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ABSTRACT 

With changing trends in technology and to effectively compete in the market, designers are 

focussing on attempts to optimize Very Large Scale Integration (VLSI) digital systems. 

Attempts to devise design systems with higher performance, accuracy and efficiency along 

with lower overall cost are being made. In order to achieve this, High Level Synthesis (HLS) 

/ architectural synthesis has come into force. However, there is a paradigm shift in the area of 

HLS as more and more designs are suffering from reliability and hardware security issues. 

These are expected to become the key focus due to massive scaling in nanometre technology 

and globalization involved in the VLSI design process. This thesis proposes methodologies 

for generating low cost security solutions for both transient fault and hardware Trojan with 

respect to data intensive and control intensive applications during design of application 

specific datapath processor at behavioural level. This thesis solves five different types of 

problems in generating reliable//hardware secured designs: a) Problem of design Space 

Exploration (DSE) during power-performance trade-off for data intensive applications that 

produces high quality design solutions. In addition, a novel Bacterial Foraging Optimization 

(BFO) driven DSE methodology is proposed which explores the design points in the design 

space. A novel chemotaxis, replication and elimination-dispersal algorithm is proposed which 

generates the design points. b) Problem of exploration of low cost optimal k-cycle transient 

fault secured datapath during power-performance trade-off for data intensive applications. A 

novel fault security algorithm for handling single and multi-cycle transient faults is proposed. 

A novel multi-cycle Single Event Transient (SET) fault security aware multi objective DSE 

methodology that explores an optimal combination of transient fault secured (Double 

Modular Redundant) DMR datapath configuration has been proposed. Moreover, a novel 

scheme for selecting appropriate edges for inserting cuts in the scheduled Data Flow Graphs 

(DFG) minimizing delay overhead associated with transient fault security, a novel execution 

time model for estimating the execution time of a transient fault secured/Trojan secured 

design during DSE process, a novel fitness function, used for design quality assessment in 

DSE process has been proposed. c) Problem of exploration of low cost optimal k-cycle 

transient fault secured datapath during area-delay trade-off for control intensive applications. 

a novel multi-cycle SET fault security aware multi objective DSE methodology that explores 



 

VII 

 

an optimal combination of transient fault secured DMR datapath configuration and loop 

Unrolling Factor (UF) for Control Data Flow Graphs (CDFG) has been proposed. Moreover, 

a novel estimation model for computation of execution delay of a loop unrolled CDFG (based 

on a resource configuration explored) without tediously unrolling the entire CDFG for the 

specified loop value has been proposed. d) Problem of exploration of low cost optimal k-

cycle transient fault tolerant datapath based on power-performance tradeoff for data intensive 

applications. In relation to this, a novel multi-cycle transient fault tolerant algorithm that has 

capability to isolate original and duplicate units in a DMR with respect to the transient fault 

has been proposed. Moreover, a novel equivalent circuit that works with DMR systems 

performs the function of extracting the correct output from the DMR design has been 

proposed. e) Problem of exploration of low cost optimal Trojan secured datapath during 

behavioural synthesis for data intensive applications has been tackled. A novel encoding 

scheme for representing bacterium in the design space (comprising of candidate datapath 

resource configuration and vendor allocation information for hardware Trojan secured 

datapath) has been proposed. Moreover, a novel exploration process of an efficient vendor 

allocation procedure that assists in yielding a low cost hardware Trojan secured datapath 

within user constraints has been proposed. 
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Chapter 1  

Introduction 

1.1 Preamble 

With the explosion of technology, the 20
th

 century era witnessed a drastic change in the 

lifestyle. The key inventions on Integrated Circuits (ICs) have led to high speed 

microprocessors and memories. With the advent of such breakthroughs, there have been 

equally important developments which have brought steady growth in digital systems. In 

early 60s, Moore, predicted the exponential growth of the number of transistors on an 

integrated circuit. This in turn provided higher functionalities within a single unit at low cost, 

leading to higher complexity while designing and verification.  

As the complexity of systems increases, there arises need for automation at higher 

abstraction levels where functionalities and tradeoffs are easier to understand. Automation 

assures a shorter design cycle. Also, there is a greater possibility of quickly exploring 

different and better designs. Raising the design abstraction to behavioural level or 

architectural level boosts the design productivity [1, 60, 61, 62]. An architectural level 

specification describes the algorithm to be implemented, without the details of the structure 

of the circuit.  

