transformed into

its equivalent binary form where each digit (0 or 1) indicates a watermarking constraint.

After that, each constraint is added as an additional edge in the equivalent colored inter-

val graph ([22]) which represents the sharing of registers of the IP core design. Unlike

dual variable (0 and 1) signature in [30], authors in [50] have proposed a multi-variable

(combination of four) encoded watermarking methodology to enhance the protection of a

reusable IP core. In this approach, each variable which carries a unique encoding rule adds

an edge between two node pair in the colored interval graph. Therefore, both [30] and [50]

implant watermarking constraints during a single phase of HLS. In [33], an in-synthesis

IP watermarking technique is presented. The approach uses marking based on mathemati-

cal relationships between numeric values as inputs and outputs at specified times. Both in

[30] and [50], the watermarking constraints are implanted during a single phase i.e., reg-

ister allocation phase of HLS. Hence it could be more vulnerable to signature tampering.

Additionally, area overhead due to insertion of watermarking constraints at the register allo-

cation phase could incur high area overhead. Further, [33] is an in-synthesis process, which

increases the watermark embedding time. Therefore, all these approaches incur high de-

sign overhead which is a major bottleneck for designs working under area/delay constraints

and cost budget.

As discussed earlier, securing the rights of the IP buyers as well as the IP seller is one

of the important goals of IP core protection. There is only one approach in the literature

that has protected the rights of both the entities [31]. In [31], a hidden encrypted mark has

embedded into the physical layout of a digital circuit when it is placed and routed onto the

FPGA. This mark not only uniquely identifies the source of the circuit but also detect the

12

original recipient of the circuit. Further, this mark is extremely robust and tamper resistant.

However, this approach provides protection for both the entities in the lower design abstrac-

tion level, i.e. layout level, which is impractical for complex DSP IP cores. Therefore, IP

cores such as DSP kernels are not addressed. Moreover, no design optimization algorithm

has been used to minimize the design overhead due to the insertion of secret marks.

RE attack is another way to launch several attacks: IP piracy, insertion of malicious

Trojan logic etc. Using RE, an adversary can identify the device technology, extract the

gate-level netlist, and infer the IP functionality. Hardware obfuscation is the process of

counter-measuring the RE attack. It enhances the complexity of RE attack for an adver-

sary. Hardware obfuscation can be classified into three parts, (a) by transforming the HDL

code, known as ‘source code-based obfuscation’ (b) by locking the functionality, known

as ‘functional obfuscation’ (c) by obscuring the structure of a design, known as ‘structural

obfuscation’. To thwart an attacker from intercepting the Hardware Description Language

(HDL) code, it either alters [5] the source code into a compound version or encrypts it [2].

In [5], HDL code obfuscation is achieved using diverse alteration approaches which are

challenging for reverse engineering. In [2], the source code is encrypted using the Dead

Code Addition approach on a Crypter.

Functional obfuscation locks the design by implanting additional components known

as key components into it. These components are controlled by key bits. Applying the

correct key will only produce the functionally correct output of the design. There are

multiple functional obfuscation approaches available in the literature for the sequential and

combinational circuits. For these circuits, the additional components could be dummy

states [9], Code-Word [16], XOR/XNOR gates [48, 44, 47], AND/OR gates [19], Lookup

Table (LUT) [3], muxes [63, 69] or combination of these elements [34]. However, all these

approaches are not applicable for complex DSP IP cores. There is only one approach [25] in

the literature which has provided functional obfuscation of DSP IP core. In that approach IP

core Locking Block (ILB) based locking technique is used to obfuscate a DSP design where

each ILB is inserted in the output of each functional unit. It accepts 8 key bits for each ILB.

Further, as the insertion of additional component incurs design overhead, PSO based DSE

is performed to obtain the low-cost functionally obfuscated DSP IP core. However, several

13

attack strategies have been available against functional obfuscation techniques, such as

key-sensitization [47], SAT [58] and removal attack. Though this approach is capable of

handling key-sensitization attack, however, failed to defend against rest of the attacks.

Structural obfuscation changes the standard architecture of an IP core into a non-obvious

one while preserving its functionality. This can be achieved through design transforma-

tions, arbitrary assignment of logic components, inserting dummy wires or irregular rout-

ing [62]. It does not insert any additional component as key-gate into the design, thus does

not incur design overhead. There is only one approach in the literature which has provided

structural obfuscation of DSP IP core [32]. In that approach, folding based high-level trans-

formation technique is used to obfuscate a DSP design. This transformation technique is

capable of generating various meaningful modes thus increasing the complexity to iden-

tify the correct functionality within different modes. Further, different equivalent circuits

can be generated based on different folding factor which enhances the ambiguity for an

attacker. Additionally, in folding based transformation, circuits with different functional-

ity may have the same structure and vice versa. This single-stage structural obfuscation

is not secured enough against RE attacks. Moreover, the folding factor is a crucial de-

sign parameter to control the final design cost and hence the intelligent selection of proper

folding factor may lead to an optimized DSP circuit design. However, no optimal folding

factor evaluation process has been proposed in this approach which leads to higher design

overhead due to random/uncalculating selection of folding factor.

Though RE attack is very common for CE systems, the design process of standard

applications such as JPEG CODEC IP core does not aim at providing security against RE.

The current approaches are mainly focused either on the optimization of the software design

[1] or on the improvement of the CODEC technique [67]. However, there is no process that

designs a dedicated JPEG CODEC IP core secured against RE attacks. To design a secured

CE system, protection of JPEG CODEC is crucial as it is a very commonly used IP core in

almost every CE systems.

Hardware Trojan is another type of attack that can be launched in any CE systems to

introduce malfunctioning of the system. There are multiple classes of hardware Trojans

[26, 59]. The detection of Trojans that change the functionality/output of DSP IP core is

14

targeted here.

Different types of Trojan detection mechanisms are available in the literature. Trojans

may be inserted in a foundry, therefore different types of detection methods are exist (a)

side channel analysis method [38, 24], (b) logic testing method [18, 10]. Moreover, Trojans

can also be inserted in an IP core, 3PIP or in a design for which detection methods exists

[6, 70, 46, 52]]. However, no effort has been made on generating an optimized Trojan

security aware schedule for the single loop and nested loops DSP kernels (based on user

constraints) capable of providing runtime detection. Authors in [46, 13] duplicate the IPs in

order to detect the presence of a Trojan, however, none of the aforesaid approaches design

single and nested DSP IP core for Trojan detection.

Multiple Excitation of Rare Occurrences (MERO) [10] based compact test pattern gen-

eration technique also exists for Trojan detection which starts with a golden netlist, random

patterns, rare nodes and number of times to activate a node to rare value. However, this

technique is sensitive to Trojan sample size and number of times a rare condition is satis-

fied, in order to create a balance between estimate coverage and simulation time as well

as coverage and test vector set size respectively. Without carefully selecting the sensitiv-

ity parameters, the results may be imprecise. Further, in the case of a 3PIP in HLS, no

golden model exists. Additionally, in [18], a procedure to identify circuit sites where Tro-

jan may be inserted in the untrusted foundry is also proposed, however, it is not beneficial

for detection of Trojan inserted in 3PIP module of HLS library for DSP core design.

In [6], a simulation-based Trojan detection approach is proposed where the statistical

correlation of Trojan logic compared to the rest of the circuit is weak. A weighted circuit

graph is generated based on the input and output of the circuit and their interconnection.

The reachability plots identify the weak relation, thus identifying the Trojan. In [70] the

Trojan detection process is divided into tracer and checker. The tracer identifies those

signals which contain un-activated entries. The checker analyzes these signals to determine

the signals which contain redundant inputs and hence are potentially affected by Trojan.

Duplication-based Concurrent Error Detection (CED) technique is proposed in [46] to

achieve Trojan secured design during HLS. In duplication-based CED technique, replica-

tion of the same design is performed and both the designs are fed with the same set of

15

inputs. The incorrect/dissimilar outputs due to activation of Trojan logic can be identified

by comparing their outputs. Additionally, two collusion prevention techniques has also

been proposed to avoid activation of hardware Trojan. However, this approach is capable

of handling only non-loop based applications in the form of DFGs. It does not handle

loop-based control DFG. Besides, this approach does not explore a low-cost hardware con-

figuration and vendor allocation procedure for scheduled DMR system. Consequently, it

affects the final area-delay of the design resulting in an inferior quality solution with higher

cost.

2.2 Objective of the Thesis

The objective of this thesis is to develop a secured hardware design for DSP IP cores used

in CE systems. However, as there is no single defense mechanism available to combat

all types of attacks, therefore this thesis proposes possible defense/detection techniques

for several attacks at the architectural/algorithmic level for reusable IP cores. In order to

realize this, the following objectives have been accomplished:

• Proposes a methodology to solve the problem of the fraudulent claim of ownership,

IP piracy and IP cloning for DSP IP core used in CE systems.

• Proposes a methodology to solve the problem of nullifying the defense mechanism

through tampering or removal of the implanted signature for DSP IP core.

• Proposes a methodology to solve the problem of abusing the rights of the IP Core

buyer and seller for DSP IP core used in CE systems.

• Develop a methodology to address the problem of reverse engineering attack for DSP

applications.

• Proposes a methodology to address SAT and removal attacks of the functionally ob-

fuscated DSP IP core.

• Proposes a methodology to solve the problem of reverse engineering attack for an

16

important multimedia application such as JPEG CODEC commonly used in CE sys-

tems.

• Proposes a methodology for designing a low-cost Trojan secured datapath architec-

ture for DSP IP core used in CE systems.

2.3 Summary of Contributions

The focus of this thesis is to provide a number of robust solutions to the aforementioned

attacks or security breaches in the field of consumer electronics for DSP IP core.

In order to resolve the issues present in the state-of-the-art approaches, the following

contributions have been made through this thesis.

• Solve the problem of the fraudulent claim of ownership, IP piracy and IP cloning

for DSP IP core (discuss in Chapter 3).

(Outcome: Refer to Publication P7, P10 and P11).

The contributions of the approach are as follows:

1. The proposed methodology is devised in such a way that it can be applied to

any DSP core and integrated with any HLS tool.

2. The watermarks are embedded covertly during the scheduling phase.

3. The watermark provides robust protection while incurring zero hardware over-

head and negligible delay overhead.

4. Experimental results over the standard applications indicate an average reduc-

tion in the final embedding cost with higher security compared to recent ap-

proach.

• Solve the problem of nullifying the defense mechanism through tampering or re-

moval of the implanted signature for DSP IP core (discuss in Chapter 4).

(Outcome: Refer to Publication P1, P6, P13 and P16).

The contributions of the approach are as follows:

17

1. This is the first work in the area of hardware security that protects the DSP IP

cores by embedding watermarking constraints in three different phases of HLS.

2. A combination of 7 unique variables encoded IP owner’s signature.

3. Achieves higher robustness and tamper resistance ability compared to prior

work.

4. Yields zero delay and minimal area overhead.

• Solve the problem of abusing the rights of the IP Core buyer and seller for DSP

IP core (discuss in Chapter 5).

(Outcome: Refer to Publication P8, P14 and P15).

The contributions of the approach are as follows:

1. Proposes a symmetrical IP core protection during HLS for the first time that

incorporates seller watermark and buyer fingerprint simultaneously.

2. Proposes a multi-variable encoding scheme for fingerprint and watermark.

3. Offers higher robustness, lower design overhead/embedding cost, fault toler-

ance, and faster signature encoding/decoding.

4. Experimental results over the standard applications indicate an average 1% de-

sign cost overhead compared to baseline (unprotected) design and <1% design

cost overhead compared to a non-symmetrical approach.

• Solve the problem of reverse engineering attack for DSP applications (discuss in

Chapter 6).

(Outcome: Refer to Publication P2 and P9).

The contributions of the approach are as follows:

1. Proposes a multi-stage, compiler-driven high-level transformation based struc-

tural obfuscation for DSP applications.

2. The proposed approach is capable of obfuscating loop-based control DFG.

18

3. Achieves an improvement in the Power of Obfuscation (PoO) by 22% and re-

duction in obfuscated design cost by 55% compared to recent prior work.

• Solve the problem of nullifying the defense mechanism through SAT and removal

attacks of the functionally obfuscated DSP IP core (discuss in Chapter 7).

(Outcome: Refer to Publication P4).

The contributions of the approach are as follows:

1. A custom lightweight AES module is proposed and designed as a custom IP

core in a standard CAD tool.

2. The custom AES module is integrated with a locked circuit of a standard DSP

application to mitigate SAT and removal attack.

• Solve the problem of reverse engineering attack for a low-cost JPEG CODEC ap-

plication (discuss in Chapter 8).

(Outcome: Refer to Publication P3 and P5).

The contributions of the approach are as follows:

1. Proposes a structural obfuscation methodology for dedicated JPEG CODEC IP

core that aims to enhance the reverse engineering complexity by transforming

the architecture.

2. Optimized the design cost of the obfuscated JPEG CODEC IP core using PSO

based DSE by 5% compared to a non-obfuscated design.

3. Enhancement in security in terms of power of obfuscation is achieved by 76%

compared to a non-obfuscated design.

• Solve the problem of designing a low-cost Trojan secured datapath architecture for

DSP IP core (discuss in Chapter 9).

(Outcome: Refer to Publication P12).

The contributions of the approach are as follows:

19

1. Simultaneously explores an optimal hardware resource, loop unrolling factor

and mode of vendor allocation to design a low-cost Trojan security-aware DMR

schedule for DSP cores.

2. Proposes a unique particle encoding comprises with candidate hardware re-

sources, candidate loop unrolling factor and candidate vendor allocation mode

information.

3. A pre-processing algorithm is devised to discard unfit unrolling factors.

20

Chapter 3

Single-Phase IP Core Watermarking of

CE Systems

The flourishing consumer electronics industry is hugely reliant on CAD-based design

automation tools for designing IP core of complex DSP applications. Much as the CAD

tools can be used in any abstraction levels of a computing system design, however, to au-

tomatically generate a schedule and datapath of a DSP application such as JPEG, FIR, IIR,

DWT, DCT etc., use of the CAD HLS tools is mandatory. A CAD HLS tool automatically

generates a scheduled graph or datapath of an application as a soft IP core. It has multiple

advantages such as re-usability, higher productivity and lower design cycle to state a few.

These soft IP cores are the product of huge investment, manpower, research and intellectu-

ality. However, not many HLS CAD tools explicitly consider the protection of IP core as an

important aspect while generating it. Thus uncovering risks of ownership and counterfeit

threats.

This chapter presents a novel solution through a low-cost watermarking methodology

for DSP cores. The proposed methodology is integrated with HLS design process to au-

tomate the watermarked DSP IP core generation. This has also been fully automated by

integrating with an HLS tool. This is the first work in the area of DSP IP core protection

that integrates a watermarking algorithm with a CAD HLS to automate the watermark IP

generating process.

The chapter is organized as follows: Section 3.1 discusses the problem formulation

21

of the proposed approach; Section 3.2 explains the proposed watermarking methodology;

Section 3.3 explains the proposed signature detection approach; Section 3.4 demonstrates

the proposed watermarking and signature detection approach through a standard applica-

tion and finally Section 3.5 summarizes the chapter. (NOTE:All the abbreviations and

taxonomy are listed in ‘Acronyms’ and ‘Nomenclature’ section respectively.)

3.1 Problem Formulation

3.1.1 Threat model

For an input DSP kernel application, design a watermarked IP core to protect against (i)

fraudulent ownership (ii) ownership conflict/abuse and (iii) IP infringement.

3.1.2 Input & Output

Inputs: (a) control data flow graph representing a DSP IP core, (b) user resource constraint

(Xi) = N(R1);N(R2); :: N(RD), (c) loop unrolling factor and (d) signature. Output: a

low-cost overhead watermarked IP core. Where, N(RD) indicate the number of resources

of type RD.

3.2 Proposed Methodology

The proposed approach implants a low-cost watermark covertly during scheduling phase of

HLS. The watermark is extracted from the encoded multi- variable signature for loop-based

CDFGs. The IP core seller’s watermark is implanted as hidden additional constraint by

employing some local scheduling rules. More explicitly, instead of employing priority re-

solver functions or random break during operation scheduling conflict, proposed approach

employs watermark encoding based scheduling rule to select which operation to assign at

which control step. This is a very covert way of inserting watermark, as during regular op-

eration scheduling conflict, the watermarking constraints are inserted with zero hardware

22

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Figure 3.1: Proposed watermarking methodology

and negligible latency overhead. In other words, watermarking constraints are embedded

in scheduling step by forcing specific operations to specific control steps during the process

of schedule conflict resolution.

3.2.1 Signature encoding rules

The proposed signature creation for seller watermark consists of two unique encoded vari-

ables X and Y where each variable carries an encoded meaning. An IP seller must provide

his/her encoded signature as a combination of these two variables. The signature can be

consist of any number of ’X’ and ’Y’ variable. However, it is recommended to provide a

signature size with 15 or higher digits to embed a robust watermark. The encoded meaning

of each variable is as follows:

• X = Force even operation in odd control step while resolving scheduling conflict in

scheduling phase.

• Y = Force odd operation in even control step while resolving scheduling conflict in

scheduling phase.

23

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

3.2.2 Watermark embedding process

Fig. 3.1 represents the flow diagram of the proposed watermarking methodology. As shown

in the figure it accepts module library, applications in the form of CDFG or DFG, user

provided hardware constraints and loop unrolling factor. Additionally, a desired signature

of the IP seller is selected as a combination of X and Y digits. To implant the signature

as watermark each signature digit is converted to its equivalent watermarking constraints

using proposed signature encoding rules.

Initially, a loop unrolled CDFG is generated based on the user specified loop unrolling

factor. Then scheduling of the operations are performed in each step using the watermark-

ing constraints abiding by the user specified resource constraints. As mentioned earlier,

these watermarking constraints are implanted during scheduling by acting as a priority re-

solver if there is a conflict between operations. In other words, for each scheduling conflict,

a watermarking constraint is used to determine which operation gets priority over the other.

This process will continue until all the operations of the input CDFG has been scheduled

for generating a watermarked IP core. (Note: in case further watermarking constraints

are not available for embedding during additional conflict resolution in scheduling, then

conflict breaking is done based on sorted ordering of operations).

Each step of the proposed watermarking process is mentioned below:

1. Accept module library, CDFG/DFG and user provided resource constraints as input.

2. Create a sorted list of operations of the CDFG/DFG as per their operation number in

ascending order.

3. Accept an IP seller signature as combination of X & Y digits.

4. Extract the watermarking constraints from the signature using encoding rules.

5. Based on the resource constraints (in step 1) initiate scheduling of CDFG.

6. In case of operation conflict, use decoded watermarking constraints (in step 4) to

resolve as follows:

24

(a) For ’X’ constraint schedule even numbered operation in the odd numbered con-

trol step.

(b) For ’Y’ constraint schedule odd numbered operation in the even numbered con-

trol step.

7. Continue step 6 until all the operations have been scheduled.

8. Finally, watermarked IP core is generated where additional constraints are implanted

by resolving conflicts.

3.2.3 Properties of proposed watermark

The proposed watermarking methodology satisfies all the following desirable properties:

(a) Low Implanting Cost: The proposed watermark incurs zero area and minimal latency

overhead. Thus incurs very low design cost overhead.

(b) Strong Resiliency: The proposed approach implant watermarking constraints as multi-

variable encoded signature in the IP core design. Hence incorporating strong resiliency

against partial or complete removal of signature.

(c) Higher Tamper Tolerance Ability: As the proposed approach distributes the water-

marking constraints throughout the IP core design, therefore, the ownership remains

preserved even after partial removal or tampering by an attacker.

(d) Lesser Watermark Implanting & Detection Time: The proposed watermarking scheme

is integrated with the HLS CAD to automate the watermarking process making signa-

ture implanting time fast. Moreover, for the original owner with complete knowledge

of encoding rules, the decoding process is simple and straightforward. However, for an

outsider identifying the presence of watermark is complex and difficult.

(e) Integration with Current HLS CAD Tools: Any HLS tool performs the following

major steps: scheduling, hardware allocation, register allocation and operation bind-

ing to generate a datapath of an application before RTL synthesis. As the proposed

25

Figure 3.2: Proposed signature detection process

approach inserts watermark during operation conflict in scheduling phase it can be in-

tegrated seamlessly with the scheduling algorithm of the tool.

3.3 Proposed Signature Detection Process

Signature detection process is a must for any signature encoding process as it is crucial

to identify the actual owner of the IP in case of any ownership conflict. In the proposed

approach, signature detection is a two-step process: (a) Inspection and (b) Verification.

3.3.1 Inspection

The controller design file of an IP core is written using any standard HDL such as VHDL

or Verilog. This file of the watermarked IP core is first inspected. Based on the inspection

the relevant information such as operation number and its corresponding allocated control

step number have to be extracted.

3.3.2 Verification

The watermarking constraints must be decoded from the IP seller signature through pro-

posed encoding rules. The existence of seller signature is verified by matching each addi-

26

tional watermarking constraints with the information extracted during inspection step. The

block diagram of proposed signature detection process is shown in Fig. 3.2.

3.4 Motivational Example

This section gives a demonstration of proposed watermarking approach through a standard

benchmark and discusses the resolution of threat scenario.

3.4.1 Demonstration of proposed watermarking approach

Let us assume FFT application is taken an demonstration example in the form of an un-

scheduled CDFG. The user provided resource constraints as: 2 adder, 2 multiplier, 1 sub-

tractor, 1 comparator and UF=2. The schedule length of the application may be restricted

due to loop UF, however it results in lower latency due to repetition of loop body. As in the

proposed approach UF value is user specified, therefore the proposed watermark scheme

is independent of UF value. The unscheduled CDFG of FFT with UF=2 is shown in Fig.

3.3 (step 1). The two consecutive iterations corresponding to UF = 2, are shown in dotted

boundary lines.

As shown in the figure, each node number is indicated through a integer value. The

resource type of a node is indicated through its corresponding color. For example, green

node indicates adder, blue node indicates multiplier, orange node indicate subtractor and

red node indicate comparator. The interconnecting arrows as top-down flow represents the

data dependencies between nodes. A sorted list of operation of the generated CDFG is

created based on the their operation number in ascending order (step 2).

Now based on the combination of ‘X’ and ‘Y’, an IP seller’s signature is assumed as

“YXXYXYYX” (step 3). According to the proposed encoding meaning of ‘X’ and ‘Y’,

the watermarking constraints have to extracted from the IP seller’s signature (step 4). Each

signature digit and its corresponding decoded constraint is shown in Table 3.1.

According to the sorted list four addition operations are ready to be scheduled in CS

1. They are operation 1, 2, 15 and 16. However, due to resources constraints provided by

the user only 2 adders are available (step 5). Therefore, operation conflict scenario arises

27

Figure 3.3: Unscheduled CDFG of FFT unrolled twice (UF = 2)

Table 3.1: IP core seller’s signature and its decoded constraints

Seller Signature
(8 digits)

Corresponding decoded constraints
(assigning of operation in CS)

Y Assign operation 1 in CS 2
X Assign operation 2 in CS 1
X Assign operation 16 in CS 1
Y Assign operation 15 in CS 2
X Assign operation 4 in CS 3
Y Assign operation 3 in CS 4
Y Assign operation 17 in CS 4
X Assign operation 6 in CS 7

during scheduling of CS 1. The conflict is resolved by implanting proposed watermarking

scheme. According to the proposed encoding rule the first signature digit i.e. Y forces odd

operation i.e. operation 1 into even control step i.e. CS 2. However, operation conflict

still exist between operation 2, 15, and 16. The second signature digit i.e. ’X’ forces even

operation i.e. operation 2 into odd control step i.e. CS 1.; the third signature digit X forces

even operation i.e. opn 16 to odd control step i.e CS 1 while the fourth signature digit Y

forces odd operation i.e. opn 15 into even control step i.e. CS 2 (step 6). Therefore, ac-

28

cording to the first four signature digits i.e. ’YXXY’, operation 2 & 16 are scheduled in CS

1 and operation 1 & 15 are scheduled in CS 2. This indicates the watermarking constraints

corresponding to the first four signature digits is implanted into the design by resolving the

operation conflicts. Similarly, all the signature should be implanted into the design of the

unrolled CDFG of FFT (step 7). The complete scheduled CDFG after embedding all the

signature digits represents the watermark implanted FFT design (step 8). If there are any

pending operation conflict available after implanting all the signature digits, in such case

operation conflict should be resolved on sorted operation number (lower operation number

will get higher priority to be scheduled).

Fig. 3.4 represents the watermark implanted schedule CDFG of FFT. The application

is scheduled based on 2 adder, 2 multiplier, 1 subtractor, 1 comparator and unrolled twice.

Each control step is separated through horizontal line known as control step line and the

corresponding CS number is mention at the left side of each control step. For example,

operation 2 and operation 16 (shown as (2) and (16)) are scheduled in CS 1, demarcated

with a control step line, operation 1 and operation 15 (shown as (1) and (15)) are scheduled

in CS 1.

Parallelization of two consecutive iterations during scheduling can also be observed

in Fig. 3.4. Both the iterations start in CS1, however iteration 1 finishes its execution at

CS 13 whereas iteration 2 finishes its execution at CS 15. It must be noted that, due to

proposed watermarking scheme the area and delay overhead for FFT is ZERO. In the pro-

posed approach the area overhead will always remain ZERO for all benchmarks; however,

possibility of negligible delay overhead is there for some benchmarks.

3.4.2 Threat scenarios

This subsection discusses several threat scenarios to launch false claim of ownership on

watermarked IP core.

An original IP seller can not prove his/her legal ownership for a reusable IP core if no

watermark is implanted. Thus suffer from financial huge loss. However, attack on water-

marked IP core can still be launched as follows: (a) by inserting attacker’s own signature,

29

Figure 3.4: Watermark embedded scheduling of FFT CDFG unrolled twice (UF = 2) with
two multiplier (blue nodes), two adders (green nodes), one subtractor (orange nodes) and
one comparator (red node).

(b) by finding an unintended signature through inverse watermark extraction, (c) by tam-

pering the original signature and then falsely claim for ownership. In such a scenarios, it

can be nullified through proposed signature detection approach.

For the first type of attack, when an attacker inserts his/her own signature into the

watermarked IP core design, the signature of the original owner still remains intact inside

the IP core design. Hence ownership conflict can be resolved easily.

In the second type of attack, when an attacker tries to find an unintended signature

in the IP design and claim as his/her watermark, the claimant with a more meaningful

30

and strong signature will be the winner. As the proposed watermarking scheme inserts a

strong and meaningful watermark, therefore the ownership resolution will be simple and

straightforward.

In the third type of attack, when an attacker tries to tamper or remove the original

signature and make it a non-watermarked IP core design. As the proposed watermarking

scheme embeds signature throughout the design therefore,complete tampering or removal

is extremely challenging. If not all some traces of watermark will always present in the

design. Hence ownership conflict can be resolved easily.

Table 3.2: Demonstration of signature detection of watermarked IP core for resolving own-
ership conflict

Extracted info from the
controller HDL

through inspection

Watermarking constraints
decoded from

the vendor signature

Signature verification
(comparing extracted info
and decoded constraints)

CS 1: Opn (2), Opn (16) Y: operation 1 in CS 2 Matches
CS 2: Opn (1), Opn (15) X: operation 2 in CS 1 Matches
CS 3: Opn (4), Opn (18) X: operation 16 in CS 1 Matches
CS 4: Opn (3), Opn (17) Y: operation 15 in CS 2 Matches
CS 5: Opn (5), Opn (19) X: operation 4 in CS 3 Matches

CS 6: Opn (20) Y: operation 3 in CS 4 Matches
CS 7: Opn (6) Y: operation 17 in CS 4 Matches
CS 8: Opn (7) X: operation 6 in CS 7 Matches

CS 9: Opn (8), Opn (9), Opn (21)
CS 10: Opn (10), Opn (22), Opn (23)
CS 11: Opn (11), Opn (12), Opn (24)
CS 12: Opn (13), Opn (25), Opn (26)

CS 13: Opn (14), Opn (27)
CS 14: Opn (28)
CS 15: Opn (29)

3.4.3 Resolution of ownership conflict through proposed approach

This subsection discusses how to invalidating false claim of ownership through proposed

signature detection method with an example. To mitigate false claim of ownership signa-

ture detection of watermarked IP core is performed. To achieve that, each operation and

its corresponding control step is extracted from the controller HDL file through inspection

31

of the watermarked IP core. Thereafter, accept the signature of the claiming IP vendor

(assuming: 8-digit signature as YXXYXYYX) and decode it based on the proposed en-

coding rule. Now, match the existence of each watermarking constraints decoded from the

vendor’s signature with the extracted information of controller HDL file. Table 3.2 rep-

resents signature verification using extracted information from the controller HDL file of

the watermarked FFT (shown in Fig. 3.4) and the watermarking constraints decoded from

the vendor’s signature. If all the constraints match, it can be concluded that the IP vendor

is the original owner of that IP core. Thus the proposed approach is capable of providing

protection and nullifying the threat of false ownership claim.

Note: The corresponding experimental results of the proposed methodology is ex-

plained in Chapter 10 Section 10.1.

3.5 Summary

This chapter presents a novel low-cost watermarking algorithm for modern CAD HLS

tools. The algorithm is integrated with a modern HLS tool to automate the watermarked

DSP IP core generating process. The work proposes a watermarking algorithm during the

scheduling phase of HLS to thwart ownership abuse and IP piracy. The embedding water-

mark satisfies desirable properties such as covertness, robustness, low embedding cost and

low signature implanting complexity. This innovation has several unique features: (a) the

proposed algorithm is devised in such a way that it can be integrated with any HLS tool

(b) watermarks are embedded covertly during the scheduling phase of HLS (c) provides

robust protection while incurring zero hardware overhead and negligible delay overhead.

Finally, experimental results over the standard applications indicate an average reduction

in the final cost of 6% compared to recent approaches. Thus this approach provides an

significant advancement over similar IP core protection mechanisms of CE systems.

32

Chapter 4

Multi-Phase IP Core Watermarking of

CE Systems

As discussed in the previous chapter, a watermarked IP core can nullify security threats

such as IP core forgery, dishonest claim of ownership, IP piracy etc. Therefore, multiple

attacks such as signature tampering, partial/complete signature removal, inserting unau-

thorized signature can be launched on a watermarked IP core to dwindle its effects. For

rightful owner of an IP core, it is not only important to resolve the ownership conflict but

also to prove that his/her IP core has been used illegally in a product. This necessitates the

need to implant a strong watermark with higher robustness and the aforementioned attack

resiliency.

This chapter presents a novel triple-phase watermarking methodology to enhance the

robustness of watermarked DSP core for CE systems (shown in Fig. 4.1). It implants IP

owner’s signature which is encoded through 7 variables in three different but interrelated

phases of HLS i.e. scheduling phase, hardware allocation phase and register allocation

phase ensuring strong resistance against complete removal or malicious modification of

watermark. In case of ownership conflict, the embedded signature can be detected by

inspecting the datapath and controller HDL file of the watermarked IP core. This is the

first work in the area of IP core protection of CE systems that has implanted watermarking

constraints in three different phases.

The chapter is organized as follows: Section 4.1 discusses the problem formulation

33

of the proposed approach; Section 4.2 explains the proposed watermarking methodology;

Section 4.3 explains the proposed signature detection approach; Section 4.4 demonstrates

the proposed watermarking and signature detection approach through a standard applica-

tion;finally the summary of this chapter is presented in Section 4.5. (NOTE: All the abbre-

viations and taxonomy are listed in ‘Acronyms’ and ‘Nomenclature’ section respectively.)

4.1 Problem Formulation

4.1.1 Threat model

For an input DSP kernel, design a robust watermarked IP core to protect against (i) fraud-

ulent ownership (ii) ownership conflict/abuse and (iii) IP infringement.

4.1.2 Input & Output

Inputs: (i) DSP application, (ii) resource configuration, (iii) module library, (iv) vendor

signature. Output: Watermarked IP core design.

4.1.3 Target platform

The proposed watermarking approach is seamlessly adaptable to any EDA tool.

7-variable

signature as a

combination of

‘γ’, ‘β’, ‘α’, ‘i’,

‘I’, ‘T’, ‘!’

Signature for
phase 1 (γ)

Signature for
phase 2 (α, β)

Signature for
phase 3 (i,I,T,!)

Embeds watermark
at scheduling

Embeds watermark at
hardware allocation

Embeds watermark
at register allocation

+ Triple-phase
watermark

Figure 4.1: Overview of proposed triple-phase watermarking approach

34

4.2 Proposed Methodology

Fig. 4.2 depicts the overview of the design process of the proposed triple-phase water-

marking approach. In this approach, watermark is embedded in three phases of HLS i.e.

scheduling, hardware allocation and register allocation. Additionally, the IP owner’s signa-

ture is encoded through a 7-variable encoding scheme. Thus, making the implanted water-

mark extremely robust and lowing the possibilities of any malicious signature modification.

Therefore, the proposed triple phase watermarking with 7-variable encoding enhances the

IP core protection and increases the tamper-tolerance ability. Moreover, it is also extremely

difficult for an attacker to identify which HLS phases and how the watermark constraints

are embedded in the design.

In this approach, scheduling, resource allocation and register allocation information

of an IP core design are presented through three different tables: (a) “Functional unit al-

location” table, (b) “Non-critical operations (µm > 0)” timing table, and (c) “Register

allocation” table (inspired from [50]). As mentioned earlier, the signature of triple-phase

watermarking methodology consist of seven different variables where each variable indi-

cates an encoded meaning. These seven variables are ‘α’, ‘β’, ‘γ’, ‘i’, ‘I’, ‘T’ and ‘!’.

Among these variables, ‘γ’ digits embed the watermarking constraints at scheduling phase

by modifying the “non-critical operations (µm > 0)” table, ‘α’ and ‘β’ digits embed the

watermarking constraints at hardware allocation phase by modifying the “functional unit

allocation” table and ‘i’, ‘I’, ‘T’ and ‘!’ digits embed the watermarking constraints at reg-

ister allocation phase by modifying the “register allocation” table through colored interval

graph. In a colored interval graph, each node indicates a storage variable. The lifetime of

a storage variable lies between the time it is created (value written into it) and the last use

(value read from it). An edge between two nodes indicates there is an overlap in lifetime

between those storage variables. The color of the node indicates the allocated register of

that corresponding storage variable. Therefore, two storage variables whose lifetimes over-

lap cannot be stored in the same register. In other words, two nodes having a common edge

between them cannot have same node color. Thus, adding additional edges in the colored

interval graph as watermarking constraints will force to execute two storage variables in

35

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

two different registers.

