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Introduction

Intellectual Property (DSP IP cores):

Chips, Integrated circuits, and other designs owned by a company, designer, or manufacturer.
Processors, Digital Signal Processors (DSP) and other Consumer Electronics hardware.

These co-processors performs various data-intensive and power-hungry applications involving massive
computations like data compression-decompression, digital data filtering, and different complex
mathematical calculations.

Due to globalization of design supply chain, the reusable IP cores or ICs are prone to various
hardware threats [1], [2].
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Figure 1: IC design process



Introduction ; Hardware Threats

Security Issues associated with hardware IP Cores :

Security Issues Descriptions

IP Counterfeiting: Using different products under the same brand name.

Overproduction: Production of IP Cores more than the specified IP vendor
licensing limit.




Previous works

Related Work :

2. F. Koushanfar, I. | Hardware watermarking using | Weak watermarking mechanism due to involvement of
Hong, and M. | two-variable (0, 1) signature | only two variable signature encoding process. The
Potkonjak [4] encoding process. watermark  (original  signature) inserted becomes
(2005) vulnerable if relevant information (like signature size,

digit encoding, and digit combination) gets leaked.




Proposed work

Proposed Work

= The proposed approach presents a hardware security framework capable of generating an optimal
architecture solution corresponding to secure hardware IP using key-based encoded hash slices
and firefly algorithm-based design space exploration with more robust security.

= The proposed hardware security approach presents a key-controlled encoded hash slice based
security framework to generate a unique signature (or template).

=  Further, the secret hardware security constraints are determined using obtained signature, which
are embedded into the design of hardware IP cores using the register allocation table (RAT)
framework of HLS process.

= The embedding of the IP seller’s/vendor’s authentic signature into the design of hardware IP core
protects it from hardware security threats such as false claim of IP ownership and IP piracy.



Proposed work : (FF-DSE module)

Importance of Firefly based design space exploration (FF-DSE)

The integration of the FF-DSE block with the proposed security methodology serves the
objective of determining an optimized architectural solution.

FF-DSE prunes the design search space based on IP vendor specified high level specification
such as area, delay, energy, power, etc. corresponding to secured DSP design to generate an
optimized low-cost design.

Advantage of FF-DSE over others such as genetic algorithm and bacterial foraging based DSE:

FF-DSE incorporates essential hyperparameters, such as step-size control and absorption
coefficient, to control randomness during the design search,

FF-DSE employs a divide-and-conquer approach based on the attraction parameter. Fireflies with
higher attractiveness gather around local optimums in separate subgroups, eventually leading to the
discovery of the final optimal solution,

The linearly decreasing step size control and absorption coefficient in FF-DSE strikes a balance
between exploration and exploitation, ensuring faster convergence to the optimal solution.



Proposed Work : Flow Diagram

Detailed flow diagram of the proposed approach
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Proposed Work : Key Controlled Encoded Hash Slice Block

Details of Key Controlled Encoded Hash Slice based security module
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Proposed Work Contd.

IP vendor selected encoding rules and scheduled data flow graph (SDFG) of
8-point DCT hardware application
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Proposed Work Contd.

Generation and embedding of signature as security constraints in the Register
Allocation Table (RAT) corresponding to the SDFG of 8-point DCT

The generated signature is further truncated and converted into covert hardware security constraints using IP

vendor selected truncation length and mapping/embedding rule, respectively.

= Mapping/Embedding rule: Implant an additional artificial edge within (even, even) pairs of storage variables
in the register allocation table (RAT) when the bit is '0". Conversely, an edge is integrated between (odd, odd)
storage variable pairs of the RAT when the bit is ‘1°. The final obtained security constraints are: (D0,D2), ----

- (D28,D30), (D1,D3),

respective hardware application.

Table I

Register allocation table pre and post embedding generated signature

,(D25,D29). The generated security constraints are embedded into the RAT of

CS R G I B Y Bl V P L o A T G M N K
0 DO D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
1 D16/D D17 D2 D3 D4 D5 D6 D7 - - - - - - - -

L7 /D16

2 D18 D19 D24/D D18 D4 D5 D6 D7 D24 - -

19
3 D20 D19 D21/D D25 D21 D20 D6 D7 D25 - - -

19
4 D20 D22 D21 D23 D26/D D20 D23 D22 - D27 - -

21

5 D27 D22 D21 D23 - D23 D22 - - D28
6 D28 D22 D23 - - - - - -
7 D29 - - D23 D23 - D29 - - - -
8 D30 - - - - - - - - D30
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Security metrics

Evaluation parameters [7]-[9]:

> Tamper tolerance:

TT = q¢

> Design cost:

Where ‘q’ and ‘t’ are types of encoding bits present in the mapping rule and strength (size) of
generated security constraints respectively.

Cost = t1 *

t2 * ;
Max area Maximum latency

Area Latency Where ‘area’ and ‘latency’ represents the total area and

latency (delay) of the proposed methodology-based secured
IP core design; ‘max area and max latency’ depict the

> Entropy :

maximum area and latency of the proposed secured design
of IP core using maximum resource constraints possible.
‘tl and t2’ are the weighing factors (weightage given to are
and delay), which in the proposed approach is 0.5 each.

Xy = (/27 1/m)  (1/2)(1/R)*(1/2°*)))

where 'd" is the final generated palmprint template strength (magnitude) and 'm' is the total number of features selected on the
palmprint, 'k' is the length of truncated encoded hash, 'R' is the round computation's maximum value, and (1/2%%) is the
probability of finding the exact key hash buffer initialized value in SHA-512 cryptographic module (each hash buffer is
initialized with pre-defined 64-bit value).
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Result

Result

Table II
Comparison of entropy and tamper tolerance between the proposed approach,
[21. [3]. [4], [5], and [6] corresponding to 8-point DCT

Table III
Optimality analysis and design cost of proposed technique for 8-point DCT
Parameters Values
Spacing (S) 0.48
Generational distance (Gp) 0
Weighted metric (Wy) 0.17
Spread (Sp) 0.34
Design cost -0.132
Area 182.45 um?
Latency 1324.85 ps

Security approach Security parameters
Embedded Entropy Tamper
security tolerance
constraints
Proposed approach 496 3.68E-172 2.04E+149
Palmprint biometric [2] 125 1.93E-55 4.25E+37
Encrypted signature [5] 160 2.01E-87 1.46E+48
Watermarking [4] 240 1.66E-111 1.76E+72
DNA biometric [3] 128 2.9E-39 3.40E+38
HDL watermarking [6] 256 5.85E-99 1.15E+77
1.00E+150

62-bit

1.00E+100
1.00E=+50 I
1.00E+00 W [

124-bit  248-bit 496-bit

Figure 6: Security analysis
of the proposed approach in

m62-bit m124-bit m248-bit m496-bit terms of tamper tolerance

with varying signature sizes 12
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