1.2 Circuit Design and Synthesis  

The Very Large Scale Integration (VLSI) design flow consists of a number of design and test 

levels to match the design specifications. The design engineer accepts the user requirements, 

and translates them into specifications. Once the specifications are determined, the designing 

is performed. The process includes system level, high level, gate or logic level, transistor or 

circuit level and physical or layout level. The levels can be described as [1]: 

 System level: This is the highest level of abstraction, where the system is represented 

as processes, tasks, hardware and software. This level deals with the overall system 

and the information flow within the system. 
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 Behavioural or Algorithmic or High level: This level controls the computation by 

individual processors within the system. It monitors the mapping sequences of inputs 

to the outputs.  

 Register Transfer Level (RTL):  At this level, the system is specified as a set of 

storage elements and functional units.  

 Logic or Gate level: At the logic level system is viewed as a network of gates and 

flip-flops. The behaviour of the system is specified in terms of logic equations.  

 Circuit or Transistor level: this level describes the circuits as a netlist of transistors. 

The issues related to the nature and numbers of transistors to be used are dealt at the 

circuit level. 

 Physical or Layout level: This is the lowest level of circuit abstraction in which the 

system is specified in terms of individual transistors.  

The design process proceeds from higher to lower abstraction levels. The automated process 

of designing the VLSI circuits is referred as synthesis. Specifying the design at a higher 

abstraction level has been an effective way to deal with the complexity.  

1.3 High Level Synthesis (HLS) Details 

With the increasing design complexity of ICs the idea of automatically generating circuit 

implementations from high-level behavioural specifications has gained interest. Initially, 

multiple prototype tools were developed to call attention to the methodology and to 

experiment with various algorithms. In late 80s and early 90s, a number of similar HLS tools 

were built, mostly for research and prototyping. MIMOLA [2], ADAM [3, 4], HAL [5], 

Hercules/Hebe [7, 8], and Hyper/Hyper-LP [6, 9] were some academic efforts. These tools 

decompose the synthesis task into following steps:  

a) Code transformation, 

b) Module selection, 

c) Operation scheduling,  

d) Datapath allocation, and 

e) Controller generation.  

These problems were individually addressed later using algorithms like list scheduling 

algorithm, force-directed scheduling algorithm and many others. This provided a base for 

HLS. However, these efforts were not enough for wide acceptance of HLS among designers 

due to low quality solutions generated.  
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In 1995 several tools like Behavioural Compiler [11] from Synopsis, Monet from Mentor 

Graphics [10] and Visual Architect from Cadence [12] were introduced which received a 

wide attention. However, the tools were not widely accepted since these tools used Hardware 

Description Languages (HDL) such as Very High Speed Integrated Circuit Hardware 

Description Language (VHDL) or Verilog for behavioural description as input. Since then a 

wide range of tools are developed which are commercially accepted and use C/C++ or C-

based languages to capture the design.  

1.4 Theoretical Background on HLS 

HLS is a process of transforming a software behavioural description into a hardware circuit 

description with equivalent functionality [60-63]. It is sometimes referred as behavioural or 

architectural or C-to-gates synthesis. The behavioural description describes the input and 

output behaviour of the algorithm in terms of operations and data transfers. It consists of 

algorithmic statements containing the different operations viz. additions, multiplications, 

logical operations and control operations like loops, conditional statements and function calls. 

The behavioural description is represented in the form of a Data Flow graph (DFG). The 

DFG comprises of operations in the algorithmic description and the data dependencies 

between them are represented by the vertices and edges, respectively. Figure 1.2 gives an 

example of a sample DFG for the behavioural description shown in Figure 1.1. The hardware 

circuit description is divided into segments, datapath unit and control unit. The datapath 

includes the functional units such as multipliers, arithmetic logical units, and the storage units 

while the control unit coordinates the data flow between the datapath elements. Traditionally 

HLS is divided into datapath synthesis and controller synthesis. Datapath synthesis can be 

modelled as the process of searching a complex multidimensional space represented by the 
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Figure 1.2 Sample Data Flow 

Graph 

r = a+b; 

s =c*d; 

t = e*f; 

u = r+s; 

v = u +t 

Figure 1.1 Sample Behavioural description 
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set of possible schedules, allocations, and bindings that can realize a given behavioural 

specification.  