4.2.1 Watermark encoding

The encoding rule of all the aforementioned variables are defined below:

• α = For odd control step: odd operation will be assigned to hardware of vendor type

1 (U1) and even operation will be assigned to hardware of vendor type 2 (U2).

• β = For even control step: odd operation is assigned to hardware of vendor type 2

(U2) and even operation is assigned to hardware of vendor type 1 (U1).

• γ = Move an operation of non-critical path with highest mobility into immediate next

CS.

• i = Add an additional edge between (prime, prime) node pair of CIG.

• I = Add an additional edge between (even, even) node pair of CIG.

• T = Add an additional edge between (odd, even) node pair of CIG.

• ! = Add an additional edge between (0, any integer) node pair of CIG.

An IP core owner is free to select any random combination of these seven variables as his

desired signature. (NOTE: ”Edge between (prime, prime) node pair” indicates insert an

edge between two nodes having prime node number).

4.2.2 Process of implanting watermark

The previous sub-section discusses the signature encoding rule of seven variables while

this sub-section discusses the watermark implanting process to generate an watermarked

IP core from an input data intensive application (shown in Fig.4.2).

The triple-phase watermark implanting process has four parts, i.e., (a) pre-implanting,

(b) 1st phase watermark implanting, (c) 2nd phase watermark implanting and (d) 3rd phase

watermark implanting. The detailed steps of each of these parts are as follows:

36

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

IP Owner

Watermarking Process

Repeat for each ‘ɑ’/‘β’ digit of

the signature (phase 2)

IP with owner’s watermark

Generate a schedule of DFG based on Xi

Perform hardware allocation based on vendors available.

Create ‘hardware allocation’ table

Create timing table for ‘non-critical operations (μm>0)’

Input Block (DFG, Library and User constraints (Xi))

Modify the function unit allocation to embed ɑ’ and ‘β’ digits.

Generate the modified design (schedule and allocation) accommodating

vendor’s watermark constraints

Convert signature to equivalent constraints using

proposed encoding

Choose Vendor’s multi-variable signature

(combination of ‘ɑ’, ‘β’ , ‘ɣ’, ‘i’, ‘I’, ‘T’, ‘!’ digit)

Modify the timing table for ‘non-critical operations (μm>0)’ to embed ‘ɣ’ digits

 Repeat for each ‘ɣ’ digit of

the signature (phase 1)

Modify the register allocation table, to embed ‘i’, ‘I’, ‘T’ and ‘!’ digits.

Repeat for each ‘i’/‘I’/‘T’/‘!’

digit of the signature (phase 3)

Figure 4.2: Design process of proposed triple-phase watermark

A. Pre-implanting steps:

(1) Schedule the data intensive application (accepted as an CDFG) based on user re-

source configuration.

(2) Perform functional unit allocation and storage variable allocation.

(3) Construct the timing table for “non-critical operations (µm > 0)”, “Functional unit

allocation” table, and “Register allocation” table from the scheduled CDFG.

(4) Sort the operations control stepwise based on their number in increasing order.

(5) Accept an n-digit vendor’s signature as a combination of ‘α’, ‘β’, ‘γ’, ‘i’, ‘I’, ‘T’

and ‘!’ variables.

B. 1st phase watermark implanting steps:

(1) For each occurrence of ‘γ’, shift an operation of the non-critical path into its next

control step while checking from control step 1 onward (without repeating), such

that:

i. The operation do not have any child operation in its immediate next control

step.

ii. Shifting does not violate the hardware constraints.

37

iii. In case of conflict, the operation with the highest mobility gets priority.

(2) Modify the timing table of “non-critical operations (µm > 0)” after embedding all

‘γ’ variables.

C. 2nd phase watermark implanting steps:

(1) Accept the 1st phase watermark implanted scheduled design as input to embed 2nd

phase watermark.

(2) For each occurrence of ‘α’ and/or ‘β’ variable, perform re-allocation of functional

units according to the encoding rule of ‘α’ and ‘β’.

(3) Modify the functional unit allocation table after embedding all ‘α’ and ‘β’ vari-

ables.

D. 3rd phase watermark implanting steps:

(1) Accept the 1st and 2nd phase watermark implanting design as input to embed 3rd

phase watermark.

(2) Construct a colored interval graph using storage variables to identify the minimal

registers count.

(3) Generate a list of additional edge to be added in the colored interval graph from the

decoded signature by traversing the sorted nodes.

(4) Insert those additional edges in the colored interval graph one by one as watermark-

ing constraints.

(5) Adjust the node color of the graph in such a way that no same color node should

have a connecting edge.

(6) Modify the “register allocation” table after embedding all ‘i’, ‘I’, ‘T’ and ‘!’ vari-

ables.

4.2.3 Tamper tolerance ability of proposed watermark

In the proposed triple-phase watermark, the 3rd phase watermark is independent of both the

1st and 2nd phase watermarks. Similarly, the 1st phase watermark is independent of both

38

the 2nd and 3rd phase watermarks. Due to these advantages, the proposed watermarking

method becomes extremely robust and tamper tolerant against threats like signature tam-

pering attack, partial or complete IP core watermark removal attack, inserting unauthorized

signature attack (details provided in Section 4.4) beside ownership abuse.

However, the watermarking variable of the 2nd phase is dependent on watermarking

variables of 1st phase. Therefore, watermarking constraints of the 2nd phase may be af-

fected due to alteration of the 1st phase watermark which is a limitation to this approach.

Nevertheless, as discussed earlier, it is extremely difficult to identify in which of the phases

the watermark has been inserted along with its encoding rule. Additionally, the initial reg-

ister allocation table and colored interval graph before and after implanting the 1st and

2nd phase watermark is constant. In other words, the 3rd phase watermark is independent

of others and capable of determining the real owner. Therefore, despite the possibility of

tampering in 1st phase watermark the ownership can be preserved. Though tampering in

the 3rd phase is also possible, the 1st and 2nd phase watermark is capable of protecting the

ownership of the original IP, as the 3rd phase is independent of these two phases.

4.2.4 Proposed signature detection

In signature based IP core ownership protection mechanisms, determining the original

owner to resolve ownership conflict is a crucially compulsory process. To achieve signa-

ture detection in the proposed triple-phase based watermarking approach, following inputs

are required: a) decoded vendor signature, b) original application, c) watermarked IP core

in the form of controller and datapath HDL. In this approach, the presence of IP owner’s

signature is first identified and then verified in each phase.

To identify the 1st phase watermark, the control steps of modified operations have to

be extracted from the decoded signature and to verify, it has to be compared with the

controller HDL of the watermarked IP core. To identify the 2nd phase watermark, the

allocated hardware of the watermarked operations have to be extracted from the decoded

signature and to verify, it has to be compared with the datapath HDL of the watermarked

IP core with the help of original application and its corresponding inputs. To identify

39

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

7-variable signature of

original vendor

Decode the signature

with the knowledge

of encoding rule

Perform inspection for phase

1 watermark

Perform inspection for phase

2 watermark

Perform inspection for phase

3 watermark

Extract the corresponding input names of the

respective operation from the application

Inspect the datapath HDL to find on which

hardware (HDUT) the input names are mapped

Inspect application to find operation type of the

operation, this enables to find the corresponding

hardware of the operation type (HW)

HW= HDUT

?
No

Yes

For all ‘α/β’

?

No

Phase 2 watermark

is available

Phase 2 watermark

is not available

Yes

Find which control step of the respective enable signal

of the corresponding hardware is executed (CSDUT)

Inspect the controller HDL to find the

respective enable signal of the hardware

Inspect application to find operation type of the
operation, this enables to find the corresponding

hardware of the operation type from datapath HDL

CSW= CSDUT

?

No

Yes

For all ‘ɣ’

?

No

Phase 1 watermark

is available

Phase 1 watermark

is not available

Extract the control step no. of the respective operation

(CSW) from the decoded watermark constraints

Yes

Read the “Datapath HDL”

Collect the structural

information of multiplexers for

extracting the shared inputs

IP code (Controller

& Datapath) HDL

Verify the presence of complete

watermark in collected information

Output: Yes/No

IP code

(Datapath) HDL

Yes: Original/Valid IP

No: Compromised/Duplicate IP

Figure 4.3: Signature detection process of proposed triple-phase watermark

the 3rd phase watermark, the shared inputs of each multiplexer should be fetched from

the datapath HDL of the watermarked IP and to verify, it has to be compared with the

extracted decoded signature of 3rd phase watermarking constraints. If all the constraints of

the decoded signature are correctly present in the watermarked IP core then the signature

verification is successful. Therefore, it can be concluded that the IP vendor who provided

the signature is the original owner of that IP core. Fig.4.3 represents the complete signature

detection process of the proposed triple phase watermarking approach.

4.2.5 Properties of generated watermark

The proposed watermarking methodology satisfies all the following desirable properties:

(a) Low Implanting Cost: In an ideal watermarking approach, the overall design over-

head due to the insertion of additional constraints should be minimal. The proposed

triple-phase watermarking incurs low design overhead compared to the original non-

watermarked (baseline) design. The overall design cost is calculated based on two

crucial design parameters, i.e., design area and execution latency (refer to Table 10.7).

(b) High Robustness: A crucial security aspect of an ideal watermarking approach is

strong robustness to thwart signature removal attack. As the proposed triple-phase

40

watermarking approach implants watermark in three different design phases of HLS,

it ensures extreme robustness. Additionally, IP owner’s signature is encoded through

seven different variables to add another layer of protection. The proposed approach

achieves higher robustness as compared to [30] & [51] (refer to Table 10.5).

(c) Stronger Tamper Tolerance Ability: Another crucial security aspect of an ideal wa-

termarking approach is strong tamper tolerance ability i.e. partial removal should not

impact the proof of ownership of an IP core. As the proposed approach distributes

the watermarking constraints throughout the design in three different phases of HLS,

therefore, ownership can be proven even after signature tampering. Additionally, as

mentioned earlier the 1st and the 3rd phase of proposed watermark is independent of

each other. The proposed approach achieves stronger tamper tolerant ability compared

to [30] & [51] (refer to Table 10.6).

(d) Minimal Watermark Implanting & Detection Time: A robust signature may incur

complex signature decoding and high embedding time, therefore the total runtime to

generate a watermarked IP core may increase massively. In an ideal watermarking ap-

proach, the watermarking implanting process and the watermark detection process (in

case of conflict) should be prompt. As the proposed approach is automated through

a HLS framework therefore,watermark implanting time is fast (refer to Table 10.9).

Moreover, in case of conflict of ownership the watermark detection process is speedy

and straightforward for the original IP owner, who has the complete knowledge of en-

coding rules whereas, it is extremely difficult and complex to penetrate for an adversary

or fraud IP owner.

(e) Preserve the Functionality: Unlike watermarking of multimedia artifacts (i.e. im-

age, audio, video etc.), SoC based IP core watermarking has zero tolerance towards

modification of quality and functionality of the design. Therefore, an ideal IP core wa-

termarking process must preserve the correct functionality. The proposed triple-phase

watermarking process carefully implants the watermarking constraints without altering

the IP core functionality keeping the functionality of a watermarked IP core intact.

41

* (1) * (2) * (3) * (4) * (5)

* (11)

+ (6) + (7)

+ (12)

+ (8) + (9)

+ (10)

* (13)

+ (14)

* (15)

+ (16)

+ (17)

i1 i2 i3 i4 i5

y

(a)

+

*

*

*

*

*

+

+

+

+

+

*

+ + +

* *
(1) (3)

(6) (7) (4) (5)

(8) (9) (10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

M2 M1

M1 M2 A2 A1

A1 A2 A1

M2

A1

M2

A1

M1

A2

A1

(2) M1

V0 V1 V2 V3 V4

V5 V6

V7

V8

V9 V10 V11

V12 V13

V14

V15

V16

V17

V18

V19

V20

V21

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(G)

(G)

(B)

(B)

(B)

(Y)

(Y)

(Y)

(P)

(P)

(P)

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

CS9

CS10

i1 i2 i3 i4 i5

y

(b)

Figure 4.4: Corresponding to the DWT benchmark: (a) data flow graph, (b) scheduled data
flow graph based on 3(+), 3(*)

Table 4.1: “Timing table for non-critical operations” (before embedding watermark)

Operation No. 2 3 4 5 7 8 9

Control Step 1 2 3

Table 4.2: “Functional unit allocation” table (before embedding watermark)

Odd
CS

Operation No. 1 2 3 8 9 10 12 14 16

Allocated FU M2 M1 M1 A1 A2 A1 A1 A1 A2

Even
CS

Operation No. 4 5 6 7 11 13 15 17 –

Allocated FU M2 M1 A2 A1 M2 M2 M1 A1 –

4.3 Motivational Example

This section presents a demonstration of the proposed triple-phase watermarking approach

through a standard benchmark.

A DFG of DWT benchmark shown in Fig.4.4(a) is taken as input. According to the

figure, the primary inputs of the benchmark are shown in purple block, final output is shown

in orange block, multipliers and adders are indicated by blue and green nodes respectively

and the corresponding operation number of each node is indicated by an integer number. It

is then scheduled based on user provided hardware resources i.e. 3 adders and 3 multipliers

42

Table 4.3: “Register allocation” table (before embedding watermark)

CS (R) (G) (B) (Y) (P)

0 V0 V1 V2 V3 V4
1 V5 V8 V6 V3 V4
2 V7 V8 V9 V10 V11
3 V12 – V9 V13 V15
4 V14 – V9 V13 V15
5 V16 – V9 V13 V15
6 V17 – – V13 V15
7 V18 – – V13 V15
8 V19 – – – V15
9 V20 – – – V15

10 V21 – – – –

using list scheduling algorithm (step A.1). After that, the functional unit allocation of

each operation and the register allocation of each storage variable (V0-V21) are performed

(step A.2). The IP cores in this approach are obtained from two distinctive IP vendors.

To illustrate that, out of 3 adders, two are obtained from vendor type 1 (A1) and one is

obtained from vendor type 2 (A2). Similarly, out of the 3 multipliers, two are obtained

from vendor type 1 (M1) and one is obtained from vendor type 2 (M2). Fig.4.4(b) shows

the scheduled DFG after random functional unit allocation and register allocation (before

watermarking). The register allocation (before watermark) is performed based on colored

interval graph (shown in Fig.4.5(a)). The graph has 22 nodes indicating 22 storage variables

i.e., V0 to V21 which are executed through 5 registers represented by the color of the node

i.e. register red (R), register green (G), register blue (B), register yellow (Y) and register

purple (P). The timing table for non-critical operations, functional unit allocation table and

register allocation table of the non-watermarked design are generated as shown in Table4.1,

Table4.2 and Table4.3 respectively (step A.3). All the operations are sorted control step

wise in ascending order according to step A.4. A 12-digits owner’s signature is selected

as: “γγαβαββiIIT ” (step A.5).

The vendor’s signature and its corresponding decoded meaning is shown in Table4.4 .

The first ‘γ’ digit of the signature moves opn. 2 from CS 1 to CS 2. According to the rule

mentioned in B.1, the second ‘γ’ digit moves opn. 9 from CS 3 to CS 4. This is because op-

43

V15

V19

V20

V17

V18 V13

V7

V9

V12

V14

V16

V8

V10

V11

V5

V6

V3

V4

V0 V1

V2

V21

(a)

V15

V19

V20

V17

V18 V13

V7

V9

V12

V14

V16

V8

V10

V11

V5

V6

V3

V4

V0 V1

V2

V21

(b)

Figure 4.5: Corresponding to the color interval graph of the input application: (a) before
implanting watermark, (b) after implanting watermark

+

*

*

*

*

*

+

+

+

+

+

*

+ +

+

*

*

(2) (1) (3)

(6) (7) (4) (5)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

cs 1

cs 2

cs 3

cs 4

cs 5

cs 6

cs 7

cs 8

cs 9

cs 10

M2 M1 M1

M1 M2 A2 A1

A1

A2

A1

M2

A1

M2

A1

M1

A2

A1

*

(2) M1

+ (9) A2

i1 i2 i3 i4 i5

y

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

CS9

CS10

(a)

+

*

*

*

*

*

+

+

+

+

+

*

+ +

+

*

*

(1) (3)

(6) (7) (4) (5)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

cs 5

cs 6

M1 M1

M2 M1 A2 A1

A1

A2

A1

M2

A1

M2

A1

M1

A2

A1

(2) M1

V0 V1 V2 V3 V4

V5 V6

V7 V8 V9 V10 V11

V12 V13

V14 V15

V16

V17

V18

V19

V20

V21

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(G)

(G)

(B)

(B)

(B)

(Y)

(Y)

(Y)

(P)

(P)

(P)

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

CS9

CS10

i1 i2 i3 i4 i5

y

(b)

Figure 4.6: Corresponding to the proposed triple phase watermark: (a) after implanting 1st
phase watermark, (b) after implanting 1st and 2nd phase watermark

erations 3, 4 & 5 violate rule mentioned in B.1(i), opn. 7 violates rule mentioned in B.1(ii)

and opn. 8 violates rule mentioned in B.1(iii). Fig.4.6(a) shows the corresponding sched-

uled DFG and Table4.5 represents the modified timing table for “non-critical operations”

(step B.2).

All the ‘α’ and ‘β’ digits must be implanted on top of the 1st phase watermarked design

(step C.1). The third signature digit modifies the hardware assignment of opn.1 from M2

44

Table 4.4: Vendor signature and its decoded meaning

Desired
signature
(12-digits)

Corresponding
operation to shift

(Phase 1)

Allocated FU type
(Phase 2)

Additional edges to insert
between nodes in the

colored interval graph
(Phase 3)

Observations

γ Opn. 2 from CS 1 to CS 2 – – CS shift to be done
γ Opn. 9 from CS 3 to CS 4 – – CS shift to be done
α – Opn. 1 with vendor 1 – FU reallocation to be done
β – Opn. 2 with vendor 1 – No change
α – Opn. 3 with vendor 1 – No change
β – Opn. 4 with vendor 1 – FU reallocation to be done
β – Opn. 5 with vendor 2 – FU reallocation to be done
i – – (V2, V3) No change
I – – (V2, V4) No change
I – – (V2, V6) New edge to be added
T – – (V1, V2) No change
! – – (V0, V1) No change

Table 4.5: “Timing table for non-critical operations” (after embedding 1st phase water-
mark)

Operation No. 3 2 4 5 7 8 9
Control Step 1 2 3 4

Table 4.6: “Functional unit allocation” table (after embedding 2nd phase watermark)

Odd
CS

Operation No. 1 3 8 10 12 14 16 – – –

Allocated FU M1 M1 A1 A1 A1 A1 A2 – – –

Even
CS

Operation No. 4 2 5 6 7 9 11 13 15 17

Allocated FU M1 M1 M2 A2 A1 A2 M2 M2 M1 A1

(multiplier obtained from vendor type 2) to M1 (multiplier obtained from vendor type 1).

Similarly, the sixth signature digit modifies the hardware assignment of opn.4 from M2 to

M1 (Note: the fourth and fifth digit of the signature are already satisfied in the design).

Similarly, rest of the ‘α’ and ‘β’ digits will be implanted (step C.2). Fig.4.6(b) shows

the corresponding scheduled DFG and Table4.6 represents the modified “functional unit

allocation” table (step C.3).

All the ‘i’, ‘I’, ‘T’ and ‘!’ digits must be implanted on the top of 1st and 2nd phase

watermarked design (step D.1). The color interval graph constructed earlier is shown in

Fig.4.5(a) (step D.2). According to the decoded signature shown in Table4.4 , the list of

additional edges are between nodes (V2 and V3), (V2 and V4), (V2 and V6), (V1 and V2),

45

Table 4.7: “Register allocation” table (after embedding 3rd phase watermark)

CS (R) (G) (B) (Y) (P)

0 V0 V1 V2 V3 V4
1 V6 V1 V5 V3 V4
2 V7 V8 V9 V10 V11
3 V12 – V9 V13 V11
4 V14 – V9 V13 V15
5 V16 – V9 V13 V15
6 V17 – – V13 V15
7 V18 – – V13 V15
8 V19 – – – V15
9 V20 – – – V15

10 V21 – – – –

and (V0 and V1) (step D.3). Among these five edges only the edge between nodes (V2

and V6) is not present in the graph in advance (step D.4). The aforementioned edge forces

storage variable V2 and V6 to be executed through distinct register, therefore node color of

V2 and V6 must be different which is same now (see Fig.4.5(a)). Hence to incorporate the

watermarking constraint, the allocated register i.e. (B) for storage variable V6 needs to be

swapped with another storage variable in same control step. Swapping V6 with V5 does not

violate any constraints, therefore, storage variable V6 is now allocated to (R) (previously

allocated to (B)) and storage variable V5 is now allocated to (B) (previously allocated to

(R)) (step D.5). The final modified graph is shown in Fig. 4.5(b). Fig. 4.7 shows the

corresponding scheduled DFG and Table4.7 represents the modified “register allocation”

table (step D.6).

4.4 Threat Scenarios of Fraudulent Ownership

This section presents the possible threat scenarios of the fraudulent IP core ownership and

its resolution through the proposed triple-phase watermarking process. Let’s assume ‘A’ is

an IP vendor, designed a watermarked IP core (‘Dw’) with her signature and sold it to ‘B’.

In that case, ‘B’ can claim his ownership through three possible scenarios [30]:

46

+

*

*

*

*

*

+

+

+

+

+

*

+ +

+

*

*

(1) (3)

(6) (7) (4) (5)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

CS 10

M1 M1

M2 M1 A2 A1

A1

A2

A1

M2

A1

M2

A1

M1

A2

A1

(2) M1

V0 V1 V2 V3 V4

V5 V6

V7 V8 V9 V10 V11

V12 V13

V14 V15

V16

V17

V18

V19

V20

V21

(B)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

(G)

(G)

(B)

(R)

(B)

(Y)

(Y)

(Y)

(P)

(P)

(P)

i1 i2 i3 i4 i5

y

Figure 4.7: Final watermarked design after implanting 1st, 2nd and 3rd phase watermark

4.4.1 Extracting unintended signature

After purchasing ‘Dw’, ‘B’ may extract the complete information of it through reverse engi-

neering. He may then claim any random/arbitrary design information as his watermarking

constraints, thus may claim his ownership for ‘Dw’. In such scenario, the entity having

more meaningful and consistent watermark will be awarded as the original owner of ‘Dw’.

‘B’s claim may valid for a single design, but will be invalided for other watermarked design.

Therefore, ‘B’s claim will not be strong enough to prove his ownership. On the contrary,

‘A’s watermarking constraints will be more meaningful and consistent for all watermarked

design. For example, according to Fig.4.6(b), ‘B’ may claim “all operations of CS 1 must

be allocated to Vendor 1” as his signature, which may work for this particular design, but

will be invalid for other watermarked designs. As in the proposed approach each signature

variable has an encoding meaning, therefore, it is capable to resolve this scenario.

4.4.2 Inserting unauthorized signature

After purchasing ‘Dw’, ‘B’ may embed his own signature on it and then may claim his

ownership for ‘Dw’. In such case, ‘B’ applies his signature on the top of the ‘A’s signature.

Therefore, the design will contains both ‘A’s and ‘B’s signature. However, ‘A’s design

47

only contains her signature, whereas, Bs design contains signature of both ‘A’ and ‘B’. As

in the proposed triple-phase watermarking approach has strong tamper tolerance ability,

therefore, it is capable to resolve this threat scenario.

4.4.3 Tampering original signature in the design

After purchasing ‘Dw’, ‘B’ may remove all the signature to make ‘Dw’ a non-watermarked

design. In such case, the watermarking constraints must be independent of each others

and distributed throughout the design. Thus, makes complete watermark removal pro-

cess extremely difficult. Additionally, sometimes tampering of implanted watermarking

constraints may force to perform all the pre-synthesis steps from the beginning, which

is a costly and time-consuming process. As in the proposed triple-phase watermarking ap-

proach implants the signature during in-systhesis steps of HLS with strong tamper tolerance

ability, therefore, it approach is capable to resolve this threat scenario.

Note: The corresponding experimental results of the proposed methodology is ex-

plained in Chapter 10 Section 10.2.

4.5 Summary

This chapter presents a novel robust IP core watermarking methodology for CE systems.

The work proposes a 7-variable signature encoding scheme to implant the IP owner’s wa-

termark in the design. The watermarking constraints are implanted in three different phases

of HLS for the first time in the literature. Additionally, as the watermarking constraints are

implanted at the higher design abstraction level, therefore it will automatically propagate

to the lower abstraction level. Thus, provides a highly robust IP core protection not at the

higher level but also at the lower level of the design. The implanted watermark satisfies all

the desirable properties such as covertness, robustness, strong tamper tolerance ability, low

signature implanting & detection complexity and correct functionality. This proposal has

several unique features: (a) the proposed algorithm encode the owner’s signature through

a novel 7-variable signature encoding scheme(b) watermarking constraints are implanted

covertly during scheduling, hardware allocation and register allocation phase of HLS with-

48

out changing the actual functionality (c) ensures higher robustness while incurring low

design overhead. Finally, experimental results over the standard applications indicate an

average reduction in the design cost of 7% and 6% compared to two recent approaches.

Thus provides an significant advancement in IP core protection for CE systems.

49

Chapter 5

Symmetrical IP Core Protection of CE

Systems

The last two chapters discussed the watermarking approaches to protect an IP core seller

from various security threats. However, in the design supply chain of an IP core, along

with the IP seller another entity involved is: IP core buyer. An IP seller also known as

IP vendor is the manufacturer of an IP core whereas an IP buyer also known as IP user is

the purchaser of that IP core. To design a secured IP core, protection of both the entities

against threats is extremely essential.

The protection of an IP core should ensure the buyer to exercise exclusive user right,

i.e. to not allow the IP seller to resell/redistribute the same IP copy to other users. This

happens when an IP buyer procures an IP core with his/her own custom specifications.

Therefore, an exclusive one-to-one mapping between both the parties exists. Implanting

buyer’s signature (known as fingerprint) into an IP core design, facilitates detection of

illegal redistributed/resold copies of an IP core by a deceitful IP seller [20]. Similarly,

an IP seller must protect his/her design from piracy and false claim of ownership before

selling it to an IP buyer. Implanting seller’s signature (known as watermark) into an IP core

design protects an IP core from ownership abuse. This necessitates a robust symmetrical

protection of reusable IP core from both buyer’s and seller’s perspective.

This chapter presents a novel symmetrical IP core protection methodology for DSP

core of CE systems to protect the rights of both the entities (shown in Fig. 5.1). It implants

51

Seller’s signature for IP Buyer’s signature for IP

High Level Synthesis

Symmetrically protected RTL Design of IP core

Input from Buyer/User Input from Seller/Vendor

Decode signature to obtain

fingerprinting constraints

Decode signature to obtain

watermarking constraints

Design inputs (DSP application, resource
constraints, module library)

Primary Inputs

Figure 5.1: Proposed Symmetrical IP core Protection during high level synthesis.

signature of both the IP buyer and the IP seller into the design to safeguard their rights.

As shown in Fig. 5.1, firstly, the fingerprinting constraints are implanted during scheduling

and register allocation phase of HLS, thereafter, the watermarking constraints are implanted

during register allocation phase of HLS. Thus the IP core design has both fingerprinted and

watermarked constraints in addition to its normal design constraints (i.e. module library,

resource configurations etc.). It also ensures strong resistance against complete removal

or malicious modification of signature. In case of ownership conflict, both the implanted

signature can be detected by inspecting the datapath and controller HDL file of the IP

core. This is the first work in IP core protection of CE systems that provides symmetrical

protection to secure both IP buyer and IP seller right.

The chapter is organized as follows: Section 5.1 discusses the problem formulation,

threat model and the target platform of the proposed approach; Section 5.2 explains the pro-

posed methodology; Section 5.3 demonstrates the proposed symmetrical IP core protection

approach through a standard application; finally, the summary of this chapter is presented

in Section 5.4. (NOTE: All the abbreviations and taxonomy are listed in ‘Acronyms’ and

‘Nomenclature’ section respectively.)

52

5.1 Proposed Approach: Problem Formulation, Threat Model

and Target platform

This section presents the problem formulation, threat model and target platform of the

proposed approach.

5.1.1 Problem formulation

For a DSP core given in the form of a DFG, design an symmetrically protected IP core (af-

ter implanting fingerprint and watermark) using optimal solution, within buyer’s provided

resource constraints, (Xi) = N(R1), N(R2), ..., N(RD). The problem can be formulated

as follows:

Minimize: Design cost (AT , LT) of symmetrically protected (through robust water-

marking and fingerprinting) IP core for design solution (Xi),

Subject to: AT ≤ Acons and LT ≤ Lcons.

5.1.2 Threat model

The objective of a IP core security is to protect both the IP buyer and the IP seller. There-

fore, the threat model of the proposed symmetrical approach is as follows:

IP Buyer’s perspective

Detecting illegally redistributed/resold IP core copies in the market by a deceitful IP seller

[3].

IP Seller’s perspective

Protection against (i) fraudulent ownership (ii) ownership conflict/abuse and (iii) IP in-

fringement.

53

5.1.3 Target technology/platform

The proposed protection methodology can be easily integrated with any EDA tools. HDL

or any high level language used for IP generation can easily merge with the proposed

technique in the design tools.

5.2 Proposed Methodology

The proposed symmetrical IP core protection approach covertly inserts fingerprinting and

watermarking constraints to protect the IP buyer as well as the IP seller. Based on the sig-

nature constraints provided by a buyer, an IP seller inserts buyer’s fingerprint with his/her

own watermark, safeguarding the privileges of both the entities. The multiplexing pro-

cess for each resource is generated to identify the resource interconnectivity, multiplexer

size and inputs/outputs of the watermarked and fingerprinted design. Using the generated

multiplexing scheme of each resource, the complete datapath and timing description of the

control unit of the DSP IP core is developed. Thus the final output of a symmetrically

protected RTL design of an IP core is generated as datapath and controller represented as

HDL files.

5.2.1 Evaluation models

This section discuss the proposed models used to evaluate the design cost of an symmetri-

cally protected IP core in terms of hardware area and execution latency.

Proposed hardware area model

Total area of the watermark and fingerprint implanted IP core is expressed by the following

model:

AT =
m∑
i=1

(
A(Ri) ∗Ri

)
+ A(mux) ∗N(mux) + A(buffer) ∗N(buffer) (5.1)

54

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Proposed execution delay model

Total execution delay of the watermark and fingerprint implanted IP core is expressed by

the following model:

LT =
n∑

c.s=1

Max(D(opi), ..D(opr)) (5.2)

Proposed design cost model

Based on the calculated value of the total hardware area and total execution delay the design

cost of an symmetrically protected IP core can be evaluated by the following model:

Cf (Xi) = w1(LT)/Lmax + w2(AT)/Amax (5.3)

5.2.2 Proposed signature encoding

In the proposed approach, fingerprint constraints are implanted in both scheduling and

register allocation phase, while watermarking constraints are implanted in the register al-

location phase of HLS. Fingerprinting constraints in the scheduling phase are achieved by

forcing specific operations in specific CS during the schedule conflict resolution process.

In other words, instead of employing priority resolver functions or random break, a novel

fingerprint encoding rule is proposed to select which operation is to be assigned to which

CS. It is a covert way of inserting buyer fingerprint since during regular operation schedul-

ing conflict the fingerprint is inserted with zero hardware and minimal latency overhead.

Further, the fingerprint and watermarking constraints during register allocation phase of

HLS are realized with the concept of CIG, where the nodes of the graph represent stor-

age variables and the edges represent overlapping lifetime between corresponding storage

variables. Namely, if two storage variables exist in the same control step of a scheduler,

their lifetime overlapping; there will be an edge between them. Adding additional edges as

constraints will force storage variables of a CIG to execute through distinct registers. The

flow diagram of the proposed symmetrical IP protection is shown in Fig. 5.2. The detailed

encoding rules of the proposed symmetrical approach are presented below:

55

Fingerprint encoding

In the proposed symmetrical IP core protection approach, the fingerprint encoding is as

follows:

• x = Force even operation in odd control step while resolving scheduling conflict in

scheduling phase.

WATERMARKING

SCHEME

Input Block

Module

Library
Resource

Configuration DFG

FINGERPRINTING

SCHEME
Start

Embed fingerprint constraints (for ‘x’ & ‘y’ digit) while resolving

operation conflict during scheduling based on resource constraints

Embed fingerprint constraints in the form of inserting additional

edges (for digit ‘z’) by constructing colored interval graph

Modify timing table for register allocation by accommodating the

fingerprint constraints corresponding to digit ‘z’

Construct timing table for register allocation based on the colored interval graph

Obtain fingerprinting constraints corresponding to

‘x’, ‘y’ & ‘z’ digits using proposed decoding rules

Choose buyer’s fingerprint to embed

Stop

Choose vendor’s signature

Obtain watermarking constraints using decoding rules

Modify colored interval graph

to insert watermarking

constraints as additional edges

Modified IP design (with buyer’s fingerprint

& seller’s watermark constraints)

Modify the timing table for register

allocation by accommodating

watermark constraints

Figure 5.2: Design flow of the proposed symmetrical IP core protection during

56

• y = Force odd operation in even control step while resolving scheduling conflict

scheduling phase.

• z = Add additional edge between node pair number (odd, odd) in the colored interval

graph.

In order to apply the fingerprint encoding for ’x’ and ’y’, operations are kept in a sorted

list. Similarly to apply fingerprint encoding for ’z’, the storage variables in the scheduling

must be kept in a sorted order. The strength of buyer’s fingerprint increases with its signa-

ture size. The proposed approach is flexible for accepting any large sized fingerprint. As

evident, the proposed fingerprint signature scheme comprises three unique variables and

each variable is mapped with a unique encoding that does not add much overhead to the

design while preserving robustness.

It is recommended that while selecting buyer’s fingerprint the signature should have

higher number of ‘x’ and ‘y’ digits than ‘z’ digits. The reason being that insertion of

‘x’ and ‘y’ digit imposes zero hardware area overhead and negligible execution latency

overhead as both digits are inserted during operation scheduling conflict resolution. On the

other hand, numerous insertions of ’z’ digits may result in hardware overhead in terms of

the number of storage hardware. However, it is also crucial to add another protection layer

by implanting fingerprint constraint in the register allocation stage.

Watermark encoding

In the proposed symmetrical approach, watermarking is applied using the methodology

proposed in [50]. In [50], additional constraints for watermark are inserted in the register

allocation step of HLS by adding additional edges between the nodes of a CIG. Adding

these additional edges will force storage variables of a CIG to execute through distinct reg-

isters. This approach is flexible for adding any number of additional edges in the register

allocation step. The strength of the watermark increases with the number of additional

edges (i.e., the watermark size). Though robustness increases with increase in signature

size, a large signature may incur significant hardware overhead, which makes it is nec-

essary to employ a robust watermarking scheme that provides substantial protection with

57

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

minimal overhead. The proposed symmetrical approach employs a multi-variable water-

mark creation mechanism from [50].