1.5 Phases of HLS 

The various phases or tasks of HLS include compilation, transformation, scheduling, 

allocation, binding and RTL generation. During compilation the behavior of the system 

specified in the form of an algorithmic description or HDL (VHDL or Verilog) is compiled 

into internal representations. These internal representations are generally in the form of a 

DFG or a Control Data Flow Graphs (CDFG). Further in the transformation phase, the 

generated DFG is transformed into an optimized DFG or a suitable DFG for scheduling and 

allocation purpose. Dead-code elimination, common subexpression elimination, loop 

unrolling, constant propagation and code motion are some possible transformations which 

can be done on an application. Once the transformations are done, the Design Space 

Exploration (DSE) process is performed. During DSE several choices have to be evaluated 

for executing any decision. Therefore, it is important to perform DSE at early design stage or 

higher abstraction level (behavioural level) in order to investigate tradeoffs between all 

possible design goals, and to select the most appropriate solution.  Finally, to realize a RTL 

design, HLS performs scheduling, allocation and binding. Scheduling divides the algorithmic 

behaviour/DFG into control steps. Each step contains a small section of code that can be 

executed in a single clock cycle. This process optimizes the number of execution steps based 

on constraints of hardware resource and cycle time. Allocation decides how much resources 

are needed in hardware while binding map the instructions and variables to hardware 

components, such as adders, multipliers, and registers [64].  The scheduling, allocation and 

binding phases are described in detail in next sections. 

 Scheduling 

The scheduling is a process which maps operations belonging to the algorithmic description 

onto a set of discrete time steps, in a way such that all data dependencies/precedence 

constraints specified in the algorithmic description are met. The mapping of operations to 

time steps is done such that the total number of time steps required to implement the specified 

behaviour meets the given timing constraints and minimizes implementation area. Scheduling 

can either be constructive or iterative [1, 66, 67, 69].  

In constructive scheduling the solutions are constructed by adding operations/nodes one at a 

time until all the operations have been scheduled. As Soon As Possible (ASAP), As Late As 
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Possible (ALAP), List scheduling [13], Force direct scheduling [14], and Integer linear 

programming based scheduling [15, 16] fall under constructive category. ASAP is the 

simplest type of scheduling. It assumes that the number of Functional Units (FU’s) required 

are already specified. Further, process arranges the operations topologically according to their 

data or control flow. Once the operations are sorted, they are selected one by one from the list 

in order and scheduled into earliest control step possible, preserving its dependency and the 

resource availability. However, another constructive scheduling approach, ALAP, places the 

operations in the latest possible control step. ALAP uses the number of steps resulting from 

the ASAP schedule as a latency constraint [1]. ASAP, ALAP are also referred as the 

unconstrained scheduling algorithms. List scheduling is primarily resource-constrained 

scheduling algorithm.  The list-based algorithm takes a sequencing DFG and resource 

constraints as inputs and generates a scheduled sequencing DFG as output. The operations 

available for scheduling are kept in a list for each control step. This list is further ordered by 

some priority function, either mobility of the vertex or the length of path from the operation 

to the sink while ranking the vertices in decreasing order. An operation on the list is 

scheduled one by one if the resource needed by the operation is free; otherwise, it is deferred 

to the next clock cycle. Further, a Force-directed scheduling is a heuristic algorithm that can 

consider both resource and time constraints. The basic idea of this algorithm is to balance the 

concurrency of operations without increasing the total execution time to maximize the 

utilization of resources such that the number of required resources is minimal [1].  

However, in iterative scheduling the designer starts with an initial (random) solution and 

iteratively updates the solution. Finally a scheduling solution is generated which is optimal 

and satisfies the user constraints of power/area and latency. In iterative scheduling the 

designer possesses multiple designing solutions which are generated in intermediate steps.  

Genetic Algorithm (GA) based scheduling, ant colony based scheduling, simulated annealing 

based scheduling are some examples of iterative approaches [65, 68, 70].  

 Allocation and Binding 

Allocation involves mapping operations onto functional units, assigning values to registers, 

and providing interconnections between operators and registers using buses and multiplexers. 

While binding is the task to assign operation to particular resource such as computation to 

functional unit, storage to register and data transfer to interconnect. Binding can be solved by 

using various graph theoretic techniques like clique partitioning [1, 13, 71], circular-arc graph 

colouring [1, 13, 71] or left edge algorithm [1, 13]. In clique partitioning, an undirected graph 
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reffered as “compatibility graph” is constructed to analyze the compatibility between the 

operations of the graph. Two operations are compatible and can use same resources if they 

need resources of same type and are scheduled in different clock cycles.  