As proposed in [50], the mechanism of watermark creation consists of four different

variables. Each variable carries a different encoding rule. The seller is free to choose any

random combination of these four variables as his/her watermark. Each variable adds an

additional edge between two specific nodes encoded as the rule of that variable. In other

words, selection of node pair from CIG to add an additional edge is defined in the variable

as encoding mechanism. The watermark encoding is as follows:

• i = encoded value of edge with node pair as (prime, prime)

• I = encoded value of edge with node pair as (even, even)

• T = encoded value of edge with node pair as (odd, even)

• ! = encoded value of edge with node pair as (0, any integer)

Although ’z’ digit of fingerprint and ’i’, I’, T’ and ’!’ digits of seller watermark both

embed constraints in register allocation phase, however, their encoding rules are different

resulting into completely different constraints.

5.2.3 Proposed signature implanting process

The broad and detailed steps for generating symmetrical IP is described here. It is achieved

by implanting fingerprint and watermark.

Fingerprint implanting process

Broad steps:

1. Select the desired buyer signature.

2. Decode the buyer signature to its equivalent fingerprinting constraints.

3. Use the decoded constraints to perform scheduling during operation conflict.

58

4. Assign the storage variables to registers from the scheduling using the concept of

colored interval graph.

5. Insert additional edges in the colored interval graph based on decoded constraints

and perform re-assignment of register allocation.

Detailed steps:

1. Accept a preferred signature for fingerprint as any random combination of: x, y, & z

from the buyer.

2. Create a sorted list of operations of the DFG as per their operation number in increas-

ing order.

3. Convert fingerprint signature corresponding to digits ’x’ and ’y’ into equivalent con-

straints that help in resolving schedule operation conflict.

4. Initiate DFG scheduling based on the given resource configuration.

5. In case of operation conflict during scheduling, use obtained fingerprint constraints

(in step 3) to resolve and generate a scheduling (Note: When there are no fingerprint-

ing constraints available, conflict is broken based on sorted ordering).

6. Assign storage variables in the scheduling and create a colored interval graph to find

the minimum number of registers required for allocation.

7. Sort the assigned storage variables as per their number in increasing order.

8. Construct a timing table for register allocation based on the generated colored interval

graph.

9. Generate a list of extra edge pairs conforming to z digit(s) by traversing the sorted

storage variables in step 7.

10. Insert the additional edges in the colored interval graph generated in step 6 based on

obtained fingerprint constraints.

59

After performing the above steps, a buyer fingerprint implanted IP design is generated.

This IP design is used as an input for further implanting the seller watermark and finally

generating the symmetrical IP core.

Watermark implanting process

Broad steps:

1. Select desired seller signature.

2. Decode the seller signature into its equivalent watermarking constraints.

3. Construct a colored interval graph to represent registers required for storage variables

from the fingerprint implanted scheduling.

4. Perform re-allocation of register if necessary while inserting extra edges in the col-

ored interval graph based on watermarking constraints.

Detailed steps:

1. Accept the fingerprint embedded IP design (schedule and register allocation) as an

input.

2. Sort the assigned storage variables as per their number in increasing order.

3. Accept the watermark of the seller in the form of i, I, T, and !, where these characters

hold the encoded meaning of additional edges to be inserted.

4. Create a list of additional edge pairs corresponding to its encoded values by traversing

the sorted nodes.

5. Insert the additional edges in the colored interval graph of fingerprint embedded de-

sign as watermarking constraints.

6. Modify the timing table of the register allocation based on the generated watermark.

Post-execution of the above steps, on top of the buyer fingerprint a seller watermark im-

planted IP design is generated. Consequently, the IP design has signatures of both the

entities. This ensures a reusable IP core with symmetrical protection.

60

5.2.4 Signature detection process

Signature detection is a compulsory process for any signature-based IP core protection

mechanism. This process extracts and validates the implanted signature from the IP core

design to protect the rights of the corresponding entity. The signature detection for the

proposed approach is a two-step process:

• Design inspection: The objective of this step is to extract the appropriate design

information in terms of structural property, specification, etc., from the received IP

core.

• Signature verification: The objective of this step is to verify the decoded constraints

of the signatures in the extracted information from the received IP design signify-

ing the signature and the encoding meaning of each digit needs to be known. Con-

sequently, the list of additional constraints corresponding to the signature can be

generated. Lastly, the presence of each constraint must be verified in the extracted

controller and datapath information of the received IP core.

5.2.5 Properties of generated signatures

In the proposed symmetrical IP core protection approach, the embedded signatures have

the following properties:

• Low embedding cost: An ideal signature must incur minimal hardware area and ex-

ecution latency overhead. Therefore, any symmetrically protected IP core design

solution should impose overhead as low as possible. In the proposed approach, a

low-cost watermarked-fingerprinted design solution has been explored.

• Resiliency: A signature should be so strong and robust that it is difficult to remove

or tamper. The proposed watermark and fingerprint are both equipped with strong

protection which makes the watermark and fingerprint extremely hard to remove

or tamper without complete knowledge of both the encoding rules. Additionally,

it is also difficult to identify in which HLS step the signatures has been implanted.

61

Besides, the additional constraints are distributed all over the IP design which renders

it more resistant against removing or tampering.

• Fault tolerance: An ideal signature must be distributed enough throughout the design

so that partial removal of the signature constraints does not prevent the proof of

ownership. As the proposed signature scheme distributes the additional constraints

throughout the design, ownership remains preserved even after partial removal or

tampering of signature.

• Adaptability to any CAD Tool: An ideal signature must be easily adaptable for any

modern CAD tool. The proposed symmetrical methodology is compatible with any

new generation CAD tool and can be integrated with any modern CAD tool flow

seamlessly.

• Signature creation and detection time: An ideal signature creation process should

not be too complex to generate a signature. In the proposed approach, the signature

creation time for both watermark and fingerprint is significantly less. Further, the

signature detection process is simple and straightforward for a genuine entity with

complete knowledge of encoding rules.

5.3 Motivational Example

This section gives a demonstration of the proposed symmetrical IP core protection mecha-

nism through a standard benchmark. The first subsection illustrates the proposed fingerprint

creation and insertion process while the second subsection illustrates the proposed water-

mark creation and insertion process. As mentioned earlier, fingerprint digits ‘x’ and ‘y’

are implanted in the scheduling step of HLS by assigning specific operations to specific

CS during schedule conflict resolution process while variable ’z’ adds additional edges in

register allocation phase by forcing specific storage variables to execute in distinct regis-

ters. On the other hand, seller watermarking constraints in the form of ’i’, I’, T’ and ’!’ are

embedded only in the register allocation step of HLS by forcing specific storage variables

to execute in distinct registers.

62

Table 5.1: Fingerprint and its meaning

Desired
fingerprint

(7-digit)

Corresponding
operation assigned

in control step
based on fingerprint

Corresponding
additional

edges to add between nodes in the
colored interval graph

x assign operation 2 in CS1 -
x assign operation 4 in CS1 -
y assign operation 5 in CS2 -
x assign operation 6 in CS3 -
y - -
z - (V1, V3)
z - (V1, V5)

V8

V6 V5

V11

V4

V17

V12

V15

V13

V7

V10 V14

V16

(13) (8)

(12)

(14)

(5)

(9)

(11)

(10)

(4) (2)

+

* * *

*

* *

*

+
+

+ +

+

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

(6)

(7)

(1)

V1 V3 V0 CS 0

V9
*

(3)

V2

i1 i2 i3 i4

y2 y1

Figure 5.3: Scheduling of MESA DFG with 2 adders and 3 multipliers (after implanting
proposed fingerprint)

5.3.1 Example of fingerprint implanting

Assuming MESA data flow graph and resource configuration (2 adders and 3 multipliers)

provided as inputs. The desired buyer signature is chosen (using an arbitrary combination

of ’x’, ’y’ and ’z’) as discussed in section 5.2.3. For the purpose of demonstration, a 7-digit

63

V5 V4

V8 V6

V17

V16
V15

V12

V11

V14

V13 V10

V9

(11)

(12)

(14)

(7)

(10)

(13)

(8)

(2) (1)

+

* * *

*

* *

*

*

+

+

+

+

+

(3)

(5) (6) (4)

(9)

V0 V1 V2 V3

V7

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 0

i1 i2 i3 i4

y2 y1

Figure 5.4: Scheduling of MESA DFG with 2 adders and 3 multipliers (with no buyer
signature implanted)

Table 5.2: Timing table for register allocation after implanting ‘x’ & ‘y’ but before im-
planting ‘z’ digits as fingerprint constraints

Control
Step

Red
(R)

Green
(G)

Blue
(B)

Yellow
(Y)

0 V0 V1 V2 V3
1 V4 V5 V2 V6
2 V7 V5 V9 V11
3 V10 V8 V9 V14
4 V12 V13 - V16
5 V15 V13 - -
6 V17 - - -

buyer fingerprint signature is selected: ‘x x y x y z z’. The fingerprint signature is then

decoded. The corresponding decoded meaning is shown in Table 5.1 . The decoded con-

straints are obtained using the proposed encoding meaning of each fingerprint digit. Next,

the MESA data flow graph needs to be scheduled using the resource constraint specified.

In the first odd CS, there are four ready multiplication operations viz. opn 1, opn 2, opn

64

Table 5.3: Timing table for register allocation after embedding additional edges as finger-
print constraints

Control
Step

Red
(R)

Green
(G)

Blue
(B)

Yellow
(Y)

0 V0 V1 V2 V3
1 V5 V4 V2 V6
2 V5 V7 V9 V11
3 V10 V8 V9 V14
4 V12 V13 - V16
5 V15 V13 - -
6 V17 - - -

V9

V3 V2

V1

V0

V11

V7
V5

V6 V4

V17

V15

V8

V12

V16

V10

V13

V14

Figure 5.5: Colored interval graph with additional edges as fingerprinting constraints indi-
cated through blue dotted line

3 and opn 4, but only 3 multiplier resources are available. This indicates the existence of

a schedule operation conflict scenario. The decoded fingerprint constraints will now be

inserted in the schedule while resolving the operation conflict. For example, first digit ’x’

forces even multiplication operation (i.e., opn 2) into odd control step (i.e., CS 1) during

schedule conflict resolution. Similarly the next digit ’x’ forces multiplication opn 4 in odd

65

CS 1 during schedule conflict resolution. The third multiplication is scheduled in CS 1 by

simply choosing the first operation in the sorted list. Thus opn 1 is selected and scheduled

in CS 1. Similarly, odd opn 5 has been scheduled in even CS 2 after resolving operation

conflict through fingerprint encoding of digit ’y’. Further even opn 6 has been scheduled

in odd CS 3 after resolving operation conflict through fingerprint encoding of digit ’x’.This

process of embedding fingerprint constraints in scheduling continues until all operation

conflicts are resolved. Since no further schedule operation conflict exists, hence the last

three fingerprint digits could not be embedded. However, scheduling is normally continued

until all operations of DFG are scheduled based on resource constraint. The final schedule

with buyer fingerprint embedded is shown in Fig. 5.3. Its schedule counterpart where no

fingerprint embedding is performed during conflict resolution is shown in Fig. 5.4. As evi-

dent with absolutely zero hardware area and zero latency overhead, the buyer fingerprint is

successfully embedded in the design without distorting the functionality.

Next, the storage variables (V1 - V17) are assigned in the obtained schedule and its

corresponding CIG is created. Two additional edges corresponding to two ’z’ fingerprint

digits are to be added as constraints in the CIG (representing register allocation phase).

Although two additional edges have to be added, but coincidently an edge between (V1,

V3) already exists by default. Thus, only new edge between (V1, V5) needs to be added

(marked by a blue dotted line in CIG of Fig. 5.5). The information of this new edge added

in the CIG needs to be accommodated in the timing table of register allocation (shown

in Table 5.2). This is accommodated by executing storage variables V1 and v5 in distinct

registers (Red and Green). The modified controller with fingerprinting constraints is shown

in Table 5.3.

5.3.2 Example of watermark implanting

After embedding buyer’s fingerprint, it now acts as an input for embedding seller water-

mark. For demonstration, a 7-digit watermark signature is selected: ’i i i I i T !’. Its

corresponding decoded constraints as additional edges are shown in Table 5.4. As evident

from the CIG in Fig. 5.6, only two additional edges ((V2, V7), (V2, V9)) as constraints

66

Table 5.4: Watermark and its meaning

Desired
watermark

(7-digit)

Corresponding
additional edges to

insert between nodes of
coloured interval graph

i (V2,V3)
i (V2,V5)
i (V2,V7)
I (V2,V4)
i (V2,V9)
T (V1,V2)
! (V0,V1)

Table 5.5: Final timing table for register allocation after implanting fingerprint and water-
mark

Control
Step

Red
(R)

Green
(G)

Blue
(B)

Yellow
(Y)

0 V0 V1 V2 V3
1 V5 V4 V2 V6
2 V5 V7 V11 V9
3 V10 V8 V14 V9
4 V12 V13 - V16
5 V15 V13 - -
6 V17 - - -

need to be inserted in the CIG. This is because the remaining five edges are already present

in the graph by default. Therefore, due to an extra edge being inserted between V2 and

V9, both are forced to execute through distinct registers. V2 and V7 are anyway executed

through distinct registers as evident in Table 5.3. The final modified timing table for regis-

ter allocation is shown in Table 5.5. It is clear that zero hardware area and latency overhead

have been incurred after embedding seller’s watermark as well.

Thus for MESA benchmark, embedding both buyer fingerprint and seller watermark

for symmetrical IP protection incur absolutely zero area and latency design.

Note: The corresponding experimental results of the proposed methodology is ex-

plained in Chapter 10 Section 10.3.

67

V9

V3 V2

V1

V0

V11

V7
V5

V6 V4

V17

V15

V8

V12

V16

V10

V13

V14

Figure 5.6: Final colored interval graph incorporating buyer fingerprint (additional edges
in blue dots) and seller watermark (additional edges in red dotted line)

5.4 Summary

The chapter presents a novel solution to the long pending concern of IP cores protection

for both the IP buyer and the IP seller for CE systems. The work proposes a symmetrical

IP core protection methodology that implants buyer’s fingerprint during scheduling and

register allocation phase and seller’s watermark during register allocation phase of HLS.

Additionally, as the additional constraints are implanted at the higher design abstraction

level, therefore it will automatically propagate to the lower abstraction level and protect

both the design level. This is the first approach in the literature that provides symmetrical

protection for IP cores used in consumer electronics designs. Several novelties integrate the

framework of the proposed algorithm: (a) multi-variable encoding scheme for fingerprint

(b) multi-variable encoding scheme for watermark (c) novel encoding rule for each encoded

variable (d) automation of the complete symmetrical protection process during in-synthesis

steps of HLS (no pre or post-synthesis steps are required). Finally, experimental results

over the standard applications indicate an average 1% design cost overhead compared to

baseline (unprotected) design and <1% design cost (includes 0% area overhead and 1.1%

latency overhead) overhead compared to a non-symmetrical approach.

68

Chapter 6

Multi-Stage Structural Obfuscation to

Secure IP Core used in CE Systems

Signature-based IP core protection approaches such as watermarking, fingerprinting, etc.

(discussed in chapter 4, 5) are useful for passive attacks such as ownership abuse, IP piracy,

IP infringement. However, these defense mechanisms are inapplicable to active attacks

such as reverse engineering. RE of an IP core is a process of identifying its design, structure

and functionality [45]. Using RE one can identify the device technology (Intel transistors,

2012), extract the gate-level netlist [61], and infer the IP functionality [23]. Therefore,

using RE an attacker can identify the functionality of an IP core, he/she can launch IP

piracy/attacks, insert malicious Trojan logic into an IP core, etc. Therefore, it is extremely

crucial to secure an IP core from RE attack.

Structural obfuscation obscures the functionality of a DSP IP core by transforming its

architecture into a non-obvious one while preserving the correct functionality. Thus, en-

hancing the RE complexity for an adversary. The primary challenge in structural obfusca-

tion is maintaining the exact functionality of the design while transforming it. In summary,

structural obfuscation is a process of converting a design D into its equivalent form O(D),

such that O(D) is unintelligible to an adversary targeting to recover D from O(D).

This chapter presents a novel low-cost, multi-stage structural obfuscation methodology

to enhance the RE complexity for an attacker (shown in Fig.6.1). In the proposed approach,

a DSP kernel is obscured by its design through several successive high-level transformation

69

Proposed Multi-stage
structural obfuscation

PSO-based DSE
process

Structurally obfuscated
low-cost DSP IP core

Redundant Operation Elimination

Tree Height Transformation Loop Invariant Code Motion

Logic Transformation
Loop

Unrolling

Multi-stage transformation techniques

Module
library

User
constraints

Terminating
criteria

Control Parameter e.g.
Swarm size, # iterations,

Inertia weight,
Acceleration coefficient

Input for PSO-DSE

DSP
application

Input for Multi-stage
structural obfuscation

Input blocks

Obfuscated
design

Output block

Figure 6.1: Proposed Symmetrical IP core Protection during high level synthesis.

techniques. These transformations increase the complexity for an adversary to discover its

original functionality. In the proposed approach, total five high-level transformation ap-

proaches are used to obfuscate both loop and non-loop based DSP kernel. They are Redun-

dant Operation Elimination (ROE), Logic Transformation (LT), Tree Height Transforma-

tion (THT), Loop Unrolling (LU) and Loop Invariant Code Motion (LICM). Additionally,

this approach performs optimization to select a low-cost design architecture that meets de-

sign objectives like execution latency, hardware area and all-inclusive design cost. Thus, a

low-cost, multi-stage transformation based structural obfuscation with stronger robustness

is proposed here. This is the first work in IP core protection of CE systems that provides

low-cost, multi-stage structural obfuscation to secure an IP core against RE attack.

The chapter is organized as follows: Section 6.1 discusses the problem formulation,

threat model and the target platform of the proposed approach; Section 6.2 explains the pro-

posed methodology; Section 6.3 explains the PSO-DSE framework to explore the low-cost

design solution for the obfuscated design; Section 6.4 demonstrates the proposed multi-

stage structural obfuscation approach through an example; finally, the summary of this

chapter is presented in Section 6.5. (NOTE: All the abbreviations and taxonomy are listed

in ‘Acronyms’ and ‘Nomenclature’ section respectively.)

70

6.1 Formulation, Threat Model and Evaluation Models

This section presents the problem formulation, threat model and evaluation models of the

proposed approach.

6.1.1 Problem formulation

For a given loop-based DSP core in the form of a CDFG, explore the design space to de-

termine an optimal structurally obfuscated design solution. The generated solution should

minimize the overall design cost while satisfying conflicting user-given constraints. The

problem can be formulated as follows:

Minimize: Obfuscated design cost (AOBF
T , LOBF

T) for optimal

(Xi) = {N(R1), N(R2), ..., N(RD), UF}.

Subject to: AOBF
T ≤ Acons and LOBF

T ≤ Lcons and provide resiliency against RE attack.

6.1.2 Threat model

The proposed work enhances the RE complexity for an adversary during RTL synthesis by

obscuring the original structure of an IP core design. Thus, provides defense against threats

resulting due to RE such as IP piracy, IP infringement (counterfeit) and Trojan insertion.

6.1.3 Evaluation models

Area model

Total area AOBF
T consumed by a structurally obfuscated design can be expressed as:

AOBF
T =

m∑
i=1

(
A(Ri) ∗N(Ri)

)
+ A(mux) ∗N(mux)

+ A(buffers) ∗N(buffers) (6.1)

Total design area is evaluated by adding total area of hardware resource units (such as adder,

subtractor, multiplier etc.), interconnecting units (such as multiplexer and de-multiplexer)

71

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

and storage units (such as register, delay elements). The total design area is assessed with

respect to the module library of 15 nm NanGate-based technology [37].

Latency model

Total execution latency LOBF
T of the obfuscated design can be expressed as follows:

LOBF
T =

(
TOBF
body ∗

[I

UF

]floor)
︸ ︷︷ ︸

for unrolled loop

+
(
I mod UF

)
∗ TOBF

first︸ ︷︷ ︸
for sequential loop

. (6.2)

Fitness function

The fitness of each obfuscated design solution is calculated (considering hardware area

consumption and execution latency) based on the following function:

Cf (Xi) = φ1
AOBF

T − Acons

AOBF
max

+ φ2
LOBF
T − Lcons

LOBF
max

, (6.3)

(NOTE: During the experiment, both the weightage factor φ1 and φ2 are kept 0.5 to provide

equal preference to both the design parameters. However, based on the user’s priority the

weightage on silicon area and latency can be modified by tuning the value of weightage

factors. The value of each weightage factor lie between 0 to 1.)

6.2 Proposed Methodology

As mentioned earlier, the proposed approach leverages five high-level transformation tech-

niques i.e. ROE, LT, THT, LU, and LICM to obfuscate the input DSP application during

algorithmic synthesis. It takes the input of an application in the form of a loop-based CDFG

or non-loop based DFG and applies each of the aforementioned HLTs to obfuscate it. The

flow diagram of the proposed approach is shown in Fig. 6.2. To obtain higher robustness

during obfuscation, all the aforementioned HLT techniques have performed in consecutive

stages as mentioned in Fig. 6.2. An example of non-obfuscated original CDFG shown in

Fig. 6.3 is used for explanation. The design is scheduled based on 3 adders and 4 multi-

72

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Start

Perform preprocessing of unrolling factor

Unroll the CDFG based on unrolling factor

CDFG / DFG

Containing loop ?

Apply LICM based HLT on unrolled DFG

Apply redundant operation elimination based HLT

Redundant

operation?

Logic transformation

possible?

Apply logic transformation based HLT technique

Tree height

transformation possible?

Apply tree height transformation based HLT technique

Final obfuscated design

Containing loop

invariant code ?

Stop

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Figure 6.2: Flowchart of the proposed multi-stage structural obfuscation approach

pliers which is provided as user input. The scheduled CDFG of the same non-obfuscated

design is shown in Fig. 6.4. The corresponding equivalent DSP circuit is shown in Fig.

6.5. As evidence from the design, it employs 6 4:1 switches, 4 2:1 switches, 10 input reg-

isters, 1 output register and 8 delay elements. The detailed process of each HLT technique

is explained with an example in the following subsections.

73

X
(1)

3 u

X
(2)

2 v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

+ +

+ +

X X X X

+ +

+

+

+

+

(6) (7)

(8) (9)

(10) (11) (12) (13)

(14) (15)

(16)

(17)

(18)

(19)

y

Figure 6.3: Original non-obfuscated loop-based CDFG

X
(1)

3 u

X
(2)

2 v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

+ +

+ +

X X X X

+ +

+

+

+

+

(6) (7)

(8) (9)

(10) (11) (12) (13)

(14) (15)

(16)

(17)

(18)

(19)

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

M1 M2

M1 M2 M3 M4

A1 A2
A3

A1 A2

A2 A1

A1 A2

A3

y

A3

A3

A3

Figure 6.4: Original non-obfuscated CDFG scheduled based on 3(+), and 4(*)

74

A1 A2 A3

M1 M2 M3 M4

Regu

3 2

Regv

RegA[i]

RegA[i+1]

RegB[i-1]

RegB[i+1]

RegC[i]

RegC[i+1]

a1
1

X X X X

+ + +

a1
2

a1

3

a1
4

a2
1

a2
2

a2

3

a2
4

a3
1

a3
2

a3

3

a3
4

a3

5

Regy
D

D
D

D
D

D

D

D

m
1

1

m
1

2

m
2

2

m
2

1

Figure 6.5: Equivalent circuit of non-obfuscated scheduled CDFG

6.2.1 Redundant operation elimination process

It is an HLT technique which is applied to obfuscate a DSP core by removing duplicate

nodes from its equivalent graph to form a new functionally equivalent RTL netlist. A node

in the input graph is identified as a redundant node if there exists another node which has

exactly same parents/inputs and same operation type. If a pair of such nodes is found

then the nodes with higher node number are removed from the graph. To preserve the

correct functionality necessary adjustments are performed in the graph. The algorithm of

the proposed ROE is shown in Fig. 6.6. Finally, ROE based structurally obfuscated graph

is produced as output which is fed to the next obfuscation stage. For example, in the non-

obfuscated design shown in Fig. 6.3, the redundant operations are operation no. 9, 11,

12, 13, 15 which are removed as shown in Fig. 6.7 to structurally obscure the design.

However, to preserve the correctness of the application, the inputs of operation no. 14 and

16 are taken from operation no. 10 and 14 respectively (Fig. 6.7). The eliminated nodes

and dependencies are marked with dotted circle and line respectively. However, as both the

design is functionally equivalent thereby correctness of the application is preserved.

75

Input – DFG of the application ‘A[]’ (list of nodes)

Output – ROE based obfuscated DFG ‘A[]’

1. Begin

 // Identifying redundant nodes//

2. int i , j

3. For i = 0 to sizeof(A[]) Do

3.1 For j = i+1 to sizeof(A[]) Do

3.1.1 IF(A[i]==A[j]) Then

3.1.2 Assign child of A[j] to child of A[i]

3.1.3 Remove A[j]

3.1.4 End IF

3.2 End For

4. End For

5. Perform equivalence checking

6. End

Figure 6.6: Algorithm of the proposed ROE based obfuscation

X
(1)

3 u

X
(2)

2 v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

+ +

+

X

+

+

+

+

+

(6) (7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

+

X X X

(9)

(12)

+
(15)

(11) (13)

y

Figure 6.7: Redundant operation elimination based obfuscated CDFG

6.2.2 Logic transformation process

It is another HLT technique which is applied to obfuscate the DSP core by generating a dif-

ferent logically equivalent function to form a new functionally equivalent RTL netlist. In

76

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Input – DFG of the application ‘A[]’ (list of nodes)

Output – LT based obfuscated DFG ‘A[]’

1. Begin

 // Identifying equivalent sub-function//

2. int a , b, i

3. For i = 0 to sizeof(A[]) Do

3.1 a = parent1 of node A[i]

3.2 b = parent2 of node A[i]

3.3 Replace f(a,b) with f’(a’,b’) such that both are functionally
 equivalent

4. End For

5. Perform equivalence checking

6. End

Figure 6.8: Algorithm of the proposed LE based obfuscation

the context of DFG/CDFG of an application, LT is applied to obscure the input DFG/CDFG

by modifying the graph with different logically equivalent function. It alters the nodes of

the input graph such that the graph looks different than the original still satisfies the func-

tionality correctly. The algorithm of the proposed LE is shown in Fig. 6.8. Finally, LT

based structurally obfuscated graph is produced as output which is fed to the next obfus-

cation stage. For example, Fig. 6.9 represents the LT-based obfuscated form of the input

graph (Fig. 6.7); newly added/modified nodes are marked with green colored node number

and the modified dependencies are marked with the green dotted line. However, as both the

design is functionally equivalent thereby correctness of the application is preserved.

6.2.3 Tree height transformation process

It is another HLT technique which is applied to obfuscate the DSP core by modifying the

height of its equivalent graph by introducing parallelism in sub-computations to form a new

functionally equivalent RTL netlist. It divides the critical path dependency into temporary

sub-computations and evaluates in parallel, thereby generates structurally dissimilar yet

functionally equivalent graph. The algorithm of the proposed THT is shown in Fig. 6.10.

Finally, THT based structurally obfuscated graph is produced as output which is fed to

the next obfuscation stage. For example, Fig. 6.11 represents the THT-based obfuscated

form of the input graph (Fig. 6.9). It reduces the height of the obfuscated graph from 10 to

8 compared to the original design. The computation of node 17 and 18 in the obfuscated

77

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

+
(1)

u u

+
(2)

v v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

X

+

X

X

X

+

+

+

(6)

(7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

X
+

u

2

2

2

(20) 2

y

Figure 6.9: Logic transformation based obfuscated CDFG

Input – DFG of the application ‘A[]’ (list of nodes)

Output – THT based obfuscated DFG ‘A[]’

1. Begin

 // Identifying path dependency//

2. List Path [] = Calculate the list of path of A[]

3. For int i = 0 to sizeof(Path[]) Do

3.1 IF(Path[i] have sequentially executed associative
 operation) Then

3.2 Divide the path dependency into sub-computations and
 evaluate in parallel

3.3 End IF

4. End For

5. Perform equivalence checking

6. End

Figure 6.10: Algorithm of the proposed THT based obfuscation

design is executed earlier compare to the input design. The dependencies of the obfuscated

graph are adjusted to maintain the correct functionality. The modified dependencies are

marked with red lines. However, as both the design is functionally equivalent thereby

correctness of the application is preserved.

78

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

+
(1)

u u

+
(2)

v v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

X

+

X

X

X

(6)

(7)

(8)

(10)

(14)

(16)

X
+

u

2

2

2

(20)
2

+
(19)

+
(17)

+
(18)

y

Figure 6.11: Tree height transformation based obfuscated CDFG

Input – CDFG of the application ‘A[]’ (list of nodes) and UF

Output – LU based obfuscated DFG ‘A[]’

1. Begin

 // Identifying loop unrolling factor//

2. For int i = 0 to UF Do

2.1 Repeat the loop body of A[i]

2.2 Assign the corresponding inputs of the repeat operations

3. End For

4. Perform equivalence checking

5. End

Figure 6.12: Algorithm of the proposed LU based obfuscation

6.2.4 Loop unrolling process

It is another HLT technique which is applied to obfuscate the loop-based DSP application

by unwinding the loop from its equivalent graph and executes the same calculation mul-

tiple times to form a new functionally equivalent RTL netlist. Thus generates structurally

dissimilar yet functionally equivalent graph. The algorithm of the proposed LU is shown

in Fig. 6.12.

Finally, LU based structurally obfuscated graph is produced as output which is fed to

the next obfuscation stage. For example, Fig. 6.13 represents the LU-based obfuscated

79

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

+
(1)

u u

+
(2)

v v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+
(5)

C[i+1] C[i]

X X

+

X

X

X

+

+

+

(6)
(7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

2

2

2
2

+

+
(20)

u u

+
(21)

v v

+
(22)

A[i+1]
A[i+2]

+
(23)

B[i]

B[i+2]

+
(24)

C[i+2] C[i+1]

X X

+

X

X

X

+

+

+

(25) (26)

(27)

(29)

(33)

(35)

(36)

(37)

(38)

2

2

2
2

+

(39)

(40)

u

u

y1

y2

Figure 6.13: Loop unrolling based obfuscated CDFG

Input – DFG of the application ‘A[]’ (list of nodes)

Output – THT based obfuscated DFG ‘A[]’

1. Begin

 // Identifying path dependency//

2. List Path [] = Calculate the list of path of A[]

3. For int i = 0 to sizeof(Path[]) Do

3.1 IF(Path[i] have sequentially executed associative
 operation) Then

3.2 Divide the path dependency into sub-computations and
 evaluate in parallel

3.3 End IF

4. End For

5. Perform equivalence checking

6. End

Figure 6.14: Algorithm of the proposed LICM based obfuscation

form of the input graph (Fig. 6.11) based on UF = 2. As the execution latency of a design

is directly dependent on the UF, therefore, in the proposed approach the optimal UF is

explored through PSO driven DSE process. It minimizes the execution time as well as

concurrently structurally obscure the IP design. However, as both the design is functionally

equivalent thereby correctness of the application is preserved.

80

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

+ (1)

u u

+ (2)

v v

+ (3)

A[i] A[i+1]

+ (4)

B[i-1] B[i+1]

+ (5)

C[i+1] C[i]

X
X

+

X

X

X

+

+

+

(6)

(7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

+ (22)

A[i+1] A[i+2]

+ (23)

B[i] B[i+2]

+ (24)

C[i+2] C[i+1]

+

+

+

(36)

(37)

(38)

+

u

(39)

2

2

2

2

y1 y2

Figure 6.15: Loop invariant code motion based obfuscated CDFG

6.2.5 Loop invariant code motion process

It is another HLT technique which is applied to obfuscate the loop-based DSP application

by moving the loop independent nodes out of the loop body from its equivalent graph to

form a new functionally equivalent RTL netlist. More specifically, it moves out the nodes

of the loop which would not make any differences if it executes inside the loop iteratively

or outside the loop once. Thereby, it speeds up the execution process while maintaining the

correct functionality of the graph. Thus, generates structurally dissimilar yet functionally

equivalent graph. The algorithm of the proposed LICM is shown in Fig. 6.14.

Finally, LICM based structurally obfuscated graph is produced as output. For example,

Fig. 6.15 represents the LICM-based obfuscated form of the input graph (Fig. 6.13) based

on UF = 2. The dotted box shows the nodes which do not depend on the loop. As evidence

from the Fig. 6.15, for UF = 2 loop invariant operations are executed once while loop

depended operations are executed two times. However, as both the design is functionally

equivalent thereby correctness of the application is preserved.

(NOTE: The failure of the last step of each algorithm i.e. Perform Equivalence checking

indicates the corresponding transformation algorithm is unable to preserve the functional-

81

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

ity of the input DSP IP core. Therefore, the transformations due to this algorithm will be

undone. In other words, the design of the DSP IP core will be roll backed to its previous

version (before applying the algorithm).)

6.3 Exploring PSO-driven Low-Cost Structural Obfusca-

tion

In the proposed approach low-cost obfuscated IP design is achieved through particle swarm

optimization driven design space exploration. It accepts the obfuscated design (explained

in Section 6.2) of the application in the form of DFG/CDFG, module library, terminating

criteria of PSO, control parameters (like inertia weight, social factor, cognitive factor etc.)

and user given area-delay constraints as inputs and generates a low-cost optimized obfus-

cated IP design as output. The detailed PSO-DSE process shown in Fig. 6.16, is explained

in the following subsections.

6.3.1 Overview of PSO-DSE

PSO is a population-based stochastic optimization methodology where every single solu-

tion is known as a particle. The fitness of each particle is evaluated based on the fitness

function to be optimized. The velocity of each particle directs the movement of the particle.

The particles move through the search space by following the current global best gbest and

its own best location lbest. After finding a better gbest or lbest the ith particle updates its

velocity and position.

6.3.2 Initialization of particle

In the PSO-DSE process, the particle position (Xi) be expressed as follows:

Xi = {N(R1), N(R2), ..N(RD), UF} (6.4)

82

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Module

Library

Obfuscated

CDFG/DFG

User

Constraints

Terminating

Criteria

Control

Parameters

Input Block

Start

Initialize particle

Particle Encoding Xi = (Rn, U)

Construct

SDFG based

on Xi

Determine Global and Local best particle position

Calculate New Particle Position (Xi
+)

Fy
i = Compute Fitness

Update local best and particle position

Update Global best particle position

 Fx
i < Fy

i

?
Update Xi

+

 Repeat for total

population?

Final low cost design solution

Terminating

condition?

Stop

Velocity

calculation block

Yes

Yes

Yes

No

No

No

PSO DSE

Figure 6.16: PSO driven DSE process for low-cost obfuscated design

The particles are initialized based on uniform distribution over the search space and can be

represented as follows [53]:

X1 = {min(R1),min(R2), ..min(RD),min(UF)} (6.5)

X2 = {max(R1),max(R2), ..max(RD),max(UF)} (6.6)

83

X3 =
{(min(R1) +max(R1))

2
, ..

(min(RD) +max(RD))

2
,

(min(UF) +max(UF))

2

}
(6.7)

Where, the first three particles are initialized as mentioned above and the rest of the particles

are initialized using the following equation:

Xn =
{(min(R1) +max(R1))

2
± α, ..

(min(RD) +max(RD))

2
± α,

(min(UF) +max(UF))

2
± α

}
(6.8)

Where, min(R1) denotes minimum number of resource of resource type R1. Similarly,

max(R1) denotes maximum number of resource of resource type R1, α denotes a random

integer between minimum and maximum number of resource in dth dimension of the design

space.

6.3.3 Movement of particle using velocity

In the PSO-DSE process, each dimension of a particle velocity is updated based on the

following equation:

V +
di

= ωVdi + b1r1[Rdlbi
−Rdi] + b2r2[Rdgb −Rdi] (6.9)

Where, Vdi is the velocity of ith particle in the dth dimension, V +
di

is the updated velocity. ω

is the inertia weight, b1, b2 are acceleration coefficients. r1 , r2 are random numbers. Rdlbi

denotes local best of ith particle in the dth dimension. Similarly, Rdgb denotes global best

of the dth dimension. Rdi is the number of resources of ith particle in dth dimension. The

updated velocity is subsequently utilized to calculate new position of the particle swarm in

the design space using the following equation:

R+
di

= Rdi + V +
di

(6.10)

84

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Where, Rdi and R+
di

represents the current and updated particle positions.

6.3.4 Terminating criteria of PSO

The PSO based DSE process will terminate if any of two condition arises, a) reached the

maximum number of iteration (Imax), b) no improvement is observed in global best for δ

number of iteration. In the proposed approach the value of Imax and δ is taken as 100 and

10 respectively.

6.4 Motivational Example

This section gives a demonstration of the proposed multi-stage structural obfuscation mech-

anism through an example. For the ease of explanation of the same non-obfuscated CDFG

shown in Fig. 6.3 is taken as input. In the shown graph adders and multipliers are denoted

through green and blue nodes respectively. The integer value on the side of each node des-

ignates the respective operation number. As shown in Fig. 6.3, all the primary inputs are

shown in the purple boxes, where, three arrays i.e. A, B and C with two constant values

i.e., u, and v are available. The arrays are loop dependent variables and the constant values

are loop independent variables. The final output is stored in register ‘y’, shown in an or-

ange box. The total number of node in the graph is 19 before applying any transformation

technique, it consists of total 8 iterations and the height of the graph is 9. After apply-

ing multiple successive transformation techniques on the input CDFG, the final multi-stage

structurally obfuscated CDFG is shown in Fig. 6.17.

Due to ROE, node number 9, 11, 12, 13, 15 is removed; due to LT, node number 6,

7, 14, 16, and 39 is altered; due to THT, the height of the graph is decreased from 9 to 8;

due to LU for UF = 2, the CDFG is unrolled two times; and finally due to LICM, the loop

invariant nodes are kept outside the loop. Therefore, the total number of nodes present in

the graph is increased from 19 to 21 in the final obfuscated CDFG.

This multi-stage structurally obfuscated CDFG is further fed as input with the module

library and PSO control parameters to explore a low-cost design solution through PSO-DSE

framework (refer to Fig. 6.16). For the particular application, it is observed that the optimal

85

+ (1)

u u

+ (2)

v v

+ (3)

A[i] A[i+1]

+ (4)

B[i-1] B[i+1]

+ (5)

C[i+1] C[i]

X
X

+

X

X

X

+

+

+

(6)

(7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

+ (22)

A[i+1] A[i+2]

+ (23)

B[i] B[i+2]

+ (24)

C[i+2] C[i+1]

+

+

+

(36)

(37)

(38)

+

u

(39)

2

2

2

2

y1 y2

Figure 6.17: Obfuscated CDFG after employing multi-stage HLTs

+ (1)

u u

+ (2)

v v

+
(3)

A[i] A[i+1]

+
(4)

B[i-1] B[i+1]

+ (5)

C[i+1] C[i]

X

X

+

X

X

X

+

+

+

(6)

(7)

(8)

(10)

(14)

(16)

(17)

(18)

(19)

+ (22)

A[i+1] A[i+2]

+ (23)

B[i] B[i+2]

+ (24)

C[i+2] C[i+1]

+

+

+

(36)

(37)

(38)

+

u

(39)

2

2

2

2

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

A1 A2 A3

A1
A2 A3

A1 A2
A3

A1 A2 A3

A1
A3

A2

A3

y1 y2

M1

M1

M1

M1

M1

Figure 6.18: Low-cost obfuscated IP design scheduled with 3(+) and 1(*)

design solution is three adders and one multiplier. Therefore, the multi-stage structurally

obfuscated CDFG is scheduled based on aforementioned resources. Fig. 6.18 represents

86

A1 A2 A3

2

a1
1

a1

2

a1
3

a1

4

a1
5

a2
1

a2

2

a2
3

a2

4

a2
5

a3
1

a3

2

a3
3

a3

4

a3
5

a3

6

m
1

1

m
1

2

m
1

3

m
1

4

m
1

5

Regv

RegB[i-1]

RegA[i+1]

R
egB

[i+1
]

R
egA

[i+2
] Reg_A[i]

RegA[i+1]

R
egC

[i+1
]

Reg_C[i]

Reg_B[i]

R
egB

[i+2
]

R
egC

[i+2
]

Reg_C[i+1]

D D
D

D

D

D
D

D
D

D

D

D

D

Regy1
Regy2

M1

Regu

Regu Regu R
egv

+ + +

x

Figure 6.19: Equivalent circuit of multi-stage structurally obfuscated IP design

the final low-cost, structurally obscured scheduled CDFG of the input application. The

equivalent obfuscated circuit of the application is shown in Fig. 6.19. It employs 8 8:1

muxes, 18 input registers, 2 output register and 13 delay element. The changes due to

proposed multi-stage structural obfuscation for this application (marked as red circle in

Fig. 6.19) at register-transfer/module level and gate level are reported in Table 10.18.

Note: The corresponding experimental results of the proposed methodology is ex-

plained in Chapter 10 Section 10.4.

6.5 Summary

The chapter presented a novel solution to the hardware security of RE on DSP based IP

cores. The work presented a solution for protecting a DSP IP core against RE attacks us-

ing multi-stage structural obfuscation. The work proposes several DSP circuit obfuscation

techniques by leveraging high-level transformations. This is the first approach in the litera-

ture that provides low-cost, multi-stage structural obfuscation to enhance the complexity of

87

RE attack for IP cores used in consumer electronics designs. Several novelties integrate the

framework of the proposed approach: (a) multiple HLT-based obfuscation methodology ap-

plied successively to hinder RE (b) achieves low-cost obfuscated design through PSO-DSE

framework (c) capable of handling both loop and non-loop based applications (d) automate

the complete symmetrical protection process during in-synthesis steps of HLS (no pre or

post-synthesis steps are required). Finally, experimental results of the proposed approach

yielded an enhancement on obfuscation of 22 % and reduction in obfuscated design cost of

55 % compared to a single-stage structural obfuscation approach.

88

Chapter 7

SAT and Removal Attack Resilient

Functional Obfuscation to Secure IP

Core of CE Systems

In the previous chapter, a novel structural obfuscation approach is proposed to thwart RE

attack for DSP IP cores used in CE systems. Hardware obfuscation can also be achieved

through functional obfuscation. Functional obfuscation (also known as logic encryption)

inserts additional logic components known as key-components into the design to lock its

functionality and implementation. These additional logic components accept key bits as

input and based on these key value it produces the output. Therefore, applying the cor-

rect key combination will produce the correct result while applying the wrong keys led to

exhibit an incorrect functionality of the design. Thus functional obfuscation thwarts RE

attack. However, functional obfuscation is prone to other attacks like sensitization attack,

removal attack, SAT attack, IP piracy and Trojan attack.

The functional obfuscation approach for DSP IP core available in the literature is un-

able to handle all the aforementioned attacks [25]. More specifically, this approach is

susceptible to removal and SAT attack. This chapter presents a novel removal and SAT

attack resilient block, which is integrated with [25] to enhance the robustness of the exist-

ing functional obfuscation approach (shown in Fig.7.1). As shown in the figure, the green

block represents the functionally obfuscated circuit which accepts three inputs viz. primary

89

SAT/removal attack

resilient circuit Locked netlist

K1

K1’

M

Key inputs

Primary inputs

K2

Figure 7.1: Overview of the proposed approach

inputs (M), encrypted key (K1’) and direct non-encrypted key (K2). The blue block repre-

sents the SAT/removal attack resilient circuit which accepts K1 as input and generates K1’

as encrypted output.

The chapter is organized as follows: Section 7.1 discusses the possible attacks on func-

tional obfuscation and the threat model of the proposed approach; Section 7.2 explains the

proposed approach; and the summary of this chapter is presented in Section 7.3. (NOTE:

All the abbreviations and their corresponding full form are listed in ‘Acronyms’ section.)

7.1 Possible Attacks and Threat Model

This section discusses the functional obfuscation approach for DSP IP core available in

the literature [25], the attacks which can be as well as cannot be mitigated through this

approach and thus derives the threat model of the proposed approach.

7.1.1 Possible attacks

Functional obfuscation generates a locked netlist by inserting key components or key-gates

in the circuit. However, incorrect placement of key components may invite several attacks.

This sub-section discusses possible attacks scenarios of a locked netlist.

Isolated key-gates based key-sensitization attack

A key-gate in a locked netlist is considered as isolated if there is no path between that

key-gate and any other key-gates. An attacker can easily sensitize the key value of an

90

K1

K2

I1

I2
I3

I4
I5

I6

O1

O2

(a)

K1

K2

I1

I2

I3

O1

(b)

G O1

K1

I1

I2

K2

I3

I4

I5

I6

(c)

Figure 7.2: Corresponding to the sensitization attack: (a) Isolated key gates K1 and K2, (b)
Run of key gates K1 and K2, (c) Concurrently mutable key gates K1 and K2

isolated key-gate. For example in Fig. 7.2(a), there is no path between key-gate K1 and

K2. Therefore, K1 and K2 are isolated key-gates. An attacker can sensitize the value of K1

as 0 to the output 1 (O1) by applying ‘100XXX’ i/p pattern.

Run of key-gates based key-sensitization attack

A set of key-gates in a locked netlist is considered as run of key-gates if they are connected

in a back-to-back fashion. Few run of key-gate structures are vulnerable for locked netlist

as it reduces the effort of an attacker to identify the correct key by increasing the possible

correct key combinations. The reason is, some run of key-gate structure may be replaceable

with a single key-gate, thus, diminishing security strength. For example in Fig. 7.2(b), K1

and K2 are connected back-to-back, thus forming a run of key-gates. In this can both ‘01’

and ‘10’ are the correct key value. Moreover, K1 and K2 can be replaced by a single

key-gate (XOR) with ‘1’ as the correct key value.

Mutable key-gates based key-sensitization attack

If two or more key-gates converges but have no common path between them, sensitiza-

tion may still occur. Therefore, if key-gates K1 and K2 converge to another gate so that a

specific key-bit can be obtained by muting the other, then both key-gates are called concur-

rently mutable key-gates. In this type of scenario, an attacker can easily trace the key value

K1 by muting K2. For example in Fig. 7.2(c), K1 and K2 converge at the gate G. The value

91

of K1 can be sensitized to the O1 by muting the effect of K2. Applying I6=0 in the input

pattern will mute K2. Similarly, The value of K2 can be sensitized to the O1 by muting the

effect of K1. Applying I1=1 in the input pattern will mute K1.

IP piracy and Trojan attack

If somehow the correct key combination of a locked netlist is identified by an attacker,

he/she can easily discover the correct functionality of that netlist. This may enhance the

possibility of IP piracy/counterfeit and Trojan insertion attacks. An attacker can either

resell/redistribute the IP core illegally to a make profit or can insert a Trojan logic at safe

places to introduce malfunctioning of an IP core.

SAT attack

SAT attack model is as follows:

Objective: Identify the correct key value of the locked netlist.

Requirements: (i) The locked netlist, (ii) an activated functional IC bought from the

open market.

Process: The process of launching SAT attack is as follows:

1. The SAT attack algorithm formulates a CNF of the circuit.

2. The SAT solver generates distinguishing input patterns (DIP).

3. Feed the DIP to the activated functional IC and observed the correct output.

4. This distinguishing input/output pair is used on the locked netlist to eliminate the

wrong keys.

5. Continue this process until no wrong key is found.

Removal attack

Removal attack model is as follows:

Objective: Remove all the key component from the locked netlist.

92

IP core Locking

blocks (8-bit

key/data bit)

DSP core as

CDFG
Module library

PSO control

parameters

Input Blocks

PSO-DSE ILB-based logic obfuscation

Generate a random variable µ

Generate gate level structure (post high-level

synthesis (HLS)) based on a particle position

Insert ILBs at the o/p of each Functional unit based

on µ and AES

IP functional locking
Initialize the particle swarm

Evaluate cost

Update local best and global best

Update velocity and swarm position

PSO-DSE

Figure 7.3: ILB based functional obfuscation approach

Requirements: (i) Template of the ILBs.

Process: The process of launching SAT attack is as follows:

1. Based on the available template search the ILBs.

2. Remove the ILBs from the locked netlist.

3. Generate an unlocked circuit.

7.1.2 ILB-based functional obfuscation

This section explains the process of generating the locked netlist (shown in Fig. 7.1)

through function obfuscation. Authors in [25] presented a low-cost functional obfuscation

methodology for DSP core, which consists of two major phases, i.e. (i) designing function-

ally locked DSP core, (ii) exploring low-cost design configuration through the PSO-DSE

process (shown in Fig. 7.3). Both these phases perform iteratively until a globally optimal

design configuration is explored.

Based on this design configuration, a gate-level datapath structure (post-processing

through standard HLS framework) of the input CDFG application is generated, which is

then locked using ILB. This generates a functionally obfuscated design of the input DSP

93

Figure 7.4: Sample ILB structures

core. Then the total power and delay of the locked design are calculated to evaluate the de-

sign cost through a fitness function. Subsequently, particle positions are updated to explore

a new fitter particle, and the complete process is repeated until the termination condition

is met. Thus the final particle position after meeting the terminating condition is used to

generate a low-cost obfuscated design of a DSP core. Therefore, the final design architec-

ture not only optimizes the total power, delay and implementation cost but also minimizes

the total gate count of the complete locked netlist, which includes the total number of func-

tional units, registers/latches, muxes/demuxes, and ILBs.

Overview of ILBs

ILBs are key components inserted into a non-obfuscated design to generate a functionally

obfuscated design. Each ILB consist of 8-bit key value inserted into each bit of output

data. ILBs are designed using the different combination of AND, NAND, NOT, XOR and

XNOR gates. However, structures of ILB depend on the key values. Innumerable different

structures of ILBs with the same area can be possible. Each of these ILBs generates correct

output if a correct key value is provided. Different ILB structures are shown in Fig 7.4.

94

Features of ILBs

The ILBs are inserted in each output data bit of the gate structure of DSP IP core to gen-

erate a locked netlist. These ILB structures are designed mainly to avoid key-sensitization

attacks, IP piracy and Trojan attack. Therefore, multiple features are considered while

designing the ILBs to avoid any possible scenario of the aforementioned attacks.

Multi-pairwise security: In [25], all the ILBs have 8 key-bits and all are multi-pairwise

secure. In other words, to sensitize any key-bit of an ILB to the output, an attacker has to

know or control the correct value of other 7 key-bits. Therefore, to identify the correct

value of other 7 key-bits, an attacker has to apply brute-force attack.

Prohibiting key-gate isolation: In [25], different ILBs structures (shown in Fig. 7.4)

consists of 8 intertwined dependent on each other key-gates. This ensures no isolated key-

gate is present in the ILBs. Thus, prohibiting isolated key-gate from the locked netlist.

Protection against run of key-gates: In [25], the key-gates of ILBs are interlaced

among each other, therefore, replacing all key-gates (8 input key-gates) with one single

key-gate is highly difficult.

Non-mutable convergent key-gates: In [25], all the ILBs consist of 8 non-mutable

key-bits, therefore, to sensitize one key-bit to the output remaining 7 key-bits need to be

muted, which is a complicated process.

Example: generating a locked netlist through ILBs

A gate level structure of FIR benchmark, designed using 1 adder and 1 multiplier is func-

tionally obfuscated through ILBs. The complete gate structure of the functionally obfus-

cated design is shown in Fig. 7.5 . While inserting the ILBs, ILB1 (shown in Fig. 7.2(a))

is inserted for the first two output data bit of adder, then ILB2 (shown in Fig. 7.2(b)) is

inserted for the next two output data bit and so on until all the output data bit of adder and

multiplier are locked through ILBs. The ILB based functional obfuscation approach [25] is

vulnerable to removal and SAT attack discussed earlier. The proposed approach presents a

novel removal and SAT attack resilient block, which is integrated with [25] to enhance its

robustness. The threat model of the proposed approach is presented below.

95

Figure 7.5: ILB based functionally obfuscated FIR benchmark

96

…
…

Custom AES

Architecture

(in synthesized form)

Functionally locked netlist

(comprising of ILBs) in

synthesized form of DSP IP

cores

K1

K2

Kx

Fixed secret key of AES Primary inputs

Kr

Kx+1

…
…

…

…

Primary

output

K1’

K2’

Kx’

Obfuscated

netlist

Figure 7.6: Countermeasure of SAT-attack based on custom AES module

7.1.3 Threat model

The proposed approach aims to enhance the resiliency of ILB-based functional obfuscation

approach by mitigating SAT and removal attack. Thus, enhances the complexity of reverse

engineering of an IP netlist structure, for an attacker present anywhere in the design flow.

In this threat model, it is assumed that an adversary may present in an untrusted foundry.

7.2 Proposed Methodology

The proposed approach integrates a custom light-weight AES IP module with the ILB-

based locked netlist of a DSP IP core to thwart SAT and removal attack (shown in Fig.

7.6). To achieve this a custom lightweight AES module with a fixed secret key is designed,

which is not publicly available. This module encrypt a subset (K1,..Kx) of the key-bits and

generates encrypted key-bits (K1’,..Kx’). The encrypted key-bits along with the rest of the

key-bits (Kx+1,..Kr) and primary inputs are fed into the functionally obfuscated DSP IP

core. This section discusses the custom made lightweight AES module and how it is used

to thwart SAT and removal attack.

7.2.1 Designing a light-weight AES module

AES algorithm has three different variations of key sizes i.e., 128 bits or 192 bits or 256

bits. The input data size is 128 bits and the encrypted output data is also 128 bits. The

input data is called the plaintext and the encrypted output data is called ciphertext. The

97

1

Figure 7.7: Block diagram of the designed lightweight custom AES module

designed AES module has a key size of 128 bits. The core structure of the AES module

comprises of the following components: (i) byte substitution layer (ii) diffusion layer (iii)

key addition layer (iv) key generator. Fig. 7.7 shows the designed AES module, where,

A0 to A15 indicates 128 bit input data, B0 to B15 indicates 128 bit data after performing

substitution, C0 to C15 indicates data after performing diffusion, K0 to K15 indicates 128

bits secret key of round 0 and OUT0 to OUT15 indicates 128 bits output after 1st round.

Fig. 7.8 shows the design structure of the key generator, where, K10 to K115 indicates 128

bits key of round 1. This custom AES module is implemented using Altera Quartus 13.0

version in Cyclone II FPGA [14]. It is observed that it is comprising of 429 logic elements

only which is <1% of the available resources of that device.

7.2.2 Mitigating SAT attack

The SAT solver available in the literature [58] is not scalable for multiplier circuit. Because,

for a small size 3-bit multiplier, the equivalent CNF has 20 clauses which is difficult to solve

through an SAT solver. Generally, a DSP core comprises several large bit size multipliers

98

Figure 7.8: Block diagram of the key generator of the AES module

as an integral part. Therefore, DSP IP core designs are SAT attack resistant by default.

However, the proposed approach provides a proactive countermeasure (assuming efficient

SAT attacks may be formulated for DSP cores in future). In the proposed approach the

subset of the key-bits are encrypted through the designed custom lightweight AES module

with a fixed secret key. Based on the encrypted key-bits, subset of ILBs are designed and

inserted in the obfuscated netlist. This prevents an attacker from determining the correct

key value as he/she do not have the key of AES block (shown in Fig. 7.6). This AES module

utilizes <1% of final design logic elements while implementing using Altera Quartus 13.0

version in Cyclone II FPGA [14] after integration with the obfuscated netlist of the 4-bit

FIR. The implemented gate structure of the custom AES module integrated obfuscated 4-

bit FIR in Altera Quartus is shown in Fig. 7.9. Post-synthesis result for FIR DSP core after

integrating the custom AES block is shown in Table 7.1. It is computationally infeasible

to determine the inputs of AES from its output when the key is unknown. To prevent SAT

attack, the following steps are performed:

1. Designer synthesizes an AES block with a fixed secret key.

99

Table 7.1: Resource usage of AES module integrated FIR IP core

Resource type Total used Total available Used %

Logic elements 548 68416 <1%
Combinational function 548 68416 <1%
Dedicated logic registers 32 68416 <1%

2. Subsets of keys of functional obfuscation are encrypted through the AES block.

3. The outputs of the AES block (encrypted keys) are connected to few ILBs in the

locked netlist depending on the number of keys are encrypted through AES.

4. Based on the fixed secret key of the AES block and the input to AES, a designer can

identify the output of AES and configures the ILBs accordingly by re-organizing the

internal gate structure of ILB.

Therefore, the total area of ILB and the design cost remain almost similar. For example,

based on an encrypted output of key bits (first 8-bits viz. 11001101) through the AES

module, a reconfigured ILB can be designed as shown in Fig. 7.10. As it is a custom

AES block, therefore its structure is unknown to an outsider. Therefore, distinguishing

and removing AES block from the post-synthesized functionally locked gate design is not

feasible. However, it is important to note that more the number of key inputs of functional

obfuscation fed into the AES block, more is the number of available exhaustive options

for reconfigurable ILBs. Further, the attack time grows exponentially thus enhances the

difficulty for an attacker in determining the correct key value.

7.2.3 Mitigating removal attack attack

Removal of ILBs and AES from the locked netlist is difficult because:

1. The ILBs along with AES module inserted into the design for locking are re-synthesized.

This synthesis makes each component of the AES circuit along with the ILB-based

locked netlist indistinguishable, which is not feasible to remove by an attacker.

2. As the subset of ILB structures inserted in the netlist are reconfigured by the designer

based on the AES encrypted output corresponding to the secret key, therefore, no

100

Figure 7.9: AES module integrated functionally locked FIR benchmark

101

input

output

K1 K2 K3 K4 K5 K6 K7 K8

AES encrypted value feed as key value to ILB

Figure 7.10: Example of a reconfigured ILB based on a sample encrypted output
(11001101.) from the AES circuit

fixed template of ILBs are available. The configuration of ILB depends on AES

output which in turn depends on the secret key and input of the AES, resulting in

several possible structures. Moreover, the number of possibilities also increases with

the number of key-inputs fed to ILBs through AES. Therefore, knowing the structures

of all the possible ILBs for an attacker is not practical in this scenario.

3. Since a custom lightweight AES architecture is designed and it is not publicly avail-

able thus, the components of AES structure after post-synthesis become indistin-

guishable from the locked netlist of DSP core.

7.3 Summary

The chapter presented a novel solution to the SAT attack and removal attack to enhance the

resiliency of functional obfuscation approach. Though SAT for DSP IP core is not feasi-

ble till now, however, the proposed approach provides a proactive countermeasure. This is

the first approach in the literature that provides resiliency against SAT and removal attack

during functional obfuscation for DSP IP cores used in consumer electronics designs. Sev-

eral novelties integrate the framework of the proposed approach: (a) a custom lightweight

AES module is proposed and designed in a standard CAD tool (b) the custom light-weight

AES module is integrated with a locked circuit of a standard DSP core to mitigate SAT and

removal attack.

102

Chapter 8

Obfuscation to Secure Multimedia

Processor IP Core of CE Systems

Nowadays, most of the CE systems handle image compression and decompression pro-

cess either through general purpose processor or through a dedicated IP core. The reason

is, modern CE devices such as smartphone, tablets, scanner, laptop, smartwatch etc. use

high-quality camera lenses, recording and displaying components to capture and display

a digital image in high-resolution. Therefore, the image size increases, which becomes a

critical issue from data storing and transmission perspective. Reducing the size of an im-

age while storing and/or transferring it, is one of the popular and commercially successful

techniques to address this issue.

DCT-based JPEG image CODEC is one of the effectively used technique to perform

image compression and decompression. DCT segregates an image into multiple 8x8 blocks

based on the visual quality of the image and then convert each block to the frequency

domain from the spatial domain. It discards small high-frequency components; therefore,

it is a lossy image compression in nature. As JPEG CODEC is hugely data-intensive/ power

intensive computational process, therefore, many CE products use it as a dedicated IP core

in the SoC. Use of JPEG CODEC in the form of an IP core not only balances the trade-

off between hardware area and processing speed but also enhances the design productivity.

However, a successful RE attack on this JPEG CODEC may result into several threats like

IP piracy, IP infringement, malicious Trojan insertion etc. which necessitate its protection.

103

Standard JPEG CODEC design process does not aim to secure it from RE attack. Suc-

cessful RE attack enables an adversary (in the foundry) to identify the functionality of the

design to counterfeit the netlist of the design and make several copies of it without the

knowledge of the IP vendor/owner. Further, if an adversary is able to identify the function-

ality of the design from its structure, he/she can make a malicious modification (i.e. insert

hardware Trojan) into the design and introduce malfunctioning not only in the JPEG IP

core but also the complete SoC design.

This chapter presents a novel low-cost, structurally obfuscated dedicated JPEG CODEC

IP core design the thwart RE attack. The proposed approach can enhance the reverse en-

gineering complexity for an adversary by obscuring the original structure of the JPEG

CODEC. Thus, thwarting the aforementioned threats. In other words, a JPEG CODEC is

considered secure, if its architecture is not obvious i.e. its functionality is not easily dis-

coverable by inspecting its structure. This is the first work for CE systems that provides

low-cost, secured JPEG CODEC IP core to thwart RE attack.

The chapter is organized as follows: Section 8.1 discusses the overview of the proposed

approach; Section 8.2 explains the proposed methodology; Section 8.3 explains the design

process of proposed obfuscated JPEG CODEC IP core; finally, the summary of this chapter

is present in Section 8.4. (NOTE: All the abbreviations and their corresponding full form

are listed in ‘Acronyms’ section.)

8.1 Overview of the Proposed Approach

This section discusses the threat model and problem formulation of the proposed work, an

overview of the proposed methodology for generation low-cost, obfuscated JPEG CODEC

IP core and its steps and the DSE framework used to obtain low-cost design solution.

8.1.1 Threat model and problem formulation

This section presents the threat model and the problem formulation of the proposed ap-

proach.

104

Threat model

The proposed work obscures the structure of a standard JPEG CODEC through structural

obfuscation. It transforms the architecture in such a way that the functionality becomes

unknown to an adversary. Thus hinders to launch reverse engineer to discover the actual

functionality by an adversary.

Problem formulation

For a given non-obfuscated JPEG kernel, design a structurally obfuscated, low-cost IP core

to hinder RE attack. The design cost of the obfuscated JPEG IP core is evaluated through

two crucial orthogonal design parameters, i.e., hardware area and execution latency. It can

be expressed as follows:

Cf (Xi) = w1
AJPEG

T

AJPEG
max

+ w2
LJPEG
T

LJPEG
max

(8.1)

(NOTE: During experiment both w1 and w2 are kept 0.5 to provide equal preference to both

the design parameters.)

8.1.2 Proposed obfuscation and its steps

The proposed approach structurally obfuscates architecture of a JPEG CODEC IP core de-

sign to obscure it’s functionality from an adversary. The proposed approach obfuscates the

standard JPEG IP core design containing micro IPs as well as the overall macro IP through

THT. THT is a compiler driven optimization that is useful for obfuscating an original DSP

core design by transforming the height of the equivalent graph of the application. It divides

the critical path dependency into temporary sub-computations and evaluates in parallel,

thereby generating functionally equivalent yet structurally dissimilar graph elements. The

steps to generate proposed obfuscated JPEG CODEC IP core is as follows:

1. Represent the DCT-based JPEG process through a mathematical function

2. Perform expansion of the formulated mathematical function to represent as a mathe-

matical expression.

105

3. Construct the DFG/CDFG corresponding to the mathematical expression.

4. Represent each sub-expression using micro IP and the whole expression as a macro

IP.

5. Apply THT based structural obfuscation on each micro IP as well as the macro IP of

the corresponding DFG/CDFG.

6. Explore the low-cost design configuration for the obfuscated DFG/CDFG.

7. Feed the low-cost obfuscated DFG/CDFG into an HLS engine.

8. Finally, obtain a low-cost structurally obfuscated JPEG CODEC IP core as output.

8.1.3 Proposed DSE framework for low-cost obfuscated JPEG CODEC

IP core

The proposed approach integrates the obfuscation methodology with a PSO driven DSE

optimization framework to obtain low-cost design solution.

PSO process

PSO is a population-based heuristic optimization that searches for an optimal solution it-

eratively. Each solution of the search-space is encoded as a particle and the fitness of each

particle is evaluated based on the fitness function. The velocity of each particle directs the

movement of the particle. The particles move through the search-space by following the

current global best gbest and its own best location lbest. After finding a better gbest or

lbest the ith particle updates its velocity and position thus move towards the best solutions.

More details are available in Chapter 6.

Benefits of PSO

1. Ability to escape local minima and converge on global optima in most case.

2. Ability to introduce stochasticity into the exploration process.

106

3. Preserves exploration-exploitation balance during searching low-cost solution.

For obtaining low-cost obfuscated IP core, obfuscated JPEG DFG, module library, PSO

control parameters and PSO terminating criteria are provided as inputs to the PSO-DSE

block.

8.2 Proposed Methodology of Obfuscated JPEG CODEC

IP Core

This section discusses the overview of standard JPEG process, overview of the proposed

method for JPEG compression and decompression, the process of generating non-obfuscated

DFG of JPEG compression and finally explain the process of constructing JPEG CODEC

IP core.

Input
image

Image to
matrix

Transformation using
2D-DCT co-eff matrix

Division with
quantization matrix

Rounding off
the matrix

Multiplication with
quantization matrix

Transformation using
2D-IDCT co-eff matrix

Matrix
to image

Reconstructed
image

Leveling the
data (-128)

Leveling the
data (+128)

Encode
the data

Decode
the data

Rounding off
the matrix

Single
hardware

IP core

Single
hardware

IP core

Store compressed
image data

Load compressed
image data

Figure 8.1: Generic overview of JPEG process

107

8.2.1 Overview of JPEG process

The overview of the JPEG process is shown in Fig. 8.1. In grayscale JPEG image com-

pression/decompression process, a pre-processed NxN image is taken as input and convert

it into an NxN matrix. Each integer value of the matrix represents the pixel intensity of a

particular pair of co-ordinate (x,y) of the image. For 8-bit depth grayscale image, the max-

imum pixel intensity is 255 while the minimum is 0, where 0 indicates pure black and 255

indicates pure white. The leveling of the input matrix is performed by subtracting 128 from

each pixel value (as DCT can handle pixel value within the range of -128 to 127). In the

next step, the input matrix is subdivided into multiple non-overlapping 8x8 blocks because

2D-DCT can process an 8x8 block at a time. The generic 2D-DCT coefficient matrix T is

shown below:

T =



c4 c4 c4 c4 c4 c4 c4 c4

c1 c3 c5 c7 −c7 −c5 −c3 −c1
c2 c6 −c6 −c2 −c2 −c6 −c6 c2

c3 −c7 −c1 −c5 c5 c1 c7 −c3
c4 −c4 −c4 c4 c4 −c4 −c4 c4

c5 −c1 c7 c3 −c3 −c7 c1 −c5
c6 −c2 c2 −c6 −c6 c2 −c2 c6

c7 −c5 c3 −c1 c1 −c3 c5 −c7


As ‘T’ is an orthogonal matrix, therefore, the inverse of ‘T’ (i.e. T−1) is equal to transpose

of ‘T’ (i.e. T trans).

A generic pixel intensity of an 8x8 input image matrix ’M’ is shown below in the form

if mij , where ’i’ and ’j’ represent the row and column number respectively of the pixel

108

intensity of the 8x8 input image block.

M =



m11 m12 m13 m14 m15 m16 m17 m18

m21 m22 m23 m24 m25 m26 m27 m28

m31 m32 m33 m34 m35 m36 m37 m38

m41 m42 m43 m44 m45 m46 m47 m48

m51 m52 m53 m54 m55 m56 m57 m58

m61 m62 m63 m64 m65 m66 m67 m68

m71 m72 m73 m74 m75 m76 m77 m78

m81 m82 m83 m84 m85 m86 m87 m88


The DCT on the ‘M’ block can be performed through following matrix multiplications:

X = D ∗ T trans (8.2)

where, ‘D’ is calculated as follows:

D = T ∗M (8.3)

The ‘D’ matrix (d11, d12, ..d88) transforms the rows of the ‘M’ block. Further, ‘X’ ma-

trix (X11, X12, ...X88) transforms the columns of the ‘D’ matrix. Thus, transforms both

rows and columns of the ‘M’ block. Therefore, ‘X’ is the DCT block of ‘M’ block. Each

transformed pixel value is divided with the corresponding element of the standard quantiza-

tion matrix fed as input to generate quantized pixel intensity. Zigzag scanning is performed

on this output data to convert it into a 1-dimension array and then run-length encoding is

applied to generate the bitstream data of the compressed image for finally storing it in a

storage device.