However, in graph colouring a respurce conflict graph is constructed to analyze the conflicts 

of the operations, wherein, the graph is an undirected graph whose vertex set is in one-to-one 

correspondence with the operations and whose edge set denotes the conflicting vertex pairs. 

In such a resource conflict graph, two operations have a conflict if they are not compatible. 

The conflict graph and compatibility graph are complementary to each other. The choice 

between them is driven by the type of circuit.  

Furthermore, in the left edge algorithm [1, 13], the birth time of a variable is mapped to the 

left edge, and the death time of a variable is mapped to the right edge. The variables are 

sorted in increasing order of their birth time. The first variable is then assigned to the first 

register. Then, the current register receives the next variable whose birth time is larger or 

equal to the death time of the previous variable. 

1.6 Why HLS? 

There has been an increase in trend towards automating synthesis at higher levels of 

designing in the recent years. Also, there has been substantial interest shown in RTL design 

obtained from higher levels of abstraction (algorithmic) using HLS. There are a number of 

reasons for this [1, 63, 65]:  

 Shorter design cycle: Automation has reduced the designing time and manpower 

involvement metrics.  Hence there is a reduction in the overall cost of the chip. 

 Continuous and reliable design flow: HLS facilitates a continuous and reliable 

automatic translation of high level specification into RTL description of the circuit in 

the form of VHDL or Verilog. 

 Fewer errors: Correct design decisions at the higher levels of circuit abstraction can 

ensure that the errors are not propagated to the lower levels. 

  The ability to search the design space: Automating the design process helps in 

producing several designs for same specification in a reasonable amount of time. This 

benefit helps the designer in exploring  different trade-offs between cost, speed, 

power and other factors  to take an existing design and produce a functionally 

equivalent one that is efficient. 
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 Easy availability of IC technology: As more design expertise is moved into the 

synthesis system, it becomes easier for a non-expert to produce a chip that meets a 

given set of specifications. 

1.7 Thesis Organization 

The rest of the thesis is organized as follows: chapter 3 describes the proposed framework to 

solve the problem of DSE during power-performance trade-off for data intensive 

applications. Chapter 4 describes a framework to solve the problem of exploration of low cost 

optimal k-cycle transient fault secured datapath during power-performance trade-off for data 

intensive applications. Chapter 5 solves the problem of exploration of low cost optimal k-

cycle transient fault secured datapath during area-delay trade-off for control intensive 

applications.  In chapter 6, a framework to solve the problem of exploration of low cost 

optimal k-cycle transient fault tolerant datapath based on power-performance tradeoff for data 

intensive applications is presented. Moreover, chapter 7 solves the problem of exploration of 

low cost optimal Trojan secured datapath during behavioural synthesis for data intensive 

applications. Further, the results of the proposed approaches in context to the problems, for 

various well known HLS benchmarks indicating exploration time and quality improvements 

obtained, compared to the current existing approaches are provided in chapter 8. Chapter 9 

concludes the research work presented in the thesis and provides future scope of work in this 

area.  
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Chapter 2   

Previous Work and Thesis Contribution 

2.1 Related Work 

The problem of DSE in HLS is a NP-complete problem [72, 73, 74]. In the literature, many 

attempts have been made to solve the DSE problem in HLS [79-83]. The approaches 

developed; aim at exploring the design space along with balancing multi-conflicting issues 

during generation of the optimal/near-optimal design alternative (or Pareto front). For solving 

various NP complete problems, GAs is the most popular evolutionary algorithms in terms of 

diversity of their applications. In order to solve DSE problem, GA is used by many 

researchers in [18, 20, 21, 65, 66].  For example, researchers in [18] used a time constrained 

scheduling based on GA. In [18], authors combined the constructive scheduling methods with 