To decompress the image pixel intensities from the stored data, the stored bit stream

representing compressed pixel data is first decoded through run-length decoding and then

through inverse zigzag scanning, its equivalent 2D image pixel intensity matrix is recon-

structed. To perform JPEG image decompression, inverse quantization is applied on the

109

Obfuscation

PSO-DSE

Dedicated hardware for
JPEG compression IP

Input image

pixel intensity

Non-obfuscated DFG

of JPEG compression

Obfuscated

design
Low-cost obfuscated

JPEG design

Compressed

image pixel

intensity

Module

library
Resource

constraints

Control

parameter

Input for PSO-DSE

Processed input

image

m
1
1

m
1

2

m
1

3

m
8

8

m
1

8

m
2

1

…… ……

2D-DCT

coefficient

Proposed
Obfuscated

JPEG
compression IP

core

m11
m12
m13

m18
m21

m88

.

.

c1 c2
………......

.. c7

Figure 8.2: Obfuscated JPEG compression IP core

compressed image pixel block by multiplying each element of the block with the corre-

sponding element of the quantization matrix (Q) to obtain de-quantized image pixel in-

tensities. Next inverse DCT is applied on the de-quantized compressed image block for

decompression. Similar to applying DCT on the input block in the JPEG compression pro-

cess, inverse DCT is applied on the decompressed block (X”). The IDCT on the X” block

can be performed through following matrix multiplications:

O = E ∗ T (8.4)

where, ‘O’ is calculated as follows:

E = T trans ∗X ′′ (8.5)

The ‘E’ matrix (e11, e12, ..e88) transforms the rows of the X” block. Further, ‘O’ matrix

(o11, o12, ...o88) transforms the columns of the ‘E’ matrix. Thus, transforms both rows and

columns of the X” block. Therefore, ‘O’ is the IDCT block of X” block. After applying

IDCT on the decompressed block, each element is rounded to the nearest integer and de-

levelized by adding 128.

110

8.2.2 Overview of proposed methodology for compression

Using the proposed obfuscation steps discuss in section 8.1.2 and DSE engine process

discuss in section 8.1.3, a low-cost, obfuscated JPEG compression IP core is designed.

The design process includes multiple steps (as shown in Fig. 8.2). Initially, an unsecured

(non-obfuscated) JPEG-DCT application in the form of a DFG is accepted as an input.

Thereafter, resiliency against RE attack is provided in the form of structural obfuscation.

This obfuscated DFG is processed through an optimization framework to obtain a low-cost

hardware configuration (detail explained earlier). Thus, this low-cost hardware configu-

ration is used to design an obfuscated dedicated hardware for JPEG compression IP core.

The proposed obfuscated JPEG compression IP core uses levelized pixel intensity as input

to generate the compressed image pixel intensity as output. Finally, to generate the com-

pressed pixel intensities through the proposed IP core, 2D-DCT coefficients and standard

quantization matrix are also fed as inputs.

8.2.3 Generating non-obfuscated DFG of JPEG compression

As mentioned in Section 8.2.1 Eqn. 8.2 and Eqn. 8.3 represent the function of applying

2D-DCT on the input image block M. To convert relationship into a hardware function

for dedicated IP core design, this function is expanded and modeled as a mathematical

expression to design an equivalent DFG. Further, this DFG is feed to an HLS engine to

obtain a JPEG compression IP core. Based on Eqn. 8.2, the corresponding mathematical

expression for the first pixel (X11) of the transformed block is modeled as:

X11 = (c4 ∗ d11 + c4 ∗ d12 + c4 ∗ d13 + c4 ∗ d14 + c4 ∗ d15 + c4 ∗ d16 + c4 ∗ d17 + c4 ∗ d18)

(8.6)

where, in Eqn. 8.6, d11, d12, ..d18 are modeled as:

d11 = (c4∗m11+c4∗m21+c4∗m31+c4∗m41+c4∗m51+c4∗m61+c4∗m71+c4∗m81)

(8.7)

111

d12 = (c4∗m12+c4∗m22+c4∗m32+c4∗m42+c4∗m52+c4∗m62+c4∗m72+c4∗m82)

(8.8)

Similarly,

d18 = (c4∗m18+c4∗m28+c4∗m38+c4∗m48+c4∗m58+c4∗m68+c4∗m78+c4∗m88)

(8.9)

Similarly, other pixels of the block (M) are transformed where the input pixels remain the

same but the 2D-DCT coefficients become different. Thus the structure of the equation

remains the same, however, only the inputs will be different while computing different

transformed image pixel intensities.

An equivalent DFG corresponding to Eqn. 8.6 denoting an unsecured (non-obfuscated)

JPEG image compression is shown in Fig. 8.3. The complete DFG computes the X11

is termed as macro IP, where, each dij (represented through Eqn. 8.7-Eqn. 8.9) is com-

puted through a sub-DFG termed as micro IP. Each of the macro IP is designed using eight

structurally equivalent micro IPs. The non-obfuscated macro IP with one zoom in micro

IP is also shown in Fig. 8.3. Each micro IP operation, addition operation and multipli-

+

X

c4 m11

(1) X

c4 m21

(2) X

c4 m31

(3) X

c4 m41

(4) X

c4 m51

(5) X

c4 m61

(6) X

c4 m71

(7) X

c4 m81

(8)

(9)

+ (14)

+ (11)
+ (12)

+ (10)

+ (13)

+ (15)
X

Q1

(16)
Micro_IP1_out

+

IP1

m11……m81

IP2

m12……m82

IP3 IP4 IP5 IP6 IP7 IP8

(129)
+ (130)

+
(131)

+
(132)

+

(133)
+

(134)
+

(135)

First pixel of the compressed image (X’11)

m13……m83 m14……m84 m15……m85 m16……m86 m17……m87 m18……m88

X

q

(136)
X

d11

Figure 8.3: Non-obfuscated DFG of JPEG image compression for calculating first pixel of
the compressed image (X ′11)

112

+

IP1

m11 ……m81

IP2

m12 ……m82

IP3 IP4 IP5 IP6 IP7 IP8

(129) + (130) + (131) + (132)

+ (133) + (134)

+ (135)

First pixel of the compressed image (X’11)

m13 ……m83 m14 ……m84 m15 ……m85 m16 ……m86 m17 ……m87 m18 ……m88

X

q

(136)

+

X

c4
m11

(1) X

c4 m21

(2) X

c4 m31

(3) X

c4 m41

(4) X

c4 m51

(5) X

c4 m61

(6) X

c4 m71

(7) X

c4 m81

(8)

(9) + (10) + (11) + (12)

+ (13) + (14)

+ (15)

X

c4

(16)

Micro_IP1_out

X

d11

Figure 8.4: Obfuscated DFG of JPEG image compression for calculating first pixel of the
compressed image (X ′11)

cation operation are indicated by purple, blue and orange node respectively. As shown in

Fig. 8.3 the output of operation 135 generates the pixel intensity of the transformed image

(X). In this DFG, the output of node number 135 is multiplied with the inverse value of

corresponding number (i.e. instead of division, multiplication is performed with the in-

verse of the number) of the quantization matrix (Q). This is achieved through operation

136 performing the quantization on the transformed image pixel intensities (X) based on

the corresponding element ’q’ of the quantization matrix. This produces the final output as

quantized/compressed image pixel intensities (X’). This q value is feed as another input of

the DFG based on the quality level of the compressed image.

8.2.4 Constructing obfuscated JPEG compression IP core

This sub-section, describe the process of constructing obfuscated JPEG compression DFG

from the non-obfuscated DFG generated in the last sub-section. In the proposed approach,

the complete JPEG compression DFG is structurally obfuscated through THT-based high-

level transformation technique.

THT is a compiler-driven optimization technique which parallelizes the dependent crit-

ical path operations by dividing it into temporary sub-computations. However, this tech-

113

Obfuscation

PSO-DSE

Dedicated hardware for
JPEG decompression IP

Compressed image

pixel intensity

Non-obfuscated DFG of

JPEG decompression

Obfuscated

design
Low-cost obfuscated

JPEG design

Decompressed

image pixel

intensity

Module

library
Resource

constraints

Control

parameter

Input for PSO-DSE

Processed

compressed image

X
’1
1

X
’1
2

X
’1
3

X
’8
8

X
’1
8

X
’2
1

…… ……

Obfuscated JPEG
decompression IP

core

X’11
X’12
X’13

X’18

X’21

X’88

.

.

c1 c2
……………….....

c7

2D-DCT

coefficient

Figure 8.5: Obfuscated JPEG decompression IP core

nique has not been used to generate a structurally obfuscated DFG for JPEG. The complete

transformed structure of macro IP with one zoom in micro IP is shown in Fig. 8.4. As

shown in the figure, due to this transformation, each micro IP, as well as the macro IP,

is changed structurally. For example, in micro IP1 total 12 nodes out of 16 nodes are

structurally changed. They are node number 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 and 15.

Therefore, in the eight micro IPs, 96 nodes are affected, additionally, node no. 130, 131,

132, 133,134 and 135 are also modified. So total, 102 nodes of the complete micro IP is

modified. For these aforesaid nodes, either the input/ output connectivity to the resources

changes or the number of resources per control step changes, which resulting into different

datapath architecture and controller logic once processed through HLS [53].

8.2.5 Overview of proposed methodology for decompression

The proposed low-cost, obfuscated JPEG decompression IP core is designed through mul-

tiple steps (as shown in Fig. 8.5). Similar to the proposed obfuscated JPEG compression IP

core design process, the proposed low cost obfuscated JPEG decompression IP core design

process also accepts an unsecured (non-obfuscated) JPEG decompression DFG as input.

Similarly, as performed in compression of JPEG IP core, resiliency against RE in the form

114

of structural obfuscation is provided to the unsecured DFG to obtain an obfuscated de-

compression DFG. This obfuscated DFG is processed through an optimization framework

to obtain a low-cost hardware configuration (discussed in Sec 8.1.3). Thus, this low-cost

hardware configuration is used to design an obfuscated dedicated hardware for JPEG de-

compression IP core. Finally, for generating the decompressed pixel intensities through the

proposed IP core, 2D-DCT coefficients and standard quantization matrix are fed as inputs.

The detailed is available in the next sub-section.

8.2.6 Constructing obfuscated JPEG decompression IP core

The compressed block X’ is decompressed through inverse quantization. In this process,

each element of X’ is multiplied with the corresponding element of the quantization matrix

of the same quality level, to obtain decompressed block X”. As mentioned in Section 8.2.1

Eqn. 8.4 and Eqn. 8.5 represent the function of applying 2D-IDCT on the decompressed

block X”. To convert relationship into a hardware function for dedicated IP core design, this

function is expanded and modeled as a mathematical expression to design an equivalent

DFG. Further, this DFG is feed to an HLS engine to obtain a JPEG compression IP core.

Based on Eqn. 8.4, the corresponding mathematical expression for the first pixel (o11) of

the inversely transformed block is modeled as:

o11 = (c4 ∗ e11 + c1 ∗ e12 + c2 ∗ e13 + c3 ∗ e14 + c4 ∗ e15 + c5 ∗ e16 + c6 ∗ e17 + c7 ∗ e18)

(8.10)

where, in Eqn. 8.10, e11, e12, ..e18 are modeled as:

e11 = (c4∗X ′′11+c4∗X ′′21+c4∗X ′′31+c4∗X ′′41+c4∗X ′′51+c4∗X ′′61+c4∗X ′′71+c4∗X ′′81)

(8.11)

e12 = (c4∗X ′′12+c4∗X ′′22+c4∗X ′′32+c4∗X ′′42+c4∗X ′′52+c4∗X ′′62+c4∗X ′′72+c4∗X ′′82)

(8.12)

115

Similarly,

e18 = (c4∗X ′′18+c4∗X ′′28+c4∗X ′′38+c4∗X ′′48+c4∗X ′′58+c4∗X ′′68+c4∗X ′′78+c4∗X ′′88)

(8.13)

Similarly, other pixels of the de-quantized image block (X”) are transformed through in-

verse DCT matrix where the input pixels remain same but the 2D-IDCT coefficients be-

come different. It is to be noted that the structure and pattern of forward DCT 8.6 and

inverse DCT 8.10 are same, but only the inputs are different during the computation of

decompressed image pixel intensity.

An equivalent DFG corresponding to Eqn. 8.10 denoting an unsecured (non-obfuscated)

JPEG image decompression can be obtained. As performed for JPEG compression DFG,

obfuscation through THT can be performed on the non-obfuscated JPEG decompression

DFG. Each micro IPs, as well as the complete macro IP, is structurally obfuscated through

THT. Similar to JPEG image compression DFG, an obfuscated JPEG decompression macro

IP is designed using eight structurally equivalent micro IPs, where each micro IP executes

a part of Eqn. 8.10. Thus it can be concluded that the DFG of JPEG DCT and IDCT are

almost same except few things, such as: (a) in case of compression it is assumed that each

element of the compressed block is multiplied with the corresponding element (q) of the

quantization matrix, to perform quantization (through node number 136), whereas, quanti-

zation through node number 136 is not required in DFG of JPEG IDCT, (b) the last node

(node 136) can be used to perform de-levelization by adding 128 to the pixel intensity of the

decompressed block. Thus the total number of nodes in the DFG for both JPEG compres-

sion and decompression remains the same. Therefore, THT-based structurally obfuscated

DFG can be similarly generated for the JPEG decompression also.

8.3 Proposed Design of JPEG CODEC IP Core

This section, explains the design implementation of the proposed JPEG CODEC IP core

and demonstrate the process with a grayscale image using the generated IP core.

116

m88

m11

m12

Block 1

m88

m11

m12

Block N2/64

……………………...

Input hardware queue
m88

m11

m12

Block 2

m88

m11

m12

Block 3

Processed input

image pixel intensity

Transformation using
2D-DCT co-eff matrix

Division with standard
quantization matrix

c7

c1

-c1

2D-DCT co-eff

matrix queue

-c7

64

1

2

8x8 standard

quantization matrix

queue

JPEG compression IP core

Zigzag scanning of
transformed matrix

Run-length encoding storage

Store compressed

image data

2D to 1D

conversion

transformed image

pixel intensities (X)

quantized image

pixel intensities (X’) Hardware

Software

Figure 8.6: Proposed hardware and software design flow using JPEG compression IP

8.3.1 Designing of obfuscated JPEG compression IP core

The complete design flow of the JPEG compression process using devised low-cost ob-

fuscated JPEG compression IP core is shown in Fig. 8.6. In this complete design flow,

partial steps are performed through hardware and remaining are performed through soft-

ware. More specifically, 2D-DCT transformation and quantization steps are performed

through devised JPEG compression IP core and leveling of input image pixel intensity and

data encoding is performed through software. The IP core used is capable to accept an

8x8 block of a processed gray-scale image pixel intensity stored in a hardware queue along

with 2D-DCT coefficients and standard quantization matrix. It performs the transformation

using the 2D-DCT coefficient, quantizes and round off the transformed result and finally

generates the pixel intensities of the compressed image data (X). The JPEG compression IP

core is designed using HLS framework, where the obfuscated DFG (shown in Fig. 8.4) is

scheduled (using list scheduling) based on a low-cost resource configuration i.e., 3 adders

(Adder A1, Adder A2 and Adder A3) and 3 multipliers (Multiplier M1, Multiplier M2

and Multiplier M3) explored through PSO-DSE approach. After scheduling, resource al-

location and binding of resources are performed. Table 8.1 reports all the 136 operations,

their control step and corresponding assigned hardware.

117

Table 8.1: Scheduling and binding of operations for low-cost obfuscated JPEG compres-
sion IP core

CS
Opn.No.
assigned

to M1

Opn.No.
assigned

to M2

Opn.No.
assigned

to M3

Opn.No.
assigned

to A1

Opn.No.
assigned

to A2

Opn.No.
assigned

to A3

1 1 2 3 - - -
2 4 5 6 9 - -
3 7 8 17 10 11 -
4 18 19 20 12 13 -
5 21 22 23 25 26 14
6 24 33 34 27 29 15
7 35 36 37 28 41 -
8 38 39 40 42 30 -
9 49 50 51 43 44 45
10 52 53 54 57 46 31
11 55 56 65 58 59 47
12 66 67 68 60 61 -
13 69 70 71 73 74 62
14 72 81 82 75 77 63
15 83 84 85 76 89 -
16 86 87 88 90 78 -
17 97 98 99 91 92 93
18 100 101 102 105 94 79
19 103 104 113 106 107 95
20 114 115 116 108 109 -
21 117 118 119 121 122 110
22 120 16 32 123 125 111
23 48 64 80 124 129 -
24 96 112 - 126 130 -
25 - - - 127 131 133
26 - - 128 - - -
27 - - - 132 - -
28 - - - - 134 -
29 - - - - - 135
30 - - 136 - - -

It can be observed from the table, total 30 control steps are required to schedule all the

operations. Both adders and multipliers are designed in IEEE 754 half precision floating-

point format. Therefore, all the operators have bit-width of 16 bits. The implemented JPEG

compression IP core consists of two units: data-path unit and controller unit. The data-path

unit represents the required number of resources and their interconnections while the con-

118

troller unit synchronizes those resources by changing their signals (e.g. enables, selectors,

strobes etc.). In other words, controller unit is responsible for controlling the data flow

through the data-path by activating and deactivating different components of data-path in

different clock cycle, thus synchronizing each component to generate an error-free output.

The generic block diagram representation of data-path unit of low-cost obfuscated JPEG

IP is shown in Fig. 8.7. As shown in this figure, the data-path is consist of 3 adders and

multipliers, 10 multiplexers of type 32:1, 2 multiplexers of type 16:1, 5 demultiplexers of

type 1:32, 1 demultiplexer of type 1:16, 40 registers and 18 latches. The primary inputs are

represented through A1,..A8,.. Q1,..Q8 and the dependent inputs are represented through

i1, i2,.. i135, while i136 represents the output. Both the data-path unit and control unit of

the proposed low-cost obfuscated JPEG CODEC is implemented using Quartus CAD tool

in Intel Cyclone II FPGA.

8.3.2 Designing of obfuscated JPEG decompression IP core

The complete design flow of JPEG decompression process using devised low-cost obfus-

cated JPEG decompression IP core is shown in Fig. 8.8. Similar to the JPEG compres-

sion design flow, few steps are performed through software and rest is performed through

hardware. More specifically, data decoding and zigzag scanning are performed through

software and inverse quantization, 2D-IDCT transformation and leveling of output image

pixel intensity are performed through devised JPEG decompression IP. Finally, each 8x8

block with leveled off decompressed pixel intensity is stored in an output hardware queue.

Similar to JPEG compression, same resource configuration is used while performing

scheduling for JPEG decompression IP core. Total 3 adders and 3 multipliers of size 16-bits

are used to implement the design. Additionally, 10 multiplexers of type 32:1, 2 multiplexers

of type 16:1, 5 demultiplexers of type 1:32, 1 demultiplexer of type 1:16, 40 registers and

18 latches are used for the data-path unit. Both data-path unit and control unit of JPEG

decompression IP core is implemented using Quartus CAD tool in Intel Cyclone II FPGA.

119

A1

G1

O8

Q3

Q6

M1

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:3

2
 d

e
m

u
x

i120

…
…
.

i48

i96

i1

i4

i7 M
u

lt
ip

li
e
r

(M
1

)
E

n
a

b
le

_
M

1

L
a

tc
h

st
ro

b
e_

M
1

S
el

ec
to

r_
M

1

O
u

tp
u

ts
tr

o
b
e_

M
1

D
es

el
ec

to
r_

M
1

B1

H1

P8

i47

i95

N1

…
…
.

C1

I1

Q1

Q4

Q7

O1

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:3

2
 d

em
u

x
 i16

…
…
.

i64

i112

i2

i5

i8 M
u

lt
ip

li
e
r

(M
2

)
E

n
a

b
le

_
M

2

L
a

tc
h

st
ro

b
e_

M
2

S
el

ec
to

r_
M

2

O
u

tp
u

ts
tr

o
b
e_

M
2

D
es

el
ec

to
r_

M
2

D1

J1

i15

i63

i111

P1

…
…
.

i1

i3

i123

i125

i112

i7

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:3

2
 d

e
m

u
x

i126 …
…
.

i127

i132

i9

i10

i12

A
d

d
e
r

(A
1

)
E

n
a

b
le

_
A

1

L
a

tc
h

st
ro

b
e_

A
1

S
el

ec
to

r_
A

1

O
u

tp
u

ts
tr

o
b
e_

A
1

D
es

el
ec

to
r_

A
1

i2

i4

i124

i126

i128

i8

…
…
.

E1

K1

Q5

Q8

Q

A2

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:3

2
 d

em
u

x

i80 …
…
.

i128

i136

i3

i6

i17 M
u

lt
ip

li
e
r

(M
3

)
E

n
a

b
le

_
M

3

L
a

tc
h

st
ro

b
e_

M
3

S
el

ec
to

r_
M

3

O
u

tp
u

ts
tr

o
b
e_

M
3

D
es

el
ec

to
r_

M
3

F1

L1

i79

i127

i135

B2

…
…
.

i5

i9

i48

i80

i131

i19

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:3

2
 d

e
m

u
x

i130

…
…
.

i131

i134

i11

i13

i26
A

d
d

e
r

(A
2

)
E

n
a

b
le

_
A

2

L
a

tc
h

st
ro

b
e_

A
2

S
el

ec
to

r_
A

2

O
u

tp
u

ts
tr

o
b
e_

A
2

D
es

el
ec

to
r_

A
2

i6

i10

i64

i96

i132

i20

…
…
.

i11

i13

i129

i133

…
…
.

L
a

tc
h

L

a
tc

h

L
a

tc
h

1
:1

6
 d

e
m

u
x
 i133

…
…
.

i135

i14

i15

A
d

d
e
r

(A
3

)
E

n
a

b
le

_
A

3

L
a

tc
h

st
ro

b
e_

A
3

S
el

ec
to

r_
A

3

O
u

tp
u

ts
tr

o
b
e_

A
3

D
es

el
ec

to
r_

A
3

i12

i14

i130

i134

…
…
.

F
in

a
l_

O
u

tp
u

t

Figure 8.7: Block diagram representation of data-path unit of proposed low-cost obfuscated
JPEG CODEC IP core

120

o88

o11

o12

Block 1

o88

o11

o12

Block N2/64

……………………...

Output hardware queue
o88

o11

o12

Block 2

o88

o11

o12

Block 3

Output image

pixel intensity

Leveling the output
data (+128)

c7

c1

-c1

2D-DCT co-eff

matrix queue

-c7

64

1

2

8x8 standard

quantization

matrix queue
Inverse Transformation

using 2D-DCT co-eff matrix

Multiplication with
quantization matrix

Rounding off
the matrix

JPEG decompression IP core

Zigzag scanning of
transformed matrix

Run-length decoding storage

Store compressed

image data 1D to 2D

conversion

Hardware

Software

Figure 8.8: Proposed hardware and software design flow using JPEG decompression IP

Proposed
Obfuscated

JPEG
compression IP

core

m11
m12
m13

m18
m21

m88

.

.

c1 c2
……….......

. c7

 7 7 7 8 8 8 7 8
 7 7 8 8 8 8 8 8
 7 8 8 7 8 8 8 8
 6 6 7 7 7 7 8 8
 5 5 5 5 5 6 6 6
 5 5 5 5 5 5 5 6
 4 5 5 5 5 5 5 5
 4 4 5 4 5 5 4 4

Proposed
Obfuscated JPEG
decompression IP

core

X’11
X’12
X’13

X’18
X’21

X’88

.

.

c1 c2 ………..... c7

 5 5 5 5 5 5 6 6
 5 5 5 5 6 6 6 6
 5 5 5 5 6 6 6 6
 4 4 4 5 5 5 5 5
 3 3 3 3 4 4 4 4
 2 3 3 3 3 3 3 3
 2 2 3 3 3 3 3 3
 3 3 3 3 3 3 3 3

Input image nth 8x8 Input block
DCT quantized image

(divided by Q90)

De-quantized
image

Multiplying
with Q90)

Reconstructed image
post compression

nth 8x8 Output block

(a) (b) (c)

(d)

(e)
(f) (g) (h)

Figure 8.9: Depiction of end to end process of JPEG image compression and decompres-
sion through the proposed JPEG hardware

8.3.3 End to End demonstration of JPEG CODEC through the de-

signed IP core

For demonstration, a two-dimensional 512x512 grayscale image shown in Fig. 8.9 (a)

is taken as the input in the form of a matrix. This input matrix is then sub-divided into
121

multiple non-overlapping 8x8 blocks. Fig. 8.9 (b) represents the nth 8x8 block of the input

image which is compressed through the proposed compression IP core (shown in Fig. 8.9

(c)). The output of the proposed JPEG compression IP core produces DCT quantized image

pixel intensity values. The DCT quantization image of the corresponding input image is

shown in Fig. 8.9 (d), where quantization is performed based on quantization matrix Q90.

To reconstruct the de-quantized image, the DCT quantized image (after multiplying with

Q90 quantization matrix) as shown in Fig. 8.9 (d) is again sub-divided into multiple non-

overlapping 8x8 blocks (shown in Fig. 8.9 (e)). Each block of the de-quantized image is

then decompressed through the proposed JPEG decompression IP core, as shown in Fig.

8.9 (f) to generate 8x8 output blocks. Fig. 8.9 (g) represents the nth 8x8 block of the

output image. After combing all 8x8 output blocks of the decompressed image, the output

reconstructed image of size 512x512 is generated, as shown in Fig. 8.9 (h).

8.4 Summary

This chapter presented a novel solution to secure one of the most popularly used image

CODEC IP core through obfuscation. The work presented a low-cost structurally ob-

fuscated JPEG CODEC as a dedicated IP core to thwart RE attack. To obfuscate the

standard JPEG CODEC architecture, THT technique is used. It transforms the standard

JPEG CODEC architecture to a non-obvious one. Thus, obscure the original functionality.

Further, a low-cost hardware configuration is explored through a PSO-DSE engine. The

complete IP core is synthesized and simulated through Intel Quartus Cyclone II FPGA.

This is the first approach in the literature that provides low-cost, structurally obfuscated

JPEG CODEC to enhance the complexity of RE attack. Several novelties integrate the

framework of the proposed approach: (a) THT technique is used to generate an obfuscated

JPEG CODEC during HLS, (b) explores a low-cost obfuscated design through the PSO-

DSE framework, (c) The proposed obfuscation achieves 76% PoO compared to a standard

non-obfuscated JPEG CODEC design.

122

Chapter 9

Hardware Trojan Secured IP Core for

CE Systems

Hardware Trojans are malicious logic or hardware components implanted by a rogue en-

tity to induce malfunctioning of ICs. A hardware Trojan affected DSP IP core used in the

SoC of a CE system can create malfunctioning of the whole system. High-level synthesis

is the only solution to handle complex design algorithm of DSP IP cores. In high-level

synthesis, design library may comprise of third-party IP cores as modules. The reason is to

increase the design productivity. However, there are serious security concerns for design in-

tegrators due to the involvement of third-party IP vendors owing to globalization involved.

These third-party IP vendors are untrustworthy, therefore the possibility of inserting Trojan

logic in the IP cores is extremely high. This may result into erroneous computation of a

digital design. Normally, these types of Trojans are inactive until triggered and can be acti-

vated either through external activation (such as antennas or sensors) or internal activation

(such as internal states of finite state machine or counters), resulting in malfunctioning.

The typical design cycle involving 3PIP vendors, in-house system design and the foundry

is shown in Fig. 9.1 . Here, the in-house system design and the foundry is considered as

trustworthy and the 3PIP vendors as untrustworthy.

Therefore, to have a Trojan secured design of a DSP IP core, it should be ensured that

any possible infection of 3PIP is detectable through HLS framework. Thus, a paradigm

shift in CE systems is needed to incorporate trust/security objective besides power, area,

123

Figure 9.1: Design cycle of a SoC involving 3PIP core

energy etc. The designs generated should be equipped with low-cost detection capability to

handle hardware Trojan that targets alteration of computational value. Typically, the hard-

ware design with Trojan detection (security) capability generated through HLS method-

ology contains additional RTL blocks as detection logic resulting from imposed security

constraints. Trojan security constraints in the form of dual modular redundancy include

duplication of functional modules which incur additional RTL logic, resulting in both de-

lay and area overhead. As providing Trojan detection capability to HLS designs will in

most cases require additional digital circuitry hence exploring a low-cost solution is crucial

besides providing Trojan security.

This chapter presents, a novel low-cost, Trojan security aware design methodology to

handle single and nested loop DSP kernels while satisfying the user constraints. In the pro-

posed approach, simultaneous exploration of low-cost Trojan security aware DMR sched-

ule, optimal loop unrolling factor and vendor allocation is performed for a DSP application

that abides by the user provided area-delay constraints. Additionally, this approach handles

single and nested loop based DSP cores. The particle encoding scheme during PSO-DSE

process comprises of candidate schedule resources, candidate loop unrolling factor and can-

didate vendor allocation information. Further, the proposed approach achieves an average

reduction in the final cost of 12% compared to recent approach.

The chapter is organized as follows: Section 9.1 discusses the threat model and explain

124

with an example; Section 9.2 discusses the problem formulation and evaluations mod-

els; Section 9.3 explains the proposed methodology; Section 9.4 explains the PSO-DSE

methodology to obtain low-cost Trojan secured design; finally, the summary of this chap-

ter is presented in Section 9.5. (NOTE: All the abbreviations and taxonomy are listed in

‘Acronyms’ and ‘Nomenclature’ section respectively.)

9.1 Threat Model and An Example

Normally, a Trojan in a circuit is in the inactive state as its trigger is not enabled, which

indicates there is no payload effect. A Trojan gets triggered under certain rare specific

criteria or events and then its payload introduces malfunctioning in the circuit. Trojan

triggering process can be classified into three categories [66]: 1) rare value triggered, 2)

time triggered and 3) both time and value triggered. Payload effect on a triggered Trojan

depends on the application [64]. It may disable the system or leak vital information or

change the output value of the circuit.

9.1.1 Threat model

There are various classes of hardware Trojan available for different circuits. However, in

the context of DSP applications, Trojans that affects the functional output is most vulnera-

ble. Therefore, the class of Trojan that only changes the computation output value of an IP

core is addressed here.

These type of Trojan affected IP blocks or modules may be available in the library of an

HLS tool. Insertion of Trojan into the IP block/module is possible through an untrustwor-

thy 3PIP vendor from where the design team of the HLS tool imports the IP block/module.

Therefore, in this threat model, it is considered that only the third-party IP vendor as un-

trustworthy whereas, the in-house design integrator team and foundry as trustworthy in the

SoC design cycle (shown in Fig. 9.1).

125

BCD Adder

1

GND

1

0

4-bit Binary Adder

4-bit Binary Adder

AND

AND

OR

Cout

En

1

0

0

 O3 O2 O1 O0

A3 A2 A1 A0 B3 B2 B1 B0

Figure 9.2: A Trojan infected BCD adder; Note: it will be triggered when ’En’=0

9.1.2 Example of a Trojan infected 3PIP module

This section discusses the aforementioned Trojan with an example. Let us assume there

is a BCD adder IP available in the module library of an HLS tool as a black box (shown

in Fig. 9.2). It has three inputs: (a) Enable (‘En’), which switches on/off the execution

of the adder (b) first primary input ‘A’ of bit width 4 (A3A2A1A0) (c) second primary

input ‘B’ of bit width 4 (B3B2B1B0) and one output ‘O’ of bit width 4 (O3O2O1O0).

During functional/simulation verification and test the ‘En’ signal is on (‘En’ = 1) to start

the execution of the BCD adder IP i.e. the upper mux passes ‘1’ and lower mux passes ‘0’

to finally form bits ‘0110’ (decimal of ‘6’). This value is added to correct any invalid BCD

summation produced and yield a result between valid decimal values 0-9. After finishing

the verification process the ‘En’ signal is off (‘En’ = 0) to stop the execution of the BCD

adder IP. However, the Trojan is implanted in the BCD adder (shown in Fig. 9.2) in such a

way that, whenever the ‘En’ signal remains ‘off’, it actually continues to work maliciously

(due to Trojan logic activation) thereby producing the wrong output of a DSP IP core.

126

9.1.3 Why detection of such Trojan is difficult?

Detection of aforementioned Hardware Trojan is difficult during verification/tests because

of the following reasons:

• A Trojan logic infected 3PIP produces functionally correct output in normal condi-

tion i.e. until the Trojan logic is triggered.

• Trojan logic is triggered under very rare and specific time/condition (discussed ear-

lier), therefore identifying such condition or event is difficult during functional veri-

fication.

• Generally, during functional verification, only the functionality of the entire SoC is

verified, not each and every IP/module used (imported) in the system (after system

integration) is checked.

• Normally the Trojan logic is set in an IP in such a way that it remains dormant during

functional verification and triggered when the complete SoC is deployed in the real-

time situation.

• As there is no trustworthy golden IP (i.e. guarantee of 100% Trojan free IP) model

available, the evasion of hardware Trojan in a 3PIP during HLS design for DSP core

could be feasible.

• Physical inspection and reverse engineering which is a very costly and complex pro-

cedure in nature do not guarantee to detect such Trojan.

9.2 Formulation and Evaluation Models

This section presents the problem formulation and evaluation models of the proposed ap-

proach.

127

9.2.1 Problem formulation

To generate a low-cost, Trojan secured DMR schedule for a DSP application (given in the

form of a C-code or control data flow graph (CDFG)) within the user-specified constraints,

which accepts module library and PSO control parameters, as inputs can be formulated as

follows:

Minimize: Trojan secured design cost (ADMR
T , LDMR

T) using optimal design solution

(Xi).

Subject to: ADMR
T ≤ Acons and LDMR

T ≤ Lcons.

Based on the type of the DSP application, the design solution (Xi) can be represented

in three different ways:

(Xi) = {N(R1), N(R2), ..., N(RD), Av}, (for non-loop DFG)

(Xi) = {N(R1), N(R2), ..., N(RD), U, Av}, (for single loop CDFG)

(Xi) = {N(R1), N(R2), ..., N(RD), U1, U2, ..Un, Av}, (for n-times nested loop CDFG)

9.2.2 Evaluation models

In the proposed approach the Trojan secured design cost is evaluated based on the area

and latency of the design where each design solution comprises of hardware resource con-

figuration, loop unrolling factor and vendor allocation mode. This section discusses the

evaluation models of total design area, execution latency and design cost.

Area model

Total area consumed (ADMR
T) by a resource set is evaluated as:

ADMR
T =

2∑
j=1

m∑
i=1

(
A
(
R

Vj

i

)
×N

(
R

Vj

i

))
, (9.1)

It is assumed there are 3PIP cores of minimum 2 distinct vendors that are available in

the module library to achieve distinctness. The resource type Ri comprises of functional

resources (such as adder, multiplier etc.), internal storage elements (latch, register), in-

terconnecting units (multiplexer and demultiplexer), and comparator (for error detection).