GA and later used for searching a suitable order to perform scheduling. The work presented 

an encoding scheme where allocation of supplementary resources was done during 

scheduling, to deal with the lower bound estimations. Authors in [20, 21, 65, 66] used GA to 

solve integrated scheduling and datapath exploration problem. In these approaches, the 

chromosome contains the scheduling information and the datapath information. In [20], the 

scheduling information is encoded with ‘node priority’. However, authors in [21], used the 

scheduling information in chromosome encoded by ‘load factor’ and used a heuristic to 

decode the scheduling information from encoded chromosome. Authors in [65, 66] encoded 

scheduling information in chromosomes as ‘work remaining’. However, the second part of 

the chromosome in [20, 21, 65, 66] is encoded with maximum number of functional units 

available during scheduling. Furthermore, in [20] the cost function is evaluated on the basis 

on area-latency tradeoff. But, there is no concept of total execution time, data pipelining and 

power during exploration. Further, the chance of yielding an optimum result is not 

guaranteed. Researchers in [21] did not consider dynamic power while calculating total 

power. In the work, a multi-structure chromosome representation for the datapath nodes was 

used for scheduling. The approach also had a drawback of huge computation time besides 
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generating non-optimal solutions in some cases. Authors in [65, 66] used binary encoding of 

the chromosomes for DSE in architectural synthesis for area-latency trade-off. Moreover, 

authors in [65, 66], optimized area and latency, but failed to consider power and execution 

time (function of latency as well as cycle time for pipelined dataset), which are critical issues 

for modern handheld, battery operated high speed devices. In order to explore new solutions 

the approaches [18, 20, 21, 65, 66] perform genetic operator (such as crossover and mutation) 

between two chromosomes. In [19] a discrete Particle Swarm Optimization (PSO) based 

exploration method is proposed to solve the DSE problem in HLS. In the approach every 

swarm explores the design space by considering all conflicting objective simultaneously. The 

approach suffers from several drawbacks. The authors divided the swarm into sub-swarms 

and each objective was accomplished by one sub-swarm only. Hence, the technique required 

a large swarm size which may lead to heavy computation time per iteration. In the work, the 

authors have not considered the concept of local best while exploration. While updating 

velocity, the authors updated only the direction keeping the step length constant. Another 

drawback of the approach is that, there is no concept of mutation and clamping in case of 

boundary overreach problem. 

Further in [17], authors described an approach based on integration of GA with PSO referred 

as Weighted Sum Particle Swarm Optimization (WSPSO). In [17] authors adopted the 

encoding scheme from [20], which is a combination of scheduling information and maximum 

available FUs. In their work, the concept of global and local best solution/position is used. To 

find new solutions, crossover is performed between current position with global best position 

and local best position. Thus, to incorporate GA, crossover is performed, which is the basic 

operator of GA and to incorporate PSO, the crossover is performed between current position 

and global and local best position. The shortcoming of this approach is that mathematically 

no velocity parameter is used while updating the particle position. Moreover, authors used a 

weighted combination of latency, area and power during fitness evaluation. But, the metrics 

such as execution time and actual power are not taken into account in cost function 

determination.  

Besides these approaches, certain tools are introduced which deal with the DSE problem in 

HLS. In [22] a tool called SystemCoDesigner has been introduced which deals with tradeoff 

between area-delay. The tool offers automated and fast DSE with prototyping of behavioral 

systemC models. Some other commercial tools like GAUT [23], LegUp [24], ROCCC [25] 

and CatapultC [26] are also available in the market for electronic design automation. GAUT 
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takes a C/C++ behavioral description as input for automatically generating equivalent RTL 

implementation based on constraints of throughput and clock period. LegUp is an open 

source HLS tool available for FPGA-based processor/accelerator systems. Further, another 

tool called AutoPilot is introduced in [27] which address the problem of exploration in HLS. 

It performs C/C++/systemC-to-RTL synthesis. The tool was targeted for FPGAs.  

The approaches mentioned so far suffered from multiple drawbacks and were not useful. 

Therefore, one of the objectives of this thesis is to develop an efficient DSE methodology in 

HLS which addresses the above drawbacks. 

Over the years the process of DSE has evolved where the requirements specified by the user 

have also become more convoluted, ranging from simple area-delay tradeoff in initial years to 

complex power-delay-reliability tradeoff in recent years. To resolve this, some HLS 

approaches were proposed which included the consideration of fault security aspect with 

hardware redundancy, but without focusing on low cost solution of an optimized fault 

detectable design based on user power-delay constraint. The literature includes works that 

only deal with the fault detection issue of the designs without ability to explore a low cost 

optimized fault detectable datapath based on user specified power-delay. For example, HLS 

approaches such as [28, 29, 30, 31, 87] just included the aspect of single cycle fault security 

with hardware redundancy, but without any focus on evolving/exploring an optimal multi-

cycle fault secured design based on user power-delay constraints. In [28] authors use 

duplication of the CDFG and map the second onto the same hardware as the first, adding FUs 

as needed. The technique uses the algebraic properties of associativity, distributivity, and 

commutativity to aid mobility in scheduling the duplicate CDFG and thus take better 

advantage of idle resources. The approach in [29] involves partitioning of the CDFG into 

regions or sub graphs. The authors presented a hardware redundancy based Concurrent Error 

Detection (CED) approach which breaks the data dependences between the nodes. This is 

done to improve the sharing between normal and duplicate computations. The original and 

the duplicate computations which are represented by a region are performed on distinct 

hardware. This is done so that, every regions output can be compared to identify the faults 

within the regions. For this, voting on the results of the regions is done. In [30], a CED 

scheme is employed to detect and isolate the faults within a system while it is in use. In [31] 

authors investigated a method for exploring the tradeoff between the area and latency of the 

CED design in HLS. The approach sometimes used hardware redundancy or time redundancy 

or a combination of both to produce fault secure designs. Designs were made secure on the 
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basis of check pointing introduced in the system. Instead of adding extra FUs for fault 

detection, they use re-computation on the same hardware using different allocations. 

Therefore approaches [28, 29, 30, 31] are all fault detectable approaches (using hardware 

redundancy) with no provision of producing an optimized fault detectable datapath system 

based on conflicting power and delay constraint of user.  

Additionally, there have been no approaches developed which concurrently propose a multi-

objective DSE process of a multi-cycle (or single cycle) fault tolerant design during HLS. A 

complete fault tolerant system should possess different capabilities. Depending upon the fault 

tolerance level required it should be capable of identifying the fault, detecting it, followed by 

its isolation, masking and then recovering from it. Efforts have only been made for the error 

detection issue of the designs without ability to isolate the faults as well as explore the 

optimized fault tolerant datapath based on power-performance objective. The fault detection 

technique involves the redundancy factor to identify the faults prevailing in the system. It 

either uses the hardware redundancy or the time redundancy or a combination of both to 

determine the presence of fault within a system. Therefore, exploration of a multi-cycle fault 

tolerant datapath for conflicting user constraints becomes non-trivial. In the literature so far, 

only one approach has been proposed by authors in [32] who discussed a HLS approach for 

multi-cycle transient fault tolerant datapath. However, there was no algorithm for exploration 

of an optimal fault tolerant datapath based on power-performance constraint. Also, the work 

did not include any concept of multi-cycle transient fault during DSE. Moreover, a Triple 

Modular Redundant (TMR) system for k-cycle faults tolerance for Single Event Transient 

(SET) was presented. Wherein, the outputs of the units were voted upon by the help of voter, 

to mask the errors. Additionally, comparators were used to detect the difference in the outputs 

of the units. Therefore, [32] involved higher redundancy which sometimes involved TMR 

system with tripled resource usage.  

The approaches in the literature so far were not capable to address transient fault 

security/tolerance and generate low cost optimal fault secured/tolerant datapath 

simultaneously and therefore were not much useful. However, some of the approaches which 

could handle the transient faults involved higher redundancy leading to generation of a non-

optimal design solution. Therefore, one of the objectives of this thesis is to develop a 

methodology which generates a low cost optimal transient fault secured/tolerant datapath 

during HLS.   
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With the emergent globalization of System-on-Chip (SoC) designs, penetration of hardware 

Trojan in Intellectual Property (IP) cores resulting from untrustworthy Third Party (3P) 

vendors has become a matter of grave security concern amongst the SoC integrators. 

Hardware Trojan’s are malicious hardware components embedded by adversaries in order to 

induce malfunctioning of ICs [95, 96, 97]. During the design process an adversary may 

corrupt the IP by inserting hardware Trojan into it. This matter gets further intricate as 

hardware Trojans can be of multiple types [33, 34]. To have a trustworthy design it should be 

ensured during HLS that any possible infection of 3PIP is detectable. In case of HLS, the 

hardware Trojan mostly considered is the one which is capable of maliciously altering the 

digital output of a 3PIP. The detection procedure as suggested by [35] is accomplished by 

having IP cores of same functionality from different vendors. This is because different 

vendors will have different implementations and it is less likely that both are Trojan infected. 

Even if they are, the chances of different vendor IPs generating same output behavior is 

considered extremely uncommon.  However, detection process of the Trojan during design of 

hardware Trojan secured schedule in HLS inevitably requires multiple redundant hardware 

instances from different vendors, which if not accounted for its power and delay during 

fitness evaluation, may result in a secured circuit violating user constraint. The focus on 

hardware Trojan detection during HLS has been very little with absolutely zero effort so far 

in DSE of a user multi-objective constraint optimized hardware Trojan secured schedule. 