128

The total design area is assessed with respect to 90 nm CMOS-based technology node.

Latency model

The execution latency is evaluated after derivation of the delay model using the following

two cases:

Single loop CDFG: When the input DSP application have a single loop the total no. of

CSs is derived as:

CDMR
T =

(
CDMR

body ∗
[
I

U

]floor)
︸ ︷︷ ︸

CSs for unrolled loop

+
(

(ImodU) ∗ CDMR
first

)
︸ ︷︷ ︸

CSs for sequential loop

(9.2)

Hence the execution latency is calculated as:

LDMR
T = ∆ ∗ CDMR

T (9.3)

where, ‘∆’ is the latency of one CS in nanoseconds. The total execution latency is assessed

with respect to 90 nm CMOS-based technology node.

DFG and Nested Loop CDFG: When the input DSP application either have no loop

or have nested loop the total no. of CSs is derived as:

LDMR
T =

CS=max∑
CS=1

Max
(
D
(
R

Vj

i

)
, ..D

(
R

Vj

k

)
, ..D

(
R

,Vj

i

)
, ..D

(
R

,Vj

k

))CS

(9.4)

where, 1 ≤ i ≤ k, resources in original unit and duplicate unit is labeled as Ri and R′i

respectively and Vj indicates vendor type of the resources.

Fitness model

The fitness function (considering execution time and area consumption of a solution) is

formulated as:

Cf (Xi) = W1

(
ADMR

T −Acons

ADMR
max

)
+W2

(
LDMR
T −Lcons

LDMR
max

)
. (9.5)

129

W1 andW2 are the user defined weights both kept at 0.5 during exploration to provide equal

preference. The equation above yield a normalized value of cost (between 0 and 1). Since

the objective of the proposed exploration approach is to satisfy the user constraints as well

as minimize the hybrid cost, hence a higher negative value indicates a more desirable/fitter

solution.

9.3 Proposed Methodology for Trojan Security Aware DSP

IP Core

The proposed Trojan security methodology uses PSO driven DSE process for generating

an optimal Trojan secured schedule based on area-delay constraint (shown in Fig. 9.3). A

Trojan secured schedule is obtained as follows: a) duplicate all the operations of original

CDFG to form a duplicate one, which together is called ‘dual modular redundant system’ b)

Perform scheduling of operations of DMR system to obtained scheduled DMR c) Finally,

perform hardware allocation of operations of DMR schedule based on proposed Trojan

security allocation rules (i.e. assigning hardware from distinct/multiple vendors to similar

operations of original and duplicate unit).

User constraints
(Area, Delay)

Two distinct
vendors: V1 & V2

Nested loop

DSP

application
Trojan

Secured
DSP/MP IP

core

Cost
Evaluation

Screening of loop
unrolling factor

PSO-DSE Block

Exploring optimal
vendor allocation

Exploring optimal

Datapath configuration

Exploring optimal

Loop Unrolling factor

Trojan Detection Block

DMR Design

Datapath

configuration

Screened UF:
UF1UF2UF3……UFN

Four Vendor
Allocation modes

1. Mv=00

2. Mv=01

3. Mv=10

4. Mv =11

Figure 9.3: Overview of proposed low-cost Trojan secured design

130

Input –value of ‘I’(Total no. of loop iteration)
Output –screened set of unrolling factor (U)
1. Begin

// Screening of U//
2. int k = 0
3. For U=2 to I Do
3.1 IF ((I mod U < (U/2)) && (U <= I/2)) Then

//Add Uinto the accepted U list//
3.2 Accepted U [k] = U
3.3 k++
3.4 End IF
3.5 End For
4. End

Figure 9.4: Algorithm for preprocessing of unrolling factors

9.3.1 Particle encoding

The proposed methodology presents a novel encoding scheme for the particle which com-

prises of resource configuration (~Rn), unrolling factor (U) for single loop applications,

iteration counts (U1, U2) for nested loop applications and vendor allocation procedure type

(Av). Therefore, a particle position (candidate design solution) is labeled as Xi for:

Xi = (~Rn, U, Av) (for single loop CDFG);

Xi = (~Rn, U1, U2, ..Un, Av) (for nested loop CDFG).

9.3.2 Preprocessing of unrolling factor candidates

Preprocessing (screening) of unrolling factor candidates that do not form part of an opti-

mal solution during exploration is extremely crucial. Some unrolling factors such as the

ones which yield large trailer loops are potential sources for greater delay due to multiple

sequential loops involved. Further, it is established in [55], that performance is not a mono-

tonically increasing function of unrolling factor value, i.e., for large unrolling factor values;

therefore, the performance improvement is found marginal. The corresponding algorithm

is shown in Fig. 9.4.

9.3.3 Designing DMR schedule

This section describes how to generate DMR schedule of an DSP application available in

the form of a ‘C-code’ or transfer function.

131

for(i=0; i<M; i=(i+2)) // M = order of FIR filter

{

 y(n)+=hi*x(n-i);

 y(n)+=hi+1*x(n-(i+1));

}

 (a)

+

*

+
*

1

3
2

4

+ 5

< 6

h0

h1 x(n-1)

x(n) i 2

M

y(n)

(b)

Figure 9.5: Corresponding to the FIR application: (a) the C-code for unrolling factor 2 ,
(b) equivalent CDFG for unrolling factor 2

A FIR application is used to demonstrate the Trojan secured design process. The

generic equation of FIR filter can be expressed as follows:

y(n) =
M∑
i=0

hi ∗ x(n− i), (9.6)

where M is the filter order of FIR, hi is the FIR coefficient, x(n) is input impulse and y(n)

is output impulse. Using the above equation, the FIR filter for unrolling factor can be

represented as,

y(n) = h0 ∗ x(n) + h1 ∗ x(n− 1) (9.7)

The corresponding C-code of FIR application is shown in Fig. 9.5(a). For unrolling

factor 2, the corresponding CDFG of FIR is shown in Fig. 9.5(b).The blue node indicates

multiplier, the green node indicates adder and the orange node indicates comparator. The

next step is to construct the DMR of the application. In order to obtain DMR CDFG,

complete duplication of all the unrolled operations is performed. The unrolling factor is

obtained from the candidate design solution Xi. For example, the DMR of FIR filter for

unrolling factor 2 is shown in Fig. 9.6, where UOG indicates operations of the original unit

and UDP indicates operations of the duplicate unit.

132

UDP

+

*

+
*

1'

3’
2’

4’

+ 5’

< 6’

h0

h1 x(n-1)

x(n) i 2

M

y(n)

+

*

+
*

1

3
2

4

+ 5

< 6

h0

h1 x(n-1)

x(n) i 2

M

y(n)

UOG

Figure 9.6: DMR CDFG of FIR benchmark for unrolling factor 2

After obtaining the DMR CDFG, the next step is to schedule all the operations of the

original and duplication unit simultaneously based on resource configuration. The resource

configuration is obtained from the candidate design solutionXi. Once the scheduling of the

DMR is performed the next step is to employ allocating 3PIP cores imported from different

vendors. In this context, four distinct vendor allocation rules are proposed.

9.3.4 Distinct vendor allocation rules

In order to detect Trojans a minimum of two vendors is always needed to provide dis-

tinctness. However, technique of usage of the two vendors during allocation inside the

DMR scheduling (i.e. assignment process of each vendor IPs inside the system during

allocation) dictates the final latency and area of the entire system. This is because same

resource type/IP from two different vendors have different area and delay. Further, it is as-

sumed that the IP characteristics from vendors (V1 and V2) are as follows: Multiplier and

adder provided by vendor V1 has area=‘2468au’ & ‘2034au’, latency=‘10000 ns’ & ‘265

ns’; assuming 1 au = 1 transistor) while multiplier and adder provided by vendor V2 has

area=‘2464au’ & ‘2032au’, latency=‘11000 ns’ & ‘270 ns’ respectively. The values of area

and delay of modules assumed is with respect to 90 nm technology scale. Hence, merely

using distinctive vendor assignment for detection without probing into the procedure of al-

location (assignment) of vendor type in DMR system may lead to skipping of an alternate

better solution in the context of DSE of Trojan secured schedule. Therefore, exploration of

133

an additional dimension ‘Av’ (indicating allocation procedure of IP’s from different vendor

type) which can either be in one of the following distinct vendor allocation modes, mode

1:‘00’ or mode 2:‘01’ or Type 3:‘10’ or Type 4:‘11’ is incorporated in the particle encoding

along with resource array. The value of ‘Av’ as ‘00’ or ‘01 or ‘10’ or ‘11’ is interpreted as

follows:

Rule 1: vendor allocation procedure for Av = 00

• Alternate vendor assignment to operations in control step of a unit (Example, in Fig.

9.7(a), operation 1 & 3 assigned alternatively to ‘V1’ and ‘V2’. Next multiplication

if any would have been assigned to ‘V1’ alternately).

• Similar operations of both UOG and UDP being assigned to different vendors.

Rule 2: vendor allocation procedure for Av = 01

• All operations of a specific unit being strictly assigned to resources of same vendor

type (Example, in Fig. 9.7(b),all operations of original unit is assigned to vendor

‘V1’ and all operations of duplicate unit is assigned to vendor ‘V2).

• Similar operations of both UOG and UDP being assigned to different vendors.

Rule 3: vendor allocation procedure for Av = 10

• All operations within critical path of a specific unit being strictly assigned to a vendor

type while all operations of non critical path through alternate vendor type (Example,

in Fig. 9.7(c),all operations within critical path of original unit is assigned to vendor

‘V1’ and all operations within critical path of original unit is assigned to vendor ‘V2).

• Operations of critical path of UOG and UDP are assigned to distinct vendors.

• Similar operations of both UOG and UDP being assigned to different vendors.

134

+

*

+

* 1

V1
3

V1

V2

2

4

+ 5

< 6

V1

V1

V1

UOG

h0 x(n) h1 x(n-1)

i 2

M

y(n)
+

*

+

* 1’
V2
3’

V2

V1

2’

4’

+ 5’

< 6’

V2

V2

V2

UDP

h0 x(n) h1 x(n-1)

i 2

M

y(n)

cs1

cs2

cs3

cs4

(a)

+

*

+

* 1

V1
3

V1

V1

2

4

+ 5

< 6

V1

V1

V1

UOG

h0 x(n) h1 x(n-1)

i 2

M

y(n)
+

*

+

* 1’
V2
3’

V2

V1

2’

4’

+ 5’

< 6’

V2

V2

V2

UDP

h0 x(n) h1 x(n-1)

i 2

M

y(n)

cs1

cs2

cs3

cs4

(b)

+

V1

*

+

* 1

V1
3

V2

2

4

+ 5

< 6

V2

V2

V1

UOG

h0 x(n) h1 x(n-1)

i 2

M

y(n)
+

*

+

* 1’
V2

3’

V2

V1

2’

4’

+ 5’

< 6’

V1

V1

V2

UDP

h0 x(n) h1 x(n-1)

i 2

M

y(n)

cs1

cs2

cs3

cs4

(c)

+

*

+

* 1

V1
3

V1

V2

2

4

+ 5

< 6

V1

V1

V2

UOG

h0 x(n) h1 x(n-1)

i 2

M

y(n)
+

*

+

* 1’
V2
3’

V2

V1

2’

4’

+ 5’

< 6’

V2

V2

V1

UDP

 h0 x(n) h1 x(n-1)

i 2

M

y(n)

cs1

cs2

cs3

cs4

(d)

Figure 9.7: Scheduling and Binding of FIR for: (a) Xi = 2(+), 2(*), 2(<), U=2, I=4,
Av = 00; LDMR

T = 45080 ns and ADMR
T = 13064 au, (b) Xi = 2(+), 2(*), 2(<), U=2, I=4,

Av = 01; LDMR
T = 43080 ns and ADMR

T = 17996 au, (c) Xi = 2(+), 2(*), 2(<), U=2, I=4,
Av = 10; LDMR

T = 45080 ns and ADMR
T = 13064 au, (d) Xi = 2(+), 2(*), 2(<), U=2, I=4,

Av = 11; LDMR
T = 45070 ns and ADMR

T = 15096 au

Rule 4: vendor allocation procedure for Av = 11

• Alternate vendor assignment to operations belonging to subsequent unrolled nested

loop iterations within a unit(Example, in Fig. 9.7(d), all operations within first loop

iteration of original unit is assigned to vendor ‘V1’ and all operations within second

loop iteration of original unit is assigned to vendor ‘V2).

• Similar operations of both UOG and UDP being assigned to different vendors.

135

9.3.5 Example of designing a Trojan secured single loop application

Now consider the Trojan secured DMR CDFG of FIR is designed based on candidate so-

lution Xi = 2(+), 2(∗), 1(<), U = 2, Av = 00 (illustrated in Fig. 9.7(a)). This indicates

the DMR CDFG of FIR filter is unrolled two times, scheduled based on two adders, two

multipliers & one comparator, and vendor hardware allocation is performed using mode

‘00’ . The corresponding execution delay and area of the design is: LDMT
T = ‘45080 ns’and

ADMR
T = ‘13064 au’. As shown in Fig. 9.7(a) based on vendor allocation rule in mode 00,

operations of UOG are allocated to vendor in an alternative way in a CS. For example, opn 1

and opn 3 of UOG are allocated alternatively to hardware of ‘V1’ and ‘V2’ in control step 1.

Further, opn 1’ and opn 3’ of UDP are allocated to hardware of ‘V2’ and ‘V1’ respectively.

If the same DMR CDFG of FIR filter is designed based on candidate solution Xi =

2(+), 2(∗), 1(<), U = 2, Av = 01 (illustrated in Fig. 9.7(b)), the corresponding execution

delay and area of the design is: LDMT
T = ‘43080 ns’and ADMR

T = ‘17996 au’. As shown in

Fig. 9.7(b) based on vendor allocation rule in mode 01, all operations of UOG are allocated

to hardware of V1 and all operations of UDP are allocated to hardware of ‘V2’.

If the same DMR CDFG of FIR filter is designed based on candidate solution Xi =

2(+), 2(∗), 1(<), U = 2, Av = 10 (illustrated in Fig. 9.7(c)), the corresponding execution

delay and area of the design is: LDMT
T = ‘45080 nsand ADMR

T = ‘13064 au’. As shown in

Fig. 9.7(c) based on vendor allocation rule in mode 10, all the critical path operations i.e.

opn 1, opn 2 and opn 4 of UOG (marked in dotted circle) are allocated to hardware of ‘V1’

and all non-critical path operations i.e. opn 3, opn 5 and opn 6 of UOG are allocated to

hardware of ‘V2’. Hardware of distinct vendor is allocated in UDP .

If the same DMR CDFG of FIR filter is designed based on candidate solution Xi =

2(+), 2(∗), 1(<), U = 2, Av = 11 (illustrated in Fig. 9.7(d)), the corresponding execution

delay and area of the design is: LDMT
T = ‘45070 nsand ADMR

T = ‘15096 au. As shown

in Fig. 9.7(d) based on vendor allocation rule in mode 11, alternate vendor allocation is

performed to the operations belonging to subsequent unrolled loop iterations, for example

all operations of first unrolled loop i.e. opn 1, opn 2, opn 5 and opn 6 of UOG are allocated

to hardware of ‘V1’ and all operations of second unrolled loop i.e. opn 3, and opn. 4 of

136

UOG are allocated to hardware of ‘V2’. Hardware of distinct vendor is allocated in UDP .

9.4 Generating Low-Cost Trojan Secured Design through

PSO-DSE

This section discuss the motivate and the process to generate a low-cost design for Trojan

secured design through PSO-DSE approach. Module library, behavioral description of

CDFG and predefined user parametric constraints for area and delay, control parameters

of PSO (such as inertia weight, acceleration coefficients, and swarm size ‘p’), maximum

iteration count for the CDFG and the preprocessing algorithm for unrolling factors are

provided as inputs to the proposed DSE process (as shown in Fig. 9.8).

9.4.1 Justification of PSO

The module library of an HLS tool consist of maximum available resources of each re-

source type (such as adder, subtractor, multiplier, comparator, mux, registers etc.). How-

ever, among all the possible combinations of resources identifying the low-cost resource

configuration for the corresponding application is a challenging and time consuming pro-

cess. Additionally, as the proposed approach is capable of handling the single and nested

loop-based applications, therefore loop unrolling factor plays an important significance in

dictating the final area and delay of a design. Finally, the Trojan secured HLS demands

distinct vendor allocation to hardwares of operations of original and duplicate units. An

efficient vendor allocation procedure for hardware in DMR system also affects the final

area-delay of the solution. Therefore, during the design of a Trojan security aware schedule

for CDFGs, simultaneously considering the effects of loop unrolling and vendor allocation

procedure on its area-delay trade-off is equally critical which increase the search space

exponentially. The detection process of hardware Trojan during HLS mandates additional

hardware, which upon deployment may not abide by the user area constraint provided.

Further, incorporating additional logic for Trojan detection during HLS also results in extra

delay for processing output, which again may not abide by the user delay constraints spec-

137

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Module Library
with

vendor details

User
Constraints

Preprocessing
of

unrolling Factors

CDFG
/ DFG

Maximum
Iteration

Number (I)

Control parameter e.g.
Swarm size, # iterations,
Acceleration coefficient

Input Block

Start

Initialize, d = 1, i = 1

Determine Global and Local best particle cost and position

Particle Encoding ((Rn, U) and Vendor allocation Procedure (A
v
))

0 - alternate vendor assignments in a unit
1 - same vendor assignment in a unit

X
i
 = (Rn, U, A

v
)

Build DMR (SDFGDMR)

Assign hardware
on basis of

proposed rules

Trojan Detection

Design

Delay estimation
from scheduled graph

Area & Delay
calculation

Fitness Evaluation

Cost

Computation

d<D?

C
y

i<C
x

i?

Update Local best Particle position

i < n ?

Update global best Particle position

Perform Mutation on every local best resource configuration
and update global best resource configuration

Z?

Optimal Resource con guration and Unrolling

Factor for Trojan secured Datapath = X
gb

Stop

Velocity Calculation
Block

Perform resource
Clamping

Perform velocity
Clamping

Change X
i

+

No

Yes

Yes

No

No

Yes

PSO-DSE for generation of
Optimized Trojan Secured Datapath
and Unrolling Factor Block

Figure 9.8: Proposed design flow of low-cost Trojan secured DMR schedule

ified. Therefore, it becomes mandatory to consider the effect of extra delay and hardware

cost during DSE in HLS. PSO is a meta-heuristic search methodology where the parti-

cles move through a multidimensional search space and it also provides enough options to

perform guided/adaptive searching while preserving the exploration-exploitation balance.

Therefore PSO based DSE is perform to explore the low-cost Trojan secured design.

138

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

9.4.2 Initialization of Particle

In this current proposed approach, a candidate design solution is represented through a

particle. The position of a particle in PSO as defined earlier in section 9.3.1. The particle

position ‘Xi’ is given as follows:

Xi = (N(R1), N(R2), ..N(RD), U, Av) . (9.8)

The particles are uniformly distributed over the design space and are initialized as fol-

lows:

X1 = (min(R1),min(R2), ..min(RD),min(U), 00) (9.9)

X2 = (max(R1),max(R2), ..max(RD),max(U), 10) (9.10)

X3 =

(
min(R1) +max(R1)

2
, ...

min(RD) +max(RD)

2
,
min(U) +max(U)

2
, 01

)
.

(9.11)

However, rest of the particles (X4...Xn) are initialized by the following:

Xn =

(
min(R1) +max(R1)

2
± α, min(R2) +max(R2)

2
± α, ...

min(Rd) +max(Rd)

2
± α, min(U) +max(U)

2
± α, random(Av)) . (9.12)

where, α is a random integer between min and max of particular resource type or un-

rolling factor.

9.4.3 Particle Movement using Velocity

In PSO-DSE, each dimension (d) of a particle position Xi (except the last dimension) is

updated using the following function [55]:

R+
di

= Rdi + V +
di
. (9.13)

139

The variable V +
di

is updated by eqn. 9.14 as follows:

V +
di

= ωVdi + b1r1[Rdlbi
−Rdi] + b2r2[Rdgb −Rdi] (9.14)

The local best (Xlbi) and global best (Xgb) particle positions are updated using eqn. 9.15

and 9.16:

Xlbi = R1lbi
, ...RD−1lbi , U (9.15)

Xgb = R1gb , ...RD−1gb , U (9.16)

Finally, a low-cost DMR schedule (SDFGDMR) (with distinct vendor assignment rule

to detect the hardware Trojan), is generated corresponding to a particle positions/configurations.

9.4.4 Velocity clamping

The velocity clamping adopted from [55] is performed, when a particle’s exploration drift

(V +
di

) crosses the ±V max
di

as follows:

V +
di

=


+V max

di
if V +

di
> +V max

di

−V max
di

if V +
di
< −V max

di

V +
di

else

(9.17)

In the above expression, the value of ±V max
di

is the following:

V +
di

=

(
±max(N(Rd))−min(N(Rd))

2

)
. (9.18)

9.4.5 Terminating condition

The proposed methodology terminates when a) the maximum number of iterations exceeds

100, or when no improvement is visible in Xgb over ‘δ’ number of iterations(where δ =10).

Note: The corresponding experimental results of the proposed methodology is ex-

plained in Chapter 10 Section 10.6.

140

9.5 Summary

This chapter presents a novel low-cost methodology for optimized Trojan secured schedul-

ing at the behavioral level for control data flow graphs (single and nested loop) representing

DSP kernels. It is capable of providing secured information processing during high-level

synthesis. More explicitly, the novel contributions of this chapter are as follows: (a) a

model for execution delay determination of a DMR system for Trojan secured CDFG (b)

particle encoding scheme that concurrently explores schedule configuration, unrolling fac-

tor and vendor allocation procedure (c) methodology for area-delay trade-off using PSO

during optimization of secured schedule. Results indicated improvement in the quality of

final solution obtained compared to a similar related work [46].

141

Chapter 10

Results and Analysis

This chapter describes the complete experimental results and detailed analysis of all the

proposed methodologies explained in the previous chapters. This chapter is divided into

seven sections, where each section presents the results of the corresponding methodology.

All the experimental results are included in one chapter because the readers can observe

the improvements/changes in the results when better or equivalent defense mechanisms are

used. (NOTE: All the abbreviations and taxonomy are listed in ‘Acronyms’ and ‘Nomen-

clature’ section respectively.)

10.1 Experimental Results: Single-Phase IP Core Water-

marking of CE Systems

This section explains the experimental results of the proposed single-phase IP core water-

marking approach of CE systems explained in Chapter 3 and the improvements obtained

compared to two similar approaches [30, 51]. The proposed approach [30] and [51] is im-

plemented in java and executed on Intel Core-i5-3210 M CPU with 4GB DDR3 memory

at 2.5 GHz. 15 nm technology scale based on NanGate library [37] is used to determine

the area and latency of the benchmarks. The module library information of major function

unit in terms of area and delay is shown in Table 10.1. The proposed approach is tested and

verified on several benchmarks, such as Differential Equation, Finite Impulse Response Fil-

143

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

ter, Fast Fourier Transformation, Autoregressive Filter, Mesa Horner and Infinite Impulse

Response Butterworth Filter.

Table 10.1: Used module library

Major functional unit Size Area
(µm2)

Latency
(ps)

Adder 16 bit 18.8744 66.2428
Substractor 16 bit 22.0192 79.3910
Multiplier 16 bit 75.4976 264.9712
Register 16 bit 0.7864 25.9108

Mux 2:1 0.6390 12.7494
Demux 1:2 0.7373 22.4165

10.1.1 Analysis of design cost

The design cost of the proposed approach evaluated in terms of two crucial design param-

eters i.e. design area and execution latency, is calculated based on the following function

[30, 51]:

Cf (Xi) = w1
LT

Lmax

+ w2
AT

Amax

(10.1)

The total design area and execution latency of the watermarked design consist of area

and latency of functional units, registers, multiplexers and demultiplexers (shown in Table

10.1). To provide equal weightage on both the design parameters the value to w1 and w2 is

set as 0.5. As the calculated design cost shown in Eq. 10.1 is a hybrid normalized function

of design area and execution latency, therefore it is unit less. It does not indicate cost in

monetary term.

10.1.2 Comparison of design cost

This section discusses the design cost comparison of the proposed approach w.r.t [30] and

[51].

144

Table 10.2: Comparison of proposed approach with [30] in terms of design area, execution
latency and design cost.

Benchmarks Resource
configuration

Design Area (µm2) Execution latency (ps) Design cost

Proposed [30] Proposed [30] Proposed [30]

Diff Eq. 1(+), 1(-), 2(*), 4(UF) 205.06 226.88 2595.11 2595.11 0.67 0.71
FIR 1(+), 2(*), 2(UF) 63.89 84.54 794.91 794.91 0.44 0.49
FFT 2(+), 1(-), 2(*), 2(UF) 146.32 168.15 4555.09 4555.09 0.51 0.54
ARF 1(+), 2(*) 290.18 312.01 2441.10 2441.10 0.83 0.86

MESA 1(+), 2(*) 161.21 175.76 1332.40 1332.40 0.85 0.89
IIRB 1(+), 2(*) 132.90 154.73 885.40 885.40 0.78 0.84

Table 10.3: Comparison of proposed approach with [51] in terms of design area, execution
latency and design cost.

Benchmarks Resource
configuration

Design Area (µm2) Execution latency (ps) Design cost

Proposed [51] Proposed [51] Proposed [51]

Diff Eq. 1(+), 1(-), 2(*), 4(UF) 205.06 224.53 2595.11 2595.11 0.67 0.71
FIR 1(+), 2(*), 2(UF) 63.89 84.54 794.91 794.91 0.44 0.49
FFT 2(+), 1(-), 2(*), 2(UF) 146.32 165.79 4555.09 4555.09 0.51 0.54
ARF 1(+), 2(*) 290.18 312.01 2441.10 2441.10 0.83 0.86

MESA 1(+), 2(*) 161.21 173.41 1332.40 1332.40 0.85 0.88
IIRB 1(+), 2(*) 132.90 154.73 885.40 885.40 0.78 0.84

Figure 10.1: Graphical representation of design cost comparison between proposed single-
phase watermark approach, [30] and [51].

For comparison purpose a 60-digit signature is implanted in the design through the pro-

posed approach [30] and [51]. Same unrolling factor and resource constraints for all the

three approaches are used to generate the watermarked IP core design. The proposed ap-

145

Table 10.4: Comparison of proposed approach with [51] in terms of design area, execution
latency and design cost.

Benchmarks # of storage hardware (register)

Pre-watermark After proposed watermark After [30] After [51]

Diff Eq. 12 12 15 14
FIR 3 3 6 6
FFT 4 4 7 6
ARF 8 8 11 11

MESA 4 4 7 6
IIRB 5 5 8 8

proach when compared with [30] and [51] gave substantially better result in terms of design

cost. Table 10.2 and Table 10.3 depict the comparison of the proposed approach with [30]

and [51] respectively in terms of design area, execution latency and design cost. The reason

being the proposed approach yield zero hardware (register) overhead while preserving the

same latency for all the tested benchmarks. This is because the proposed approach embeds

watermarking constraints through priority based scheduling transformations, thus incurring

zero hardware overhead and may also incur negligible latency overhead. On the contrary,

both [30] and [51] embeds watermarking constraints during register allocation utilizing

more hardware area due to overhead in total register count. The graphical representation of

cost comparison between proposed approach, [30] and [51] is shown in Fig. 10.1.

A comparison drawn between pre-watermarked design, proposed watermark design,

watermark design obtained by [30] and [51] in terms of storage hardware (register) is re-

ported in Table 10.4. As shown in the table, the proposed approach does not add any

extra registers, hence the total register count remains same as pre-watermark design. Since

both [30] and [51] embeds watermark during register allocation in HLS thus increases total

register count of the design.

146

10.2 Experimental Results: Triple-Phase IP Core Water-

marking of CE Systems

This section discusses the experimental results of the proposed triple-phase IP core water-

marking approach of CE systems explained in Chapter 4 and also discusses the improve-

ments over two similar approaches [30, 51]. The original design before embedding any

constraint is termed as baseline design. Here, the baseline design, proposed approach [30]

and [51] are implemented in java and executed on AMD A8- 4500M APU with 4 GB

DDR3 memory at 1.9GHz. 15 nm technology scale based on NanGate library [37] is used

to determine the area and latency of the benchmarks. The proposed approach is capable

of handling any medium to large size application ranging from 40 components (e.g. EWF)

to excess of 100 components (e.g. JPEG IDCT). It is tested and verified on several bench-

marks like ARF, DCT, DWT, EWF, IDCT, MPEG motion vector and JPEG. The proposed

approach is highly robust for complicated designs such as JPEG IDCT, MPEG MV etc.

This section is divided into three sub-sections: (i) evaluation of robustness, (ii) evalua-

tion of tamper-tolerance ability and (iii) evaluation of design cost of proposed triple-phase

watermark.

10.2.1 Evaluation of robustness

The strength of robustness of a watermark design is evaluated through probability of co-

incidence metric. It calculates the probability of generating same design before and after

implanting watermark, thus indicating the strength of watermark. Lower Pc value indi-

cates a higher strength of watermark. The metric is partially adopted from [30] and can be

represent as:

Pc =
(

1− 1

c ∗
∏D

i=1N(Ri)

)w
(10.2)

Table10.5 reports the comparative study of the probability of coincidence between pro-

posed approach, [30] and [51] for signature size 80. It can be observed from the table that

the proposed approach achieves 3.2 ∗ 1027 times lower Pc value in average as compared

147

Table 10.5: Comparison of probability of coincidence between proposed, [30] and [51] for
W=80

Benchmarks # of register
before watermark

Pc # of times lower Pc of
proposed than [30] and [51]Proposed [30] [51]

ARF 8 3.3 ∗ 10−27 2.2 ∗ 10−5 2.2 ∗ 10−5 6.9 ∗ 1021

DCT 8 3.7 ∗ 10−21 2.2 ∗ 10−5 2.2 ∗ 10−5 6.1 ∗ 1015

DWT 5 8.3 ∗ 10−35 1.7 ∗ 10−8 1.7 ∗ 10−8 2.1 ∗ 1026

EWF 4 6.8 ∗ 10−39 1.0 ∗ 10−10 1.0 ∗ 10−10 1.5 ∗ 1028

IDCT 8 3.3 ∗ 10−27 2.2 ∗ 10−5 2.2 ∗ 10−5 6.9 ∗ 1021

MPEG MV 14 3.8 ∗ 10−31 2.6 ∗ 10−3 2.6 ∗ 10−3 6.9 ∗ 1027

JPEG IDCT 12 1.9 ∗ 10−23 9.4 ∗ 10−4 9.4 ∗ 10−4 5.0 ∗ 1019

1E-39

1E-36

1E-33

1E-30

1E-27

1E-24

1E-21

1E-18

1E-15

1E-12

1E-09

1E-06

0.001

1

ARF DCT DWT EWF IDCT MPEG JPEG

P
c

Benchmark

Phase 1 & 2 Phase 3 Phase 1, 2 & 3 [30] & [51]

Figure 10.2: Graphical representation of Pc comparison between proposed approach, [30]
and [51].

to [30] and [51]. This indicates the higher robustness of the watermarked design. Low Pc

value is desirable which is achievable by incrementing the watermark size. For example,

the probability of coincidence of MPEG benchmark is 7.7∗10−18, 1.5∗10−23 and 3.8∗10−31

for watermark sizes 45, 60, 80 respectively. Though lower Pc value is desirable but not at

the cost of higher design overhead. However, too big a size of watermarking constraints

may result in register overhead thereby increasing design cost. It is observed through exper-

iment that the desirable maximum range of signature size should be 80. Fig.10.2 shows the

148

Table 10.6: Comparison of total number of possible signature combinations between pro-
posed, [30] and [51]

Signature size
(digits)

of possible signature
combinations

of times higher tamper tolerance
ability of proposed than [30] & [51]

Proposed [30] [51] [30] [51]

15 4.8 ∗ 1012 32768 10.7 ∗ 108 14.5 ∗ 107 4421

30 2.3 ∗ 1025 1.1 ∗ 109 1.2 ∗ 1018 2.1 ∗ 1016 19.5 ∗ 106

45 1.1 ∗ 1038 3.5 ∗ 1013 1.2 ∗ 1027 3.0 ∗ 1024 8.6 ∗ 1010

60 5.1 ∗ 1050 1.2 ∗ 1018 1.3 ∗ 1036 4.4 ∗ 1032 3.8 ∗ 1014

80 4.1 ∗ 1067 1.2 ∗ 1024 1.5 ∗ 1048 3.4 ∗ 1043 2.8 ∗ 1019

comparison of Pc for each watermarking phases (1st, 2nd and 3rd) of proposed approach

with [30] and [51]. It can be observed that the robustness of the proposed approach with

the combination of three watermarking phases is significantly higher than [30] and [51].

10.2.2 Evaluation of tamper-tolerance ability

A watermark is considered to be highly tamper tolerant if finding the correct signature

from a design is extremely complex and time-consuming. For a large signature size with

multiple signature variables, the possible signature combination will be huge. Therefore, in

such cases identifying the correct watermark through brute-force search is time consuming

and cost expending process. The total number of possible signature combinations can be

calculated by the following expression:

Tt = vw (10.3)

Table 10.6 reports the comparison of the total number of possible signature combinations

for different watermark size (i.e. 15, 30, 45, 60 and 80) between the proposed approach,

[30] and [51]. It can be observed from the table that the proposed approach achieves higher

Tt value for all watermark size compared to [30] and [51]. Ensuring higher tamper tolerance

ability.