However a number of approaches have been proposed for Trojan detection at lower levels of 

chip design [89, 90, 91, 93, 94].  This problem mandates attention as producing a Trojan 

secured schedule is not inconsequential. Merely the detection process of Trojan is not as 

straightforward as CED of transient faults as it involves the concept of multiple 3PIP vendors 

to facilitate detection [92], let aside the exploration process of a user optimized Trojan 

secured schedule based on Multiobjective (MO) constraints. Efficient vendor allocation 

procedure needs to be devised for Trojan detection during HLS, besides robust and adaptive 

exploration scheme for low cost optimal hardware Trojan secured scheduling. A low cost 

optimal Trojan secured schedule indicates an optimized robust Double Modular Redundant 

(DMR) scheduling obtained through a heuristic comprising of intelligent hardware 

assignment to operations such that any possible Trojan infection in the underlying hardware 

is detectable. 
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2.2 Objective  

The objective of this thesis is to develop highly reliable/hardware secured designs for data 

intensive and control intensive applications during design of application specific datapath 

processor at behavioural level. In order to realize this, the following objectives have been set: 

 Develop a methodology to solve the problem of DSE during power-performance 

trade-off for data intensive applications that produces high quality design solutions. 

 Develop an approach to solve the problem of exploration of low cost optimal k-cycle 

transient fault secured datapath during power-performance trade-off for data intensive 

applications. 

 Develop an automated approach to solve the problem of simultaneous exploration of 

low cost optimal k-cycle transient fault secured datapath and unrolling factor for 

control intensive applications during area-delay trade-off. 

 Develop a execution time prediction model for faster exploration process in case of 

single loop based CDFGs without tediously unrolling CDFG loop completely. 

 Develop an approach to solve the problem of exploration of low cost optimal k-cycle 

transient fault tolerant datapath based on power-performance tradeoff for data 

intensive applications. 

 Develop an approach that solves the problem of exploration of low cost optimal 

Trojan secured datapath during behavioural synthesis for data intensive applications. 

2.3 Summary of Contribution 

The focus of this thesis is to provide a number of low cost solutions to the aforesaid problem 

in the field of security (against hardware Trojan) and reliability (against transient fault) aware 

HLS for both data and control intensive applications. 

In order to resolve the issues present in the state-of-the-art approaches, the following 

contributions have been made through this research. 

 Solve the problem of DSE during power-performance trade-off for data intensive 

applications. 

 [Publications: J1, J5, C10] 

a) Proposed a novel temperature dependent bacterial foraging optimization 

methodology for automated exploration of datapath in HLS, capable of 

yielding optimal results. 
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b) Introduced a novel chemotaxis algorithm for exploration drift, replication 

algorithm for inducing efficient exploration ability and elimination-dispersal 

algorithms for sudden diversity introduction. 

  Solve the problem of exploration of low cost optimal k-cycle transient fault secured 

datapath during power-performance trade-off for data intensive applications. 

 [Publications: J2, C7, C8, C9] 

a) Proposed a novel fault security algorithm for handling single and multi-cycle 

transient faults. 

b) Proposed a low cost approach for generating a high quality fault secured 

structure based on user provided requirements of power-delay, which is 

capable of transient error detection in the datapath. 

c) Introduced a novel scheme for selecting appropriate edges for inserting cuts in 

the scheduled DFG minimizing delay overhead associated with transient fault 

security. 

d) Proposed a novel execution time model for estimating the execution time of a 

transient fault secured/Trojan secured design during DSE process. 

e) Proposed a novel fitness function, used for design quality assessment in DSE 

process. 

f) Proposed a novel multi-cycle SET fault security aware multi objective DSE 

methodology that explores an optimal combination of transient fault secured 

DMR datapath configuration. 

 Solve the problem of exploration of low cost optimal k-cycle transient fault secured 

datapath during area-delay trade-off for control intensive applications 

 [Publications: J4] 

a) Proposed a novel multi-cycle SET fault security aware multi objective DSE 

methodology that explores an optimal combination of transient fault secured 

DMR datapath configuration and loop Unrolling Factor (UF) for CDFG. 

b) Proposed an estimation model for computation of execution delay of a loop 

unrolled CDFG (based on a resource configuration explored) without 

tediously unrolling the entire CDFG for the specified loop value. 
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 Solve the problem of exploration of low cost optimal k-cycle transient fault tolerant 

datapath based on power-performance tradeoff for data intensive applications. 