149

Table 10.7: Comparison of design area, execution latency and design cost between pro-
posed and baseline design

Benchmarks Resource
Configuration

Area (µm2) Latency (ps) Cost Cost overhead
w.r.t. baselineBaseline Proposed Baseline Proposed Baseline Proposed

ARF 5(+), 3(*) 191.10 209.19 2.67 3.11 0.77 0.87 12.98
DCT 6(+), 3(*) 250.87 263.45 3.95 4.19 0.80 0.84 5.00
DWT 2(+), 4(*) 162.79 165.94 1.98 2.08 0.78 0.81 3.85
EWF 3(+), 2(*) 184.81 197.39 3.24 3.82 0.85 0.95 11.76
IDCT 5(+), 3(*) 246.15 253.23 3.77 4.16 0.78 0.83 6.41

MPEG 3(+), 8(*) 280.76 287.05 2.44 2.59 0.73 0.76 4.11
JPEG 5(+), 5(*) 747.90 756.55 14.90 15.92 0.72 0.76 5.56

Table 10.8: Comparison of design area, execution latency and design cost between pro-
posed, [30] and [51]

Benchmarks Area (µm2) Latency (ps) Cost

Proposed [30] [51] Proposed [30] [51] Proposed [30] [51]

ARF 209.19 225.71 223.35 3.11 3.11 3.11 0.87 0.92 0.90
DCT 263.45 290.98 288.62 4.19 4.51 4.51 0.84 0.94 0.92
DWT 165.94 182.37 180.01 2.08 2.43 2.43 0.81 0.93 0.92
EWF 197.39 209.19 204.47 3.82 3.89 3.89 0.95 0.99 0.98
IDCT 253.23 280.96 278.40 4.16 4.34 4.34 0.83 0.91 0.89

MPEG 287.05 309.85 309.85 2.59 2.77 2.77 0.76 0.81 0.81
JPEG 756.55 783.29 783.29 15.92 16.52 16.52 0.76 0.79 0.79

10.2.3 Evaluation of design cost

The design cost of the proposed approach evaluated in terms of two crucial design param-

eters i.e., design area and execution latency are calculated based on Eq.10.1. Table 10.7

reports the comparison of total hardware area, execution latency and design cost between

baseline design and the proposed approach. Since the proposed watermarking approach

(containing 7 variable signatures) may impose area overhead nominally compared to an

un-protected design, thus the power overhead of the design may increase trivially. There-

fore, system reliability as function of power is marginally affected sometimes. However,

the robustness of the system due to triple phase and 7 variables is guaranteed to increase

manifold.

Table 10.8 reports the comparison of total hardware area, execution latency and design

cost between the proposed approach [30] and [51]. It can be observed from the table that

150

0

0.2

0.4

0.6

0.8

1

1.2

ARF DCT DWT EWF IDCT MPEG JPEG

C
o

st

Benchmark

Proposed [30] [51]

Figure 10.3: Graphical representation of design cost comparison between proposed triple-
phase watermark approach, [30] and [51].

the proposed approach instead of providing strong robustness achieves better design cost

than the two other approaches. Fig.10.3 shows the comparison of design cost between the

proposed approach, [30] and [51]. For all the tested benchmarks, the average reduction % in

hardware area, execution latency and design cost are 6.65%, 5.37% and 6.25% respectively

as compared to [51] and the average reduction % in hardware area, execution latency and

design cost as 7.44%, 5.37% and 7.38% respectively compared to [30].

Table 10.9 reports the comparison of total storage hardware used in the baseline, pro-

posed design, [30] and [51]. Table 10.9 also reports the complexity of the watermarking

process in terms of implanting time. As evident from Table 10.9, the proposed approach

incurs slightly higher watermark implanting time than [30] and [51] due to triple phase

watermark insertion. However, at the cost of nominal increase in runtime, this approach

offers stronger robustness (proof of ownership) and greater tamper tolerance ability than

other similar approaches.

Despite implanting watermark in three different phases the proposed approach is ca-

pable of achieving significant reduction in design cost than other approaches due to the

following reasons:

151

Table 10.9: Comparison of storage hardware and watermark implanting time between pro-
posed, [30] and [51]

Benchmark # of storage hardware used Watermark implanting time
(ms)

Baseline Proposed [30] [51] Proposed [30] [51]

ARF 8 8 9 8 76 24 46
DCT 8 8 9 8 88 29 69
DWT 5 6 7 6 26 15 17
EWF 4 4 6 4 64 28 51
IDCT 8 9 10 9 87 31 62
MPEG 14 14 14 14 80 34 65
JPEG 12 12 12 12 138 68 109

1. In the proposed approach, among all the signature digits few digits are implanted

in register allocation phase while other digits are implanted the other two phases

(scheduling and FU allocation). On the contrary, in [30] and [51] all the signature

digits are implanted during register allocation phase. Therefore, for an 80 digits

signature, reported for embedding watermark, the proposed approach uses register

allocation based watermark (i, I, T, !) partially, while the remainder signature digits

are embedded through hardware allocation and scheduling (other two phases). On

the contrary, [30] and [51] employ register allocation based watermark for the entire

80 digit signature. [30] and [51] incur higher register overhead in most cases, thus

consumes more hardware area than the proposed approach.

2. The proposed approach uses multi-vendor concept during hardware allocation com-

pared to single vendor hardware allocation in [30] and [51], thus the proposed ap-

proach is more likely to have optimized (minimized) area and delay than [30] and

[51].

3. The proposed approach implants scheduling constraints (γ digits) in the non-critical

path of the design resulting in occasional or zero latency overhead in the watermarked

design. Finally, this contributes to achieve lower design cost for the proposed ap-

proach.

152

Table 10.10: Comparison of vendor allocation between proposed, [30] and [51]

Benchmark Total
operations

in the
application

Component allocation
based on multi-vendor

(proposed)

Component allocation
based on single-vendor

([30] & [51])

Proposed approach
(impact on latency)

Vendor
U1

Vendor
U2

Vendor
U1

Critical path
length
(in CS)

Non-critical path
length after G

insertion (in CS)

ARF 12(+), 16(*) 8(+), 10(*) 4(+), 6(*) 12(+), 16(*) 8 7
DCT 29(+), 13(*) 18(+), 8(*) 11(+), 5(*) 29(+), 13(*) 8 8
DWT 9(+), 8(*) 7(+), 5(*) 2(+), 3(*) 9(+), 8(*) 10 9
EWF 26(+), 8(*) 14(+), 4(*) 12(+), 4(*) 26(+), 8(*) 14 14
IDCT 29(+), 13(*) 17(+), 7(*) 12(+), 6(*) 29(+), 13(*) 6 5

MPEG 14(+), 14(*) 9(+), 7(*) 5(+), 7(*) 14(+), 14(*) 4 4
JPEG 75(+), 37(*) 44(+), 20(*) 31(+), 17(*) 75(+), 37(*) 8 5

Table 10.10 reports the details of component allocation to the operations of the appli-

cations for proposed approach, [30] and [51]. As evident from Table 10.10, the proposed

approach optimizes the component allocation through multi-vendor concept, where delay

of multiplier and adder from vendor U2 is less than delay of multiplier and adder from

vendor U1. On the contrary, for [30] and [51] component allocation of all the operations

is entirely done through a single vendor U1. The above explanation can be summarized

through the following execution latency (delay) models:

L
[30][51]
T =

N∑
n=1

Max(TA1), (TM1) (10.4)

Lproposed
T =

N∑
n=1

Max(TA1), (TM1), (TA2), (TM2) (10.5)

In the context of Eq. 10.4 and Eq. 10.5 Lproposed
T < L

[30][51]
T due to multi-vendor based

hybrid component allocation concept in proposed approach.

Table 10.10 also reports comparison between the length of the critical path of an appli-

cation and the length of the non-critical path after implanting ‘γ′ digits in terms of number

of CS. As evident from the table, the non-critical path length is always lesser or equal to

the critical path length for all the tested benchmarks. Therefore, no latency overhead is

achieved due to insertion of ‘γ′ digit.

153

10.3 Experimental Results: Symmetrical IP Core Water-

marking of CE Systems

This section discusses the experimental results of the proposed symmetrical IP core protec-

tion approach of CE systems explained in Chapter 5 and comparison with a non-symmetrical

approach (as no symmetrical IP core protection approach exists during HLS). Following

metrics are used to confirm the robustness and low overhead of the proposed approach:

• Cost of embedding seller watermark and buyer fingerprint in IP core design which

signifies quality of the solution.

• Hardware and storage overhead in terms of functional hardware units and extra reg-

ister required after embedding seller watermark and buyer fingerprint mark.

• Time consumed to create signature.

• Quality of signature in terms of security/strength.

• Impact of large seller signature and buyer signature on hardware area, latency and

embedding cost.

• Scalability of the approach to handle a large benchmark.

The result of the proposed approach is obtained for several benchmarks, namely ARF,

DCT, IDCT, BPF, FIR, MPEG motion vector and JPEG. This approach is highly robust for

complicated designs such as JPEG IDCT, MPEG MV etc. This section is divided into two

sub-sections: (i) result of proposed symmetrical protection approach in terms of latency,

hardware area, cost and security metric, and (ii) comparison of the proposed symmetrical

IP core protection with a non-symmetrical approach.

10.3.1 Result of the proposed approach in terms of design Cost, secu-

rity and implementation complexity

Table 10.11 shows the result of proposed symmetrical IP core protection approach in terms

of hardware area, execution latency and design cost (for F = 30 and W = 30). (Note: module

154

Table 10.11: Solution of symmetrically protected IP core design through the proposed
approach (F = 30 and W = 30)

Benchmarks Proposed
Solution

Total Area
(µm2)

Total Latency
(ps)

Cost

ARF
(nodes =28)

2(+), 4(*) 196.61 2.59 0.8393

DCT
(nodes =42)

4(+), 2(*) 223.35 3.80 0.8343

IDCT
(nodes =42)

4(+), 2(*) 224.13 3.73 0.8270

BPF
(nodes =29)

2(+), 2(*) 202.90 3.77 0.8787

FIR
(nodes =23)

4(+), 4(*) 180.09 1.86 0.7526

MPEG
(nodes =28)

3(+), 5(*) 224.13 2.38 0.6645

JPEG
(nodes = 33)

4(+), 4(*) 724.30 14.24 0.7349

Table 10.12: Probability of coincidence (Pc) as strength of watermark

Benchmarks
of registers

before
fingerprint

Pc

of watermark constraints (W)
W=10 W=20 W=30

ARF 8 0.26308 0.06921 0.01821
DCT 8 0.26308a 0.06921 0.01821
IDCT 9 0.30795 0.09483 0.0292
BPF 7 0.21406 0.04582 0.00981
FIR 8 0.26308 0.06921 0.01821

MPEG 14 0.47660 0.22715 0.10826
JPEG 12 0.41890 0.17548 0.07351

library comprises resources with respect to 15 nm technology scale adopted from NanGate

open source library [37]). The cost of each watermarked-fingerprinted IP core solution is

evaluated using Eqn. 5.3.

Table 10.12 reports the probability of coincidence(Pc) for the watermark in the pro-

posed approach. It measures the probability of generating the same colored solution with

155

the watermark signature and indicates the proof of ownership. The function for evaluation

of Pc is derived from [30] is defined as:

Pc = (1− 1/c)F (10.6)

As evident from the table 10.12, as the signature fingerprint strength increases, the Pc

decreases. So, in order to obtain a stronger proof of ownership, a larger size signature is to

be chosen.

Table 10.13 shows the impact of incrementing buyer fingerprint size on hardware area,

latency and embedding cost. In this experiment, the buyer fingerprint size is varied to

gauge its relative effect on various design metrics. Three different values of fingerprint size

is chosen viz. F = 10, F = 20 and F = 30. As evident from the results, the increment of

hardware area with increase in fingerprint strength is zero in most cases. This is because

in the proposed fingerprint signature encoding no variable except ‘z’ embeds fingerprint

constraint during register allocation phase (which in turn may add register overhead). Thus

likelihood of an increase in hardware area with fingerprint size is minimal. On the contrary,

the minimal increment of latency with the increase in fingerprint strength can be noted for

some benchmarks (either for F = 20 or F = 30). This increment is a result of adding more

fingerprint constraints during scheduling phase. However, the increment is very slight as

fingerprint constraints are embedded during operation conflict resolution in scheduling.

Consequently, minimal increase in cost with increase in fingerprint strength is also noted

for some benchmarks.

Table 10.14 shows the impact of incrementing seller watermark size (post- embedding

buyer fingerprint) on hardware area, latency and embedding cost. Since seller watermark is

embedded after buyer fingerprint, different values of watermark strength are indicated by

both W and F. In this experiment, the seller watermark size is varied (by keeping the buyer

fingerprint strength at maximum i.e. F = 30) to gauge its relative effect on the aforesaid

design metrics. Three different values of watermark size are chosen viz. W = 10 & F =

30, W = 20 & F = 20 and W = 30 & F = 30. As evident from the results, the increment

of latency with an increase in watermark strength is zero for all cases. This is because the

156

Table 10.13: Variation of hardware area, execution latency and design cost with the incre-
ment of fingerprint size

Benchmarks
Fingerprint size (F)

F=10 F=20 F=30
Area
(µm2)

Latency
(ps)

Cost Area
(µm2)

Latency
(ps)

Cost Area
(µm2)

Latency
(ps)

Cost

ARF 195.82 2.47 0.82 195.82 2.52 0.83 195.82 2.59 0.84
DCT 222.56 3.75 0.83 222.56 3.80 0.83 222.56 3.80 0.83
IDCT 222.56 3.72 0.83 222.56 3.73 0.83 223.35 0.3.73 0.83
BPF 202.11 3.74 0.88 202.11 3.74 0.88 202.11 3.77 0.88
FIR 179.31 1.81 0.74 179.31 1.86 0.75 179.31 1.86 0.75

MPEG 224.13 2.36 0.66 224.13 2.36 0.66 224.13 2.38 0.67
JPEG 724.30 14.24 0.74 724.3 14.24 0.74 724.3 14.24 0.74

Table 10.14: Variation of hardware area, execution latency and design cost with the incre-
ment of watermark size after implanting fingerprint

Benchmarks
of watermark constraints (W) after implanting fingerprint

F=30, W=10 F=30, W=20 F=30, W=30
Area
(µm2)

Latency
(ps)

Cost Area
(µm2)

Latency
(ps)

Cost Area
(µm2)

Latency
(ps)

Cost

ARF 195.82 2.59 0.84 196.61 2.59 0.84 196.61 2.59 0.84
DCT 222.56 3.80 0.83 223.35 3.80 0.83 223.35 3.80 0.83
IDCT 223.35 3.73 0.83 223.35 3.73 0.83 223.35 3.73 0.83
BPF 202.11 3.77 0.88 202.90 3.77 0.88 202.90 3.77 0.88
FIR 179.31 1.86 0.75 180.09 1.86 0.75 180.09 1.86 0.75

MPEG 224.13 2.38 0.67 224.13 2.38 0.67 224.13 2.38 0.67
JPEG 724.30 14.24 0.74 724.30 14.24 0.74 724.30 14.24 0.74

watermark signature encoding does not embed watermarking constraint during scheduling

phase (which in turn adds no latency overhead). Thus increase in latency with the increase

in watermark size is nil for any size of W (i.e. W= 10, W= 20 and W= 30). On the contrary,

the minimal increment of hardware area with increase in watermark strength can be noted

for some benchmarks (either for W = 20 or W = 30). This increment is a result of adding

more watermarking constraints during register allocation phase. Consequently, minimal

increase in cost with increase in watermark strength is also noted for some benchmarks.

157

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

DIPANJAN ROY
Highlight

Table 10.15: Comparison of proposed symmetrical IP core design with baseline IP design

Benchmarks Area (µm2) Latency (ps) Cost
B P (%) B P (%) B P (%)

ARF 195.82 196.61 0.40 2.46 2.59 5.02 0.82 0.84 2.48
DCT 222.56 223.35 0.35 3.73 3.80 1.84 0.83 0.83 0.95
IDCT 222.56 223.35 0.35 3.72 3.73 0.27 0.83 0.83 0.25
BPF 202.11 202.90 0.39 3.69 3.77 2.12 0.87 0.88 0.97
FIR 179.31 180.09 0.43 1.80 1.86 3.23 0.74 0.75 2.07

MPEG 224.13 224.13 0 2.36 2.38 0.84 0.66 0.67 0.09
JPEG 724.30 724.30 0 14.24 14.24 0 0.74 0.74 0

Table 10.16: Comparison of proposed symmetrical IP core design with IP core design of
[30]

Benchmarks Area (µm2) Latency(ps) Cost
[30] P (%) [30] P (%) [30] P (%)

ARF 196.61 196.61 0 2.46 2.59 5.02 0.8187 0.8393 2.45
DCT 223.35 223.35 0 3.73 3.80 1.84 0.8267 0.8343 0.91
IDCT 223.35 223.35 0 3.72 3.73 0.27 0.8248 0.8267 0.23
BPF 202.90 202.90 0 3.69 3.77 2.12 0.8705 0.8787 0.93
FIR 180.09 180.09 0 1.80 1.86 3.23 0.7375 0.7526 2.01

MPEG 224.13 224.13 0 2.36 2.38 0.84 0.6639 0.6645 0.09
JPEG 724.30 724.30 0 14.24 14.24 0 0.7349 0.7349 0

10.3.2 Comparison of the proposed symmetrical IP Core protection

approach with a non-symmetrical approach

The proposed approach is compared with the baseline design (with no signature implanted)

in terms of hardware area, execution latency and design cost. As evident from table 10.15,

the proposed approach provides symmetrical IP protection to both buyer and seller at min-

imal area overhead (less than 1%) and minimal latency overhead (avg. 1.02 %). Conse-

quently, this approach provides symmetrical IP ownership protection at extremely low-cost

overhead as compared to baseline.

As no symmetrical IP core protection methodology exists during high level synthesis,

the proposed approach is compared with an non-symmetrical IP core protection approach

158

Table 10.17: Comparison of proposed symmetrical IP core design with IP core design of
[30] and baseline in terms of storage hardware (register) and signature creation time

Benchmarks

of storage
hardware

(register) used

storage hardware
(register)

overhead %

signature creation
time(ms)

B [30] P w.r.t.
B

w.r.t.
[30] [30] P

ARF 8 9 9 0.11 0 17 19
DCT 8 9 9 0.11 0 13 17
IDCT 8 9 9 0.11 0 14 17
BPF 7 8 8 0.125 0 11 14
FIR 8 9 9 0.11 0 31 37

MPEG 14 14 14 0 0 14 16
JPEG 12 12 12 0 0 61 70

[30] (embeds only seller watermark) in terms of hardware area, execution latency and de-

sign cost. As evident from table 10.16 in proposed approach, it provides symmetrical IP

protection to both seller and buyer at zero area overhead (0%) and minimal latency over-

head (avg. 1.02 %) as compared to [30]. Consequently, the proposed approach provides

symmetrical IP protection at extremely low cost overhead (avg. 1.93 %) compared to un-

symmetrical protection approach [30].

Table 10.17 reports the comparison of proposed symmetrical protection approach with

non-symmetrical approach [30] and baseline in terms of storage hardware (registers). As

evident from the results, the storage hardware overhead of proposed symmetrical approach

compared to non-symmetrical approach (only seller watermark and no buyer fingerprint)

[30] is zero. Further, the storage hardware overhead of proposed symmetrical protection

approach with respect to baseline is minimal (less than 0.2%). As evident, the proposed

approach provides complete IP core protection to both the entities at minimal hardware

area (overall less than 1%), latency (overall less than 1.1%) and cost (overall less than 2%)

overhead.

Table 10.17 also draws a comparison of proposed symmetrical protection approach with

[30] in terms of signature creation time. For the proposed approach, signature creation

time includes creation time of seller watermark and buyer fingerprint while only seller

watermark for [30]. As evident from the results, the proposed approach while embedding

159

Figure 10.4: Variation of embedded cost overhead (%) for different benchmark sizes.(Note:
For the proposed approach embedding cost overhead (%) decreases with the increment in
parallelism of different application)

both seller multi-variable watermark and buyer fingerprint, nominally increases the runtime

overhead as compared to [30] (that only embeds seller dual-variable watermark). This trend

is observed for all size benchmarks, thus demonstrating the scalability of the proposed

approach.

Additionally, Fig. 10.4 shows the variation of cost overhead obtained for various bench-

marks. As evident, with the increase in size (parallelism i.e. number of parallel operations)

of the benchmarks, cost overhead % sharply decreases. In other words, cost overhead of

proposed approach is highest for ARF which comprises minimum number of parallel oper-

ations (parallelism possible) while is least for JPEG which comprises maximum number of

parallel operations (parallelism possible). This is possible because the proposed approach

embeds fingerprint signature during operation conflict resolution in scheduling which oc-

curs more often for bigger applications (comprising of large number of parallel operations)

working under a resource constraint. In that context, the proposed approach offers lower

(negligible) overhead for larger applications which demonstrates the scalability of the pro-

posed approach.

160

10.4 Experimental Results: Multi-Stage Structural Ob-

fuscation to Secure IP Core of CE Systems

This section discusses the experimental results of the proposed multi-stage structural ob-

fuscation approach explained in Chapter 6 and the improvement obtained when compared

to a single-stage structural obfuscation approach [32]. The proposed approach, original

non-obfuscated design and [32] are implemented in Java 8 and executed on a computing

platform with 4GB DDR3 primary memory and processor frequency of 3.20 GHz. A 15nm

technology scale based on NanGate is used to evaluate both the hardware area and execu-

tion latency of the IP design [37]. During PSO-DSE process both φ1 and φ2 are kept 0.5 to

provide equal preferences as both silicon area and latency are equally essential for a DSP

design of a CE device. Further, following optimal settings from [53] are used for PSO

framework (refer Eqn. 6.9): ω= linearly decreasing between 0.9 to 0.1; b1 and b2 = 2; r1

and r2 = 1; Imax = 100 or δ = 10 as stopping criterion; particle size p = 3 or 5 or 7.

The comparison of original non-obfuscated design and proposed multi stage obfus-

cated design w.r.t. the motivational example shown in Fig. 6.3 in terms of register transfer

level and Gate level is reported in Table 10.18. Further, the result of the proposed ap-

proach is tested and verified on several benchmarks, such as ARF, Differential, Auto Cor-

relation, DHMC, Adaptive filter (NC & LMS) and FIR. This section is divided into two

sub-sections: (i) result of proposed multi-stage structural obfuscation approach in terms

of execution latency, hardware area, cost and security metric, and (ii) comparison of the

proposed approach with the baseline and [32].

10.4.1 Result of the proposed multi-stage obfuscation approach

Table 10.19 reports the results of low-cost multi-stage structural obfuscation approach in

terms of hardware area, execution latency and design cost for different particle size. As

evidence from the table, it can be observed except Auto Correlation benchmark no im-

provement in quality of solution is found with the increment of particle size. However, for

Auto Correlation benchmark design cost is -0.4647 for particle size 5 which is better than

161

Table 10.18: Module and Gate level comparison of original non-obfuscated design and
proposed multi stage obfuscated design w.r.t. the motivational example

Types of
elements

Module (RT) level Gate level

Original
non-obfuscated

design

Proposed
obfuscated

design

Original
non-obfuscated

design

Proposed
obfuscated

des ign

Gates
affected

Functional
units

3 adders,
4 multipliers

3 adders,
1 multiplier 1264 496 768

Switching
units

Six 4:1,
four 2:1 Eight 8:1 1408 3584 2176

Storage
units

10 for input,
1 for output

18 for input,
2 for output 704 1280 576

Delay
elements 8 13 512 832 320

Total - - 3888 6192 3840

-0.4556, obtained for particle size = 3; though design cost remain same for particle size =

5 and 7. Further, as all the benchmarks satisfy the user provided area-delay constraints, the

obfuscated design cost achieved is less than 0 (refer to Eqn. 6.3). The design cost which

indicates combined normalized value of crucial design parameters (such as hardware area,

execution delay) is unit less as it is a normalized metric.

The robustness of a design obfuscated through the proposed multi-stage obfuscation

technique is measured through a metric called power of obfuscation. It calculates the struc-

tural mismatch between the original design and the obfuscated design. It is a normalized

metric value range between 0 to 1, where 1 indicates highest robustness and 0 indicates

lowest robustness of a design. The power of obfuscation is evaluated using the following

expression:

P obf
i =

ni

nT
i

(10.7)

P obf =

∑N(HLT)
i=1 P obf

i

N(HLT)
(10.8)

The structural mismatch in the context of CDFG can be evaluated based on number

of modified node of the obfuscated CDFG compared to the total number of nodes of the

original CDFG (before applying any transformation). In this context, the definition of a

162

Table 10.19: Results of proposed low-cost, obfuscated solution for different particle size

Benchmark Particle
size

Low-cost
design

solution

Obfuscated
hardware
area (µm2)

Obfuscated
execution

latency (ps)

Obfuscated
design

cost

2D Autoregression
Lattice Filter(ARF)

3 4A, 2M 241.83 1900.80 -0.37
5 4A, 2M 241.83 1900.80 -0.37
7 4A, 2M 241.83 1900.80 -0.37

Differential Equation
3 2A, 3M, 1C, 16UF 330.99 4498.80 -0.33
5 2A, 3M, 1C, 16UF 330.99 4498.80 -0.33
7 2A, 3M, 1C, 16UF 330.99 4498.80 -0.33

Auto-Correlation
3 4A, 8M,1C, 8UF 726.17 3557.15 -0.46
5 7A, 8M,1C, 8UF 800.68 2940.45 -0.47
7 7A, 8M,1C, 8UF 800.68 2940.45 -0.47

FIR (6-tap)
3 2A, 2M,1C, 8UF 214.99 1477.85 -0.36
5 2A, 2M,1C, 8UF 214.99 1477.85 -0.36
7 2A, 2M,1C, 8UF 214.99 1477.85 -0.36

DHMC
3 4A, 4M, 1C, 6UF 419.07 8581.61 -0.63
5 4A, 4M, 1C, 6UF 419.07 8581.61 -0.63
7 4A, 4M, 1C, 6UF 419.07 8581.61 -0.63

Adaptive Filter
(noise cancellation)

3 4A, 1S, 1M, 1C, 30UF 270.83 3120.01 -0.63
5 4A, 1S, 1M, 1C, 30UF 270.83 3120.01 -0.63
7 4A, 1S, 1M, 1C, 30UF 270.83 3120.01 -0.63

Adaptive Filter
(least mean square)

3 5A, 1S, 1M, 1C, 30UF 292.26 6833.58 -0.70
5 5A, 1S, 1M, 1C, 30UF 292.26 6833.58 -0.70
7 5A, 1S, 1M, 1C, 30UF 292.26 6833.58 -0.70

Table 10.20: Measuring power of obfuscation for each HLT technique

Benchmark pobf for
ROE

pobf for
LT

pobf for
THT

pobf for
LU

pobf for
LICM

Total
pobf

ARF 0.32 0.61 0 - - 0.55
Diff-Eqn 0 0.44 0 1 - 0.72
Auto-Co 0 0 0.49 1 - 0.75

FIR 0 0 0.50 1 - 0.75
DHMC 0 0.38 0 1 - 0.69
Ada-NC 0 0.67 0.03 1 - 0.57

Ada-LMS 0 0.75 0 1 - 0.88

modified node is as follows:

• If the parents of a node in the transformed CDFG is changed than its original.

• If the child of a node in the transformed CDFG is changed than its original.

163

Table 10.21: Comparison of proposed obfuscated design with non-obfuscated design in
terms of hardware area, execution latency and design cost

Benchmark
Original non-obfuscated

design
Proposed obfuscated

design

Hardware
area (µm2)

Execution
latency (ps)

Design
cost

Hardware
area (µm2)

Execution
latency (ps)

Design
cost

ARF 241.8 2573.50 -0.26 241.8 1900.8 -0.37
Diff-Eqn 333.0 7246.5 -0.18 333.0 4498.8 -0.33
Auto-Co 736.4 3399.2 -0.48 736.4 2940.5 -0.46

FIR 215.0 1661.3 -0.31 215.0 1477.8 -0.35
DHMC 419.1 8872.1 -0.27 419.1 8581.6 -0.63
Ada-NC 270.8 3330.98 -0.62 270.8 3120.01 -0.63

Ada-LMS 292.3 12561.3 -0.61 292.3 6833.58 -0.70

Table 10.22: Comparison of proposed obfuscated design with [32] in terms of hardware
area, execution latency and design cost

Benchmark Design of [32] Proposed obfuscated
design

Hardware
area (µm2)

Execution
latency (ps)

Design
cost

Hardware
area (µm2)

Execution
latency (ps)

Design
cost

ARF 788.8 1511.5 -0.08 241.8 1900.8 -0.37
Diff-Eqn 3590.1 2326.4 -0.15 333.0 4498.8 -0.33
Auto-Co 3196.1 1144.9 -0.32 736.4 2940.5 -0.46

FIR 399.5 1315.7 -0.25 215.0 1477.8 -0.35
DHMC 4818.9 2891.1 -0.28 419.1 8581.6 -0.63
Ada-NC 2959.0 2826.5 -0.28 270.8 3120.01 -0.63

Ada-LMS 6075.2 4385.8 -0.30 292.3 6833.58 -0.70

• If the operation type of a node in the transformed CDFG is changed than its original.

• If a node present in the obfuscated design does not exist in the original CDFG or vice

versa.

Table 10.20 reports the P obf
i due to each HLT technique as well as the total P obf after con-

secutively applying multiple HLTs. As evidence from the table, for ARF benchmark, the

P obf
i is 0.32, 0.61, 0 for ROE, LT and THT respectively (applied individually), further, the

total normalized P obf is 0.55 for multi-stage obfuscation (all transformations are applied

consecutively).

164

Table 10.23: Comparison of proposed obfuscated design with [32] in terms of P obf

Benchmark P obf for
proposed

P obf for
[32]

P obf

improvement %

ARF 0.55 0.43 22.36
Diff-Eqn 0.72 0.50 30.62
Auto-Co 0.75 0.50 32.99

FIR 0.75 0.50 33.33
DHMC 0.69 0.50 27.27
Ada-NC 0.57 0.33 41.18

Ada-LMS 0.88 0.50 42.86

10.4.2 Comparative analysis

This section compares the proposed multi-stage obfuscation approach with the baseline

design and a single-stage obfuscation approach [32]. Table 10.21 reports the comparison

between the proposed approach with its corresponding original (non-secured) design in

terms of hardware area, execution latency and design cost. It can be observed from Table

10.21 that an obfuscated design may achieve lesser execution time as compared to the

original design due to multi-stage transformations. For example, applying ROE, THT, LT,

unrolling etc., may result in reduction of operations in the graph. Therefore, the structurally

transformed graph may optimize the latency after scheduling.

Table 10.22 reports the comparison between the proposed approach with [32] in terms

of hardware area, execution latency and design cost. It can be observed from Table 10.22

that the propose obfuscated approach explores better design solution for all the tested

benchmarks. Finally, the proposed approach achieves an average 55% reduction of design

cost for standard benchmarks [17, 4], compared to [32]. This is obtained as the approach

incorporates PSO-DSE framework to maintain area-delay trade-off of the obfuscated de-

sign.

The comparative results of the proposed approach with [32], in terms of P obf are re-

ported in Table 10.23. As evidence from the table, the proposed multi-stage based struc-

tural obfuscation methodology provides higher robustness for all the tested benchmarks

compared to [32] as it has higher P obf value. Further, it can be observed that the proposed

approach achieves an average 22% higher robustness than [32].

165

10.5 Experimental Results: Obfuscation to Secure Multi-

media Processor IP Core of CE Systems

This section discusses the experimental results of the proposed low-cost obfuscated JPEG

CODEC IP core explained in Chapter 8. To verify the designed JPEG CODEC IP cores,

standard 512x512 gray scale test images [15] and NASA images [39] are used as image

dataset to generate compressed/decompressed images through the proposed IP cores. Both

the proposed IP cores are designed, implemented and simulated in Intel Quartus v7.2 soft-

ware with respect to Cyclone II family [14], device no. EP2C35F672C6 at 50MHz clock

frequency. However, it can be emulated in any FPGA device. Table 10.24 reports the FPGA

device utilization summary of the proposed JPEG CODEC IP cores.

The proposed low-cost obfuscated JPEG CODEC IP design is compared with a non-

optimized obfuscated JPEG CODEC IP design to show the impact of design PSO-DSE

based optimization. Table 10.25 reports the comparison of the two aforementioned designs

in terms of hardware area, execution latency and design cost. The design cost is calculated

using Eqn. 8.1, which is a weighted function of normalized hardware area and execution

latency of the design. Further, the NanGate library is used to evaluate both the hardware

area and the execution latency of a design [37]. It can be observed from Table 10.25, that

the proposed JPEG CODEC IP core achieves reduction of greater than 5% in design cost

compared to the non-optimized obfuscated JPEG. This is due to the tree height transfor-

Table 10.24: Device utilization summary of proposed JPEG CODEC IP cores w.r.t Intel
Cyclone II FPGA

Device utilization
summary

Total used Total available Used %

Total logic elements 12148 33216 37
4 input functions 5018 11072 45
3 input functions 6608 11072 60

<= 2 input functions 494 11072 4
Total registers 1826 34593 5

Total pins 322 475 68

166

Table 10.25: Comparison between non-optimized obfuscated JPEG CODEC IP core with
proposed low-cost obfuscated IP core in terms of hardware area, execution latency and
design cost

Design metrics Non-optimized
obfuscated JPEG IP core

Proposed low-cost
obfuscated IP core

Resource
configuration

4A, 4M 3A, 3M

Hardware area (µm2) 397.94 298.45
Execution latency (ps) 5860.40 7603.22

Design cost 0.3884 0.3671

mation applied on the JPEG CODEC data flow graph followed by integration of particle

swarm optimization driven DSE framework. Tree height transformation in the proposed

methodology drastically reduces the length of the critical path of the DFG thus minimiz-

ing schedule delay. This impacts reduction of cost. Subsequently, this transformed DFG

is fed into PSO-DSE which iteratively prunes the design space and explores an optimal

low cost design resource. As these are novel solutions to reduce the design cost and never

applied during JPEG CODEC IP core design before, these two layers of optimizations are

not performed by synthesis tools. Since the proposed CODEC achieves reduction of design

cost/overhead thus it has been called ‘low-cost JPEG CODEC IP core’.

Further, Table 10.26 reports the comparison between proposed low-cost obfuscated

JPEG CODEC IP core with a non-obfuscated JPEG CODEC IP core in terms of design

area, latency, cost and ‘Power of Obfuscation’. The PoO metric is explained in Chapter 6

and can be express as:

P obf =
ai
aTi

(10.9)

This metric indicates how strong an obfuscated JPEG CODEC design is concealed in

terms of structural identity. The more the design is obfuscated, higher is the complexity in

discovering the functionality through the architecture, minimizing chances of RE. Modifi-

cation of a node in a DFG indicates either, (a) the source/parents of a node is changed, or,

(b) the child of a node is changed, or, (c) operation type of a node is changed, compared

to the original. As shown in Table 10.26, PoO of 76% is achieved through the proposed

167

Table 10.26: Comparison between non-obfuscated JPEG CODEC IP core with proposed
low-cost obfuscated IP design in terms of area, latency cost and power of obfuscation

Design
metrics

Non-
obfuscated
JPEG IP

design

Proposed
low-cost

obfuscated
IP design

Structure
change
due to

obfuscation

Improved
PoO through

proposed
design (%)

Resource
configuration

4A, 8M, 12 (8:1)
Mux, 12 (16:1)Mux, 6
(1:8)Demux, 6 (1:16)

Demux, 25Reg

3A, 3M, 10 (32:1)
Mux, 2 (16:1)Mux, 5
(1:8)Demux, 1 (1:16)

Demux, 13Reg

10064 Gates -

Hardware
area (µm2)

483.66 298.45 - -

Execution
latency (ps)

6533.08 7603.22 - -

Design cost 0.4582 0.3671 - -
Power of

obfuscation
0 0.7574 - 76%

Table 10.27: Storage size, reduction percentage, MSE and PSNR of compressed image for
Q90 (Images 1 to 6 have been extracted from standard image datasets [15] and [39])

Images Original
size (bits)

Compressed
size (bits)

Compression
efficiency (%)

MSE PSNR

Image 1 1048576 236568 77.44 3.84 17.68
Image 2 1048576 200000 80.93 3.50 18.08
Image 3 1048576 170640 83.73 2.00 20.51
Image 4 1048576 194144 81.49 2.63 19.32
Image 5 1048576 210760 79.90 3.25 18.40
Image 6 1048576 216136 79.39 2.20 20.09

approach compared to standard non-obfuscated JPEG CODEC IP. Further, as shown in this

table, the change (reduction) in gates due to proposed obfuscation is more than 10 thou-

sand. This indicates massive structural transformation at gate level of JPEG CODEC IP

core architecture due to transformation in functional resources, multiplexers, demultiplex-

ers and registers. This massive transformation makes the architecture/structure of JPEG

IP core non-obvious to an adversary in terms of functionality. An adversary would find it

difficult to discover the actual functionality of the design structure.

168

Table 10.28: Storage size, reduction percentage, MSE and PSNR of compressed image for
Q70 (Images 1 to 6 have been extracted from standard image datasets [15] and [39])

Images Original
size (bits)

Compressed
size (bits)

Compression
efficiency (%)

MSE PSNR

Image 1 1048576 106768 89.82 4.85 16.66
Image 2 1048576 99120 90.55 4.23 17.26
Image 3 1048576 90584 91.36 2.91 18.88
Image 4 1048576 91952 91.23 3.50 18.08
Image 5 1048576 102112 90.26 3.83 17.69
Image 6 1048576 105168 89.97 3.11 18.60

To perform image compression and decompression using the devised JPEG CODEC IP

core, total six images are chosen from ‘Dataset of standard 512x512 grayscale test images’

[15] and ‘NASA images’ [39] datasets. The compression is performed for two different

quality levels i.e. quality level 90 (Q90) and 70 (Q70). Additionally, the MSE and the

PSNR of the corresponding compressed images obtained through devised JPEG CODEC

IP core design are also calculated. As PSNR is commonly used to calculate the quality of

the reconstructed image of lossy compression, it is used to evaluate image degradation of

compressed images obtained through devised JPEG CODEC IP core. PSNR is defined for

two images A and B of size M x N as [29]:

PSNR(A,B) = 20 log10

MAXA√
MSE(A,B)

(10.10)

where, MSE(A, B) can be defined as [29]:

MSE(A,B) =
1

M ∗N

M−1∑
i=0

N−1∑
j=0

(
A(i, j)−B(i, j)

)2 (10.11)

Table 10.27 and Table 10.28 reports the storage size, reduction percentage, MSE and

PSNR of the compressed image for quality level 90 and 70, respectively. It can be observed

that higher compression efficiency is achieved for Q70 than Q90 while compromising the

image quality (indicated by PSNR).

169

10.6 Experimental Results: Hardware Trojan Secured IP

Core of CE Systems

This section discusses the experimental results of the proposed low-cost hardware Trojan

security aware design methodology explained in Chapter 9. This section is divided into fol-

lowing sub-sections: (a) Experimental setup and benchmarks which discusses the machine

setup, control parameters and benchmarks used (b) Analysis of results which presents the

proposed results for single and nested loop based CDFGs based on user constraints and (c)

Comparison with prior related research in terms of implementation cost and final architec-

tural solution is performed.

10.6.1 Experimental setup and benchmarks

The proposed approach as well as [46] both have been implemented in Java and run on

Intel Core-i53210M CPU with 3MB L3 cache memory, 4 GB DDR3 primary memory and

processor frequency of 2.5 GHz. During experiment, 15 runs were executed for proposed

PSO-DSE. During the experimental conduct it was found that the proposed approach is

scalable and is able to handle problems of medium/large size. Further during the experi-

ments, the following optimal settings from [55] for PSO framework were fixed: ω (inertia

weight) = linearly decreasing between 0.9 and 0.1; b1 & b2 (acceleration coefficient) = 2; r1

& r2 (random numbers) = 1; p (swarm size) = 3 or 5 or 7. The benchmarks used during ex-

periments comprises of loop based control intensive applications derived from multimedia

and signal processing domain. More explicitly, single and nested loop based control data

flow graphs were used as standard benchmarks from [18, 17]. These benchmarks are typ-

ically data and control intensive applications which consume huge power and processing

delay. The benchmark application is made up of operations that utilize third party micro

IPs such as adder, subtractor, comparator etc. present in the tool library. For evaluating the

Trojan detection capability (i.e. testing purpose) of the proposed approach, Trojan logic

was inserted into these micro 3PIPs by altering the digital logic of the circuit through a

combination of additional gates, multiplexers, flip-flops, control signals etc. A demonstra-

170

Table 10.29: Total hardware area and execution latency of the proposed approach

Benchmark Lcons (µs) LDMR
T (µs) Acons(au) ADMR

T (au)

Autocorrelation filter
(U1 = 2, U2 = 3) 50.04 34.62 19000 17996

Autocorrelation filter
(U1 = 3, U2 = 3) 65.00 35.43 23000 22928

Autocorrelation filter
(U1 = 4, U2 = 2) 55.00 24.43 28000 27860

DHMC
(U1 = 2, U2 = 3) 420.00 262.33 35000 33524

DHMC
(U1 = 3, U2 = 3) 620.00 507.35 35000 26994

DHMC
(U1 = 4, U2 = 2) 550.00 327.80 36000 35992

Differential Eqn.
(U = 4) 182.21 120.81 43301 26994

FFT
(U = 2) 200.00 156.85 41000 26128

FIR
(U = 6) 40.00 23.62 27000 22928

tive example which shows the procedure for Trojan insertion in BCD adder present as 3PIP

module in HLS tool library is shown in Fig. 9.2 (Section 9.1.2). This type of modeling is

realistic as mostly in real life cases the Trojan gets triggered by activation of a control line

(such as ‘En’ in Fig. 9.2).

10.6.2 Analysis of results

For single loop based CDFGs representing DSP cores

For single loop based applications, the proposed approach is able to attain final solutions

which lie within the user provided constraints of area and execution delay (as well as

minimizes the hybrid cost in Eqn. 9.5), as shown in Table 10.29. For example, for Dif-

ferential Equation benchmark, the proposed approach generates the final solution, (Xi):

N(Radder), N(Rsubtractor), N(Rmultiplier), N(Rcomparator), U, Av = 3(+), 3(−), 5(∗), 2(<

), U = 4, Av = 00, with LDMR
T = 120.81 µs and ADMR

T = 29136 au, which completely

satisfies the area-delay constraints (Acons = 43301 au and Lcons = 182.21 µs). (Note: Acons

171

and Lcons could be any value between the minimum (ADMR
min , LDMR

min) and maximum value

(ADMR
max , LDMR

max). Similar behavior is observed for the other benchmarks.

For nested loop based CDFGs

In case of nested loop based CDFGs, the proposed approach is able to attain final solutions

which lie within the user provided constraints of area and execution delay (as well as mini-

mizes the hybrid cost in Eqn. 9.5), as shown in Table 10.29. For example, for Auto correla-

tion Filter benchmark, the proposed approach generates the final solution, (Xi): N(Radder),

N(Rmultiplier), N(Rcomparator), U1, U2, Av = 2(+), 4(∗), 2(<), U1 = 2, U2 = 3, Av = 00,

with LDMR
T = 34.620 µs and ADMR

T = 17996.00 au, which completely satisfies the area-

delay constraints (Acons = 19000.00 au and Lcons = 50.04 µs).

10.6.3 Comparison with related prior research

It is important to note that there is no work in the literature that explores the low cost

Trojan secured schedule for nested loops DSP kernels. The costs function for both [46]

and the proposed approach consider the area of single comparator/error detection block

responsible for runtime Trojan detection at the final output. However, the cost function

does not have any impact of comparator/error detection block as it is used in both the

approaches. Table 10.30 shows the results of the approach [46], while Table 10.31 shows

the comparative results of the proposed approach with [46] in terms of cost and final Trojan

secured hardware solution found. Although [46] does not handle single and nested loop

CDFGs during Trojan security, however for comparison purpose, [46] have been fully re-

implemented by feeding the completely unrolled version of each CDFG (both single and

nested loop). Complete unrolling of the CDFG (by converting it into a straightforward

DFG) was required as [46] cannot handle CDFGs concurrently with resource configuration

during exploration. The proposed approach generates superior results than [46] due to the

following reasons:

• The integration of allocation procedure of vendors Av with the encoding for explo-

ration, bears an impact on the final optimization quality.

172

Table 10.30: Total hardware area and execution latency of [46]

Benchmark Lcons (µs) LDMR
T (µs) Acons(au) ADMR

T (au)

Autocorrelation filter
(U1 = 2, U2 = 3) 50.04 33.81 19000 30396

Autocorrelation filter
(U1 = 3, U2 = 3) 65.00 45.08 23000 31278

Autocorrelation filter
(U1 = 4, U2 = 2) 55.00 45.08 28000 31404

DHMC
(U1 = 2, U2 = 3) 420.00 286.35 35000 52824

DHMC
(U1 = 3, U2 = 3) 620.00 440.89 35000 66054

DHMC
(U1 = 4, U2 = 2) 550.00 327.80 32000 35992

Differential Eqn.
(U = 4) 182.21 131.27 43301 29640

FFT
(U = 2) 200.00 179.24 41000 33974

FIR
(U = 6) 40.00 34.08 27000 24692

• In case of single loop based applications, the proposed approach consists of another

supplementary option in encoding for exploration of an optimal unrolling factor.

• The proposed approach provides exploration of schedule resources based on user

constraints which also bears an effect on the final design quality.

It can be seen from the results that even though for some benchmarks the number of

resources in the final solution for [46] are lower than the proposed solution, since it has no

feature for exploring an optimal unrolling factor and distinct vendor allocation, it uses the

maximum unroll factor value as well as same vendor allocation rule to each unit (Av = 01)

during DMR design thereby resulting in higher cost. Therefore, distinct vendor allocation

type Av = 00 always yields lower cost final solution than [46].

Table 10.32 reports the impact of population size p on the runtime of proposed ap-

proach. For all the benchmarks, the runtime to find the solutions escalates with the growth

in population size. This is due to the increase in computational complexity per iteration.

However, no improvement in the quality of the solution is found.

173

Table 10.31: Comparison of proposed approach with [46] in terms of design cost

Benchmark Design solution
for proposed

Design solution
for [46]

Design cost
of proposed

Design cost
of [46]

Autocorrelation filter
(U1 = 2, U2 = 3)

2(+), 4(*), 2(<)
U1=2, U2=3, Av=00

3(+), 5(*), 2(<)
U1=2, U2=3, Av=01 -0.134 0.096

Autocorrelation filter
(U1 = 3, U2 = 3)

2(+), 8(*), 2(<)
U1=3, U2=3, Av=00

3(+), 5(*), 2(<)
U1=3, U2=3, Av=01 -0.149 0.025

Autocorrelation filter
(U1 = 4, U2 = 2)

2(+), 8(*), 2(<)
U1=4, U2=2, Av=00

3(+), 5(*), 2(<)
U1=4, U2=2, Av=01 -0.173 -0.017

DHMC
(U1 = 2, U2 = 3)

4(+), 6(*), 2(<)
U1=2, U2=3, Av=00

3(+), 5(*), 2(<)
U1=2, U2=3, Av=01 -0.140 0.057

DHMC
(U1 = 3, U2 = 3)

3(+), 4(*), 2(<)
U1=3, U2=3, Av=00

3(+), 5(*), 2(<)
U1=3, U2=3, Av=01 -0.131 0.173

DHMC
(U1 = 4, U2 = 2)

4(+), 6(*), 2(<)
U1=4, U2=2, Av=00

3(+), 5(*), 2(<)
U1=4, U2=2, Av=01 -0.136 -0.103

Differential Eqn.
(U = 4)

2(+), 2(-), 5(*),
2(<), U=4, Av=00

2(+), 2(-), 5(*),
2(<), U=4, Av=01 -0.232 -0.193

FFT
(U = 2)

4(+), 2(-), 4(*),
1(<), U=2, Av=00

5(+), 2(-), 5(*),
2(<), U=2, Av=01 -0.185 -0.088

FIR
(U = 6)

4(+), 8(*), 2(<)
U=6, Av=00

3(+), 5(*), 2(<)
U=6, Av=01 -0.175 -0.074

Table 10.32: Comparison of exploration time for various swarm size p

Benchmark Exploration time (ms) for swarm size ‘p’

p = 3 p = 5 p = 7

Autocorrelation filter
(U1 = 2, U2 = 3) 2144 4305 4893

Autocorrelation filter
(U1 = 3, U2 = 3) 3297 4091 8080

Autocorrelation filter
(U1 = 4, U2 = 2) 4928 5536 7860

DHMC
(U1 = 2, U2 = 3) 21836 43218 62345

DHMC
(U1 = 3, U2 = 3) 29823 49876 68243

DHMC
(U1 = 4, U2 = 2) 29066 45327 65827

Differential Eqn.
(U = 4) 2084 6359 9243

FFT
(U = 2) 6856 9132 9205

FIR
(U = 6) 638 1132 1775

174

Chapter 11

Conclusion

This thesis has presented novel methodologies for securing/protecting data and control in-

tensive applications used in CE systems. The protection/security algorithms are integrated

with these application specific datapath processors for DSP and multimedia kernels during

the in-synthesis process at architectural level. Therefore, this thesis has accomplished the

following objectives:

• Proposes single-phase watermarking methodology to solve the problem of fraudulent

claim of ownership, IP piracy and IP cloning. The experimental results over the

standard applications indicate an average reduction in the final embedding cost of

6% and higher security compared to recent approach.

• Proposes multi-phase watermarking methodology to solve the problem of tampering

or removal of the implanted signature. The experimental results over the standard

applications indicate it yields zero delay and minimal area overhead compared to

the baseline and achieves average cost reductions of 7.38% and 6.25% compared to

two similar approaches. Further, it achieves a lower Pc value by 3.2 × 1027 times

in magnitude compared to similar approaches. Additionally, it is 3.4 × 1043 and

2.8× 1019 times more tamper tolerant than similar approaches.

• Proposes symmetrical IP core protection methodology to solve the problem of abus-

ing the rights of the IP Core buyer and seller. Experimental results over the standard

175

applications indicate an average 1% design cost overhead compared to baseline (un-

protected) design and <1% design cost overhead compared to a non-symmetrical

approach.

• Proposes multi-stage structural obfuscation methodology to solve the problem of re-

verse engineering attack. Experimental results over the standard applications indicate

an improvement in the power of obfuscation by 22% and reduction in obfuscated de-

sign cost by 55% is achieved compared to recent prior work.

• Proposes an enhancement in the functional obfuscation for DSP/MP IP core method-

ology to solve the problem of SAT and removal attacks. A custom lightweight AES

module is proposed and designed in a standard CAD tool to achieve the purpose. The

AES module utilizes <1% of the available design logic elements of the FPGA.

• Proposes a design methodology for generating structurally obfuscated JPEG CODEC

to prevent RE attacks on it. The proposed approach optimized the design cost of

the obfuscated JPEG CODEC IP core using PSO based DSE by 5% compared to a

non-obfuscated design and enhanced the PoO by 76% compared to a non-obfuscated

design.

• Proposes a Trojan secured DMR schedule methodology to solve the problem of gen-

erating a low-cost Trojan secured datapath. A sequence of test vectors generated

through 8th order polynomial Linear-Feedback Shift Register (LFSR) as ATPG are

fed into the DMR schedule for comprehensive coverage of Trojan detection. The

results generated indicate that a detection rate of 100% was achieved while handling

such Trojans.

All these methodologies handle attacks through HLS framework. Therefore, both

higher and lower design abstraction level will be secured through the proposed approaches.

Security analysis of all the defense mechanisms ensures strong robustness. In this context,

the proposed method promises significant improvement in terms of security and design

overhead in comparison to recent prior works.

176

References

[1] S. An and C. Wang. Recursive algorithm, architectures and FPGA implementation of

the two-dimensional discrete cosine transform. IET Image Processing, 2(6):286–294,

December 2008.

[2] C. Barria, D. Cordero, C. Cubillos, and R. Osses. Obfuscation procedure based in

dead code insertion into crypter. In 6th International Conference on Computers Com-

munications and Control (ICCCC), pages 23–29, May 2016.

[3] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC Piracy Using Reconfig-

urable Logic Barriers. IEEE Design Test of Computers, 27(1):66–75, Jan 2010.

[4] BDTI DSP Kernel Benchmarks. https://www.bdti.com/Services/

Benchmarks/DKB.

[5] M. Brzozowski and V. N. Yarmolik. Obfuscation as Intellectual Rights Protection in

VHDL Language. In 6th International Conference on Computer Information Systems

and Industrial Management Applications (CISIM’07), pages 337–340, June 2007.

[6] B. Cakr and S. Malik. Hardware Trojan detection for gate-level ICs using signal corre-

lation based clustering. In Design, Automation Test in Europe Conference Exhibition

(DATE), pages 471–476, March 2015.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,

and T. Czajkowski. Legup: High-level synthesis for fpga-based processor/accelerator

systems. In Proceedings of the 19th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, FPGA ’11, pages 33–36, 2011.

177

https://www.bdti.com/Services/Benchmarks/DKB
https://www.bdti.com/Services/Benchmarks/DKB

[8] E. Castillo, U. Meyer-Baese, A. Garcia, L. Parrilla, and A. Lloris. IPP@HDL: Ef-

ficient Intellectual Property Protection Scheme for IP Cores. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 15(5):578–591, May 2007.

[9] R. S. Chakraborty and S. Bhunia. HARPOON: An Obfuscation-Based SoC Design

Methodology for Hardware Protection. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 28(10):1493–1502, Oct 2009.

[10] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia. MERO: A

Statistical Approach for Hardware Trojan Detection. In C. Clavier and K. Gaj, edi-

tors, Cryptographic Hardware and Embedded Systems - CHES 2009, pages 396–410,

Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[11] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An Introduction to High-Level

Synthesis. IEEE Design Test of Computers, 26(4):8–17, July 2009.

[12] P. Coussy and A. Morawiec. High-Level Synthesis: From Algorithm to Digital Circuit.

Springer Publishing Company, Incorporated, 1st edition, 2008.

[13] X. Cui, K. Ma, L. Shi, and K. Wu. High-level synthesis for run-time hardware trojan

detection and recovery. In 51st ACM/EDAC/IEEE Design Automation Conference

(DAC), pages 1–6, June 2014.

[14] Cyclone II FPGA. https://www.altera.com/products/fpga/

cyclone-series/cyclone-ii/overview.html.

[15] Dataset of standard 512x512 grayscale test images. http://decsai.ugr.es/

cvg/CG/base.htm.

[16] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall. Interlocking obfus-

cation for anti-tamper hardware. In Proceedings of the Eighth Annual Cyber Security

and Information Intelligence Research Workshop, CSIIRW ’13, pages 8:1–8:4, 2013.

[17] DSP benchmark suite. http://www.ece.ucsb.edu/EXPRESS/

benchmark/.

178

https://www.altera.com/products/fpga/cyclone-series/cyclone-ii/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-ii/overview.html
http://decsai.ugr.es/cvg/CG/base.htm
http://decsai.ugr.es/cvg/CG/base.htm
http://www.ece.ucsb.edu/EXPRESS/benchmark/
http://www.ece.ucsb.edu/EXPRESS/benchmark/

[18] S. Dupuis, P. Ba, M. Flottes, G. D. Natale, and B. Rouzeyre. New testing procedure

for finding insertion sites of stealthy hardware trojans. In Design, Automation Test in

Europe Conference Exhibition (DATE), pages 776–781, March 2015.

[19] S. Dupuis, P. Ba, G. D. Natale, M. Flottes, and B. Rouzeyre. A novel hardware

logic encryption technique for thwarting illegal overproduction and hardware trojans.

In IEEE 20th International On-Line Testing Symposium (IOLTS), pages 49–54, July

2014.

[20] Q. Gang and M. Potkonjak. Intellectual Property Protection in VLSI Designs: Theory

and Practice. Springer Science and Business Media, 2007.

[21] S. H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons, Inc., New

York, NY, USA, 1st edition, 1999.

[22] I. Hong and M. Potkonjak. Behavioral synthesis techniques for intellectual prop-

erty protection. In Proceedings 1999 Design Automation Conference (Cat. No.

99CH36361), pages 849–854, June 1999.

[23] iPhone 5 A6 SoC reverse engineered, reveals rare hand-made custom CPU,

and tri-core GPU. https://www.extremetech.com/computing/

136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-\

hand-made-custom-cpu-and-a-tri-core-gpu.

[24] Y. Jin and Y. Makris. Hardware trojan detection using path delay fingerprint. In IEEE

International Workshop on Hardware-Oriented Security and Trust, pages 51–57, June

2008.

[25] D. Kachave and A. Sengupta. Shielding CE Hardware Against Reverse-Engineering

Attacks Through Functional Locking. IEEE Consumer Electronics Magazine,

7(2):111–114, March 2018.

[26] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. Trustworthy hardware:

Identifying and classifying hardware trojans. Computer, 43(10):39–46, Oct 2010.

179

https://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-\hand-made-custom-cpu-and-a-tri-core-gpu
https://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-\hand-made-custom-cpu-and-a-tri-core-gpu
https://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-\hand-made-custom-cpu-and-a-tri-core-gpu

[27] J. Kim, E. Jung, Y. Lee, and W. Ryu. Home appliance control framework based on

smart tv set-top box. IEEE Transactions on Consumer Electronics, 61(3):279–285,

Aug 2015.

[28] P. Kollig and B. M. Al-Hashimi. Simultaneous scheduling, allocation and binding in

high level synthesis. Electronics Letters, 33(18):1516–1518, Aug 1997.

[29] E. Kougianos, S. P. Mohanty, G. Coelho, U. Albalawi, and P. Sundaravadivel. De-

sign of a high-performance system for secure image communication in the internet of

things. IEEE Access, 4:1222–1242, 2016.

[30] F. Koushanfar, I. Hong, and M. Potkonjak. Behavioral Synthesis Techniques for Intel-

lectual Property Protection. ACM Trans. Des. Autom. Electron. Syst., 10(3):523–545,

July 2005.

[31] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Fingerprinting techniques for

field-programmable gate array intellectual property protection. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 20(10):1253–1261, Oct

2001.

[32] Y. Lao and K. K. Parhi. Obfuscating dsp circuits via high-level transformations. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 23(5):819–830, May

2015.

[33] B. Le Gal and L. Bossuet. Automatic low-cost ip watermarking technique based on

output mark insertions. Des. Autom. Embedded Syst., 16(2):71–92, June 2012.

[34] Y. Lee and N. A. Touba. Improving logic obfuscation via logic cone analysis. In 16th

Latin-American Test Symposium (LATS), pages 1–6, March 2015.

[35] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1st edition, 1994.

[36] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra. Low-Power High-Level

Synthesis for Nanoscale CMOS Circuits. Springer Publishing Company, Incorpo-

rated, 1 edition, 2008.

180

[37] NanGate FreePDK15 Open Cell Library NanGate. http://www.nangate.com/

?page_id=2328.

[38] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff1, C. Papachristou, K. Roy,

and S. Bhunia. Multiple-parameter side-channel analysis: A non-invasive hardware

trojan detection approach. In 2010 IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), pages 13–18, June 2010.

[39] Nasa image and video library. https://images.nasa.gov/.

[40] T. Nie, L. Zhou, and Y. Li. Hierarchical watermarking method for fpga ip protection.

IETE Technical Review, 30(5):367–374, 2013.

[41] K. K. Parhi. Verifying equivalence of digital signal processing circuits. In Conference

Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers

(ASILOMAR), pages 99–103, Nov 2012.

[42] P. G. Paulin and J. P. Knight. Algorithms for high-level synthesis. IEEE Design Test

of Computers, 6(6):18–31, Dec 1989.

[43] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral synthesis

of asics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 8(6):661–679, June 1989.

[44] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of logic obfusca-

tion. In DAC Design Automation Conference 2012, pages 83–89, June 2012.

[45] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. Security analysis of integrated

circuit camouflaging. In ACM SIGSAC Conference on Computer & Communications

Security, pages 709–720, 2013.

[46] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri. High-level synthesis for security

and trust. In IEEE 19th International On-Line Testing Symposium (IOLTS), pages

232–233, July 2013.

181

http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2328
https://images.nasa.gov/

[47] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri.

Fault analysis-based logic encryption. IEEE Transactions on Computers, 64(2):410–

424, Feb 2015.

[48] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending Piracy of Integrated Cir-

cuits. In 2008 Design, Automation and Test in Europe, pages 1069–1074, March

2008.

[49] A. Sengupta. Intellectual property cores: Protection designs for ce products. IEEE

Consumer Electronics Magazine, 5(1):83–88, Jan 2016.

[50] A. Sengupta and S. Bhadauria. Exploring Low Cost Optimal Watermark for Reusable

IP Cores During High Level Synthesis. IEEE Access, 4:2198–2215, 2016.

[51] A. Sengupta, S. Bhadauria, and S. P. Mohanty. Embedding low cost optimal water-

mark during high level synthesis for reusable IP core protection. In IEEE Int. Symp.

on Circuits and Systems (ISCAS), pages 974–977, May 2016.

[52] A. Sengupta, S. Bhadauria, and S. P. Mohanty. Low-cost security aware hls method-

ology. IET Computers Digital Techniques, 11(2):68–79, 2017.

[53] A. Sengupta, S. Bhadauria, and S. P. Mohanty. TL-HLS: Methodology for Low Cost

Hardware Trojan Security Aware Scheduling With Optimal Loop Unrolling Factor

During High Level Synthesis. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 36(4):655–668, April 2017.

[54] A. Sengupta and S. Kundu. Guest editorial securing iot hardware: Threat models

and reliable, low-power design solutions. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 25(12):3265–3267, Dec 2017.

[55] A. Sengupta and V. K. Mishra. Swarm intelligence driven simultaneous adaptive

exploration of datapath and loop unrolling factor during area-performance tradeoff.

In IEEE Computer Society Annual Symposium on VLSI, pages 106–111, July 2014.

182

[56] A. Sengupta, R. Sedaghat, and Z. Zeng. A high level synthesis design flow with

a novel approach for efficient design space exploration in case of multi-parametric

optimization objective. Microelectronics Reliability, 50(3):424 – 437, 2010.

[57] D. L. Springer and D. E. Thomas. Exploiting the special structure of conflict and

compatibility graphs in high-level synthesis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 13(7):843–856, July 1994.

[58] P. Subramanyan, S. Ray, and S. Malik. Evaluating the security of logic encryption

algorithms. In IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pages 137–143, May 2015.

[59] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan taxonomy and detec-

tion. IEEE Design Test of Computers, 27(1):10–25, Jan 2010.

[60] S. Thavalengal and P. Corcoran. User authentication on smartphones: Focusing on

iris biometrics. IEEE Consumer Electronics Magazine, 5(2):87–93, April 2016.

[61] R. Torrance and D. James. The State-of-the-Art in IC Reverse Engineering. In Cryp-

tographic Hardware and Embedded Systems - CHES 2009, pages 363–381, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[62] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu. Physical Design

Obfuscation of Hardware: A Comprehensive Investigation of Device and Logic-Level

Techniques. IEEE Transactions on Information Forensics and Security, 12(1):64–77,

Jan 2017.

[63] X. Wang, X. Jia, Q. Zhou, Y. Cai, J. Yang, M. Gao, and G. Qu. Secure and low-

overhead circuit obfuscation technique with multiplexers. In International Great

Lakes Symposium on VLSI (GLSVLSI), pages 133–136, May 2016.

[64] X. Wang, M. Tehranipoor, and J. Plusquellic. Detecting malicious inclusions in secure

hardware: Challenges and solutions. In IEEE International Workshop on Hardware-

Oriented Security and Trust, pages 15–19, June 2008.

183

[65] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.

Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[66] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty. Towards Trojan-Free

Trusted ICs: Problem Analysis and Detection Scheme. In Design, Automation and

Test in Europe, pages 1362–1365, March 2008.

[67] J. Yang, G. Zhu, and Y. Shi. Analyzing the Effect of JPEG Compression on Local

Variance of Image Intensity. IEEE Transactions on Image Processing, 25(6):2647–

2656, June 2016.

[68] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. On Improving the Security of

Logic Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 35(9):1411–1424, Sept 2016.

[69] J. Zhang. A Practical Logic Obfuscation Technique for Hardware Security. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 24(3):1193–1197,

March 2016.

[70] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu. VeriTrust: Verification for Hardware

Trust. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 34(7):1148–1161, July 2015.

[71] D. Ziener and J. Teich. FPGA core watermarking based on power signature analysis.

In IEEE International Conference on Field Programmable Technology, pages 205–

212, Dec 2006.

[72] D. Ziener and J. Teich. Power signature watermarking of ip cores for fpgas. J. Signal

Process. Syst., 51(1):123–136, Apr. 2008.

184

	Acknowledgements
	Abstract
	List of Publications
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Introduction
	IP Cores: Heart of the CE Systems
	VLSI Design Abstraction Levels
	Background on HLS
	Scheduling
	Allocation
	Resource binding

	Security of IP Cores
	Fraudulent claim of ownership
	Tampering/removal of implanted signature
	Abusing rights of IP buyer and seller
	Reverse engineering of IP core
	Unlocking a functionally obfuscated netlist
	Insertion of malicious hardware logic

	Organization of the Thesis

	State-of-the-Art
	State-of-the-Art on IP Core Attacks
	Objective of the Thesis
	Summary of Contributions

	Single-Phase IP Core Watermarking of CE Systems
	Problem Formulation
	Threat model
	Input & Output

	Proposed Methodology
	Signature encoding rules
	Watermark embedding process
	Properties of proposed watermark

	Proposed Signature Detection Process
	Inspection
	Verification

	Motivational Example
	Demonstration of proposed watermarking approach
	Threat scenarios
	Resolution of ownership conflict through proposed approach

	Summary

	Multi-Phase IP Core Watermarking of CE Systems
	Problem Formulation
	Threat model
	Input & Output
	Target platform

	Proposed Methodology
	Watermark encoding
	Process of implanting watermark
	Tamper tolerance ability of proposed watermark
	Proposed signature detection
	Properties of generated watermark

	Motivational Example
	Threat Scenarios of Fraudulent Ownership
	Extracting unintended signature
	Inserting unauthorized signature
	Tampering original signature in the design

	Summary

	Symmetrical IP Core Protection of CE Systems
	Proposed Approach: Problem Formulation, Threat Model and Target platform
	Problem formulation
	Threat model
	Target technology/platform

	Proposed Methodology
	Evaluation models
	Proposed signature encoding
	Proposed signature implanting process
	Signature detection process
	Properties of generated signatures

	Motivational Example
	Example of fingerprint implanting
	Example of watermark implanting

	Summary

	Multi-Stage Structural Obfuscation to Secure IP Core used in CE Systems
	Formulation, Threat Model and Evaluation Models
	Problem formulation
	Threat model
	Evaluation models

	Proposed Methodology
	Redundant operation elimination process
	Logic transformation process
	Tree height transformation process
	Loop unrolling process
	Loop invariant code motion process

	Exploring PSO-driven Low-Cost Structural Obfuscation
	Overview of PSO-DSE
	Initialization of particle
	Movement of particle using velocity
	Terminating criteria of PSO

	Motivational Example
	Summary

	SAT and Removal Attack Resilient Functional Obfuscation to Secure IP Core of CE Systems
	Possible Attacks and Threat Model
	Possible attacks
	ILB-based functional obfuscation
	Threat model

	Proposed Methodology
	Designing a light-weight AES module
	Mitigating SAT attack
	Mitigating removal attack attack

	Summary

	Obfuscation to Secure Multimedia Processor IP Core of CE Systems
	Overview of the Proposed Approach
	Threat model and problem formulation
	Proposed obfuscation and its steps
	Proposed DSE framework for low-cost obfuscated JPEG CODEC IP core

	Proposed Methodology of Obfuscated JPEG CODEC IP Core
	Overview of JPEG process
	Overview of proposed methodology for compression
	Generating non-obfuscated DFG of JPEG compression
	Constructing obfuscated JPEG compression IP core
	Overview of proposed methodology for decompression
	Constructing obfuscated JPEG decompression IP core

	Proposed Design of JPEG CODEC IP Core
	Designing of obfuscated JPEG compression IP core
	Designing of obfuscated JPEG decompression IP core
	End to End demonstration of JPEG CODEC through the designed IP core

	Summary

	Hardware Trojan Secured IP Core for CE Systems
	Threat Model and An Example
	Threat model
	Example of a Trojan infected 3PIP module
	Why detection of such Trojan is difficult?

	Formulation and Evaluation Models
	Problem formulation
	Evaluation models

	Proposed Methodology for Trojan Security Aware DSP IP Core
	Particle encoding
	Preprocessing of unrolling factor candidates
	Designing DMR schedule
	Distinct vendor allocation rules
	Example of designing a Trojan secured single loop application

	Generating Low-Cost Trojan Secured Design through PSO-DSE
	Justification of PSO
	Initialization of Particle
	Particle Movement using Velocity
	Velocity clamping
	Terminating condition

	Summary

	Results and Analysis
	Experimental Results: Single-Phase IP Core Watermarking of CE Systems
	Analysis of design cost
	Comparison of design cost

	Experimental Results: Triple-Phase IP Core Watermarking of CE Systems
	Evaluation of robustness
	Evaluation of tamper-tolerance ability
	Evaluation of design cost

	Experimental Results: Symmetrical IP Core Watermarking of CE Systems
	Result of the proposed approach in terms of design Cost, security and implementation complexity
	Comparison of the proposed symmetrical IP Core protection approach with a non-symmetrical approach

	Experimental Results: Multi-Stage Structural Obfuscation to Secure IP Core of CE Systems
	Result of the proposed multi-stage obfuscation approach
	Comparative analysis

	Experimental Results: Obfuscation to Secure Multi-media Processor IP Core of CE Systems
	Experimental Results: Hardware Trojan Secured IP Core of CE Systems
	Experimental setup and benchmarks
	Analysis of results
	Comparison with related prior research

	Conclusion
	References