 [Publications: J3, C11] 

a) Proposed a novel multi-cycle transient fault tolerant algorithm that has 

capability to isolate original and duplicate units in a DMR with respect to the 

transient fault. 

b) Proposed a novel equivalent circuit that works with DMR systems performs 

the function of extracting the correct output from the DMR design. 

 Solve the problem of exploration of low cost optimal Trojan secured datapath during 

behavioural synthesis for data intensive applications. 

 [Publications: C6, C12] 

a) Proposed a novel encoding scheme for representing bacterium in the design 

space (comprising of candidate datapath resource configuration and vendor 

allocation information for hardware Trojan secured datapath). 

b) Proposed a novel exploration process of an efficient vendor allocation 

procedure that assists in yielding a low cost hardware Trojan secured datapath 

within user constraints. 
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Chapter 3 

Adaptive Bacterial Foraging Driven Datapath 

Optimization: Exploring Power-performance Trade-off in 

HLS 

This chapter presents a novel application of Bacterial Foraging Optimization Algorithm 

(BFOA) in the area of DSE of datapath in HLS for data intensive applications. For the DSE 

process, the BFOA has been transformed into an adaptive automated DSE framework that is 

capable to handle tradeoffs between power and execution time during HLS. The BFOA-DSE 

is capable to resolve orthogonal issues such as enhancing Quality of Result (QoR) as well as 

exploration speed, thereby being able to produce higher-quality results in lesser exploration 

time than existing approaches [20, 36]. This is the first work which directly maps the BFO 

process for multi-objective DSE during power-performance trade-off for data intensive 

applications in HLS. The work proposes a novel chemotaxis driven exploration drift 

algorithm, a novel replication algorithm for manipulating the position of the bacterium by 

keeping the resource information constant (useful for inducing exploitative ability in the 

algorithm). Moreover, a novel Elimination-Dispersal (ED) algorithm is proposed to introduce 

diversity during the exploration process. The detailed explanation of the proposed 

methodology along with the demonstration of the proposed framework has been given in 

subsequent sections. 

3.1.  Description of Proposed Methodology 

3.1.1. Problem Formulation 

Given a DFG, explore the design space and determine an optimal resource configuration, 

1 2{ ( ), ( ), ( ).... ( )}i d DX N R N R N R N R satisfying conflicting user constraints and minimizing the 

overall cost. The formal formulation of the problem is: 

For a given DFG find a resource combination (Xi): 

1 2{ ( ), ( ), ( ).... ( )}i d DX N R N R N R N R ; 

with minimum hybrid cost: (PT, TE); 
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 subjected to: PT ≤ Pcons and TE ≤ Tcons. 

Where, N(Rd) is the number of instances of resource type ‘Rd’; ‘D’ is the total number of 

resource types; ‘Xi’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’ 

are the power and execution time consumed by a candidate resource combination; ‘Pcons’ and 

‘Tcons’ are power and execution time constraints specified by the user. 

3.1.2. Motivation of using BFOA in Context of Proposed Problem 

The DSE process for Application Specific Integrated Circuits (ASICs) is an intricate process 

which involves identifying the best solution from a set of given design alternatives of 

assorted nature. The DSE algorithms proposed so far using the evolutionary approach such as 

PSO, GA and hybrid GA do not provide flexible options for guided/adaptive searching such 

as change in directions when a certain search path is found unproductive. Moreover, PSO is 

known to be a highly sensitive algorithm, therefore failing to clinically pre-tune the 

parameters often would result in convergence to local optima. However, bacterial foraging 

uses a simplified framework and is less sensitive than other evolutionary techniques. BFOA 

comprises of primarily of two major steps: chemotaxis and dispersal for locomotion of 

bacterium. Using locomotion mechanisms (such as flagella) bacteria can move around in 

their environment, sometimes moving chaotically (tumbling and spinning), and other times 

moving in a directed manner that may be referred to as swimming. Therefore, the intuition or 

science behind adopting Bacterial foraging is the simplified nature of its heuristic framework 

and features that provide directed based searching compared to typical evolutionary 

algorithms such as GA and PSO.  

3.1.3. Proposed BFOA Driven DSE Methodology 

Social foraging behaviour of the E. coli inspired BFOA is aimed in optimizing the real world 

problems in several application domains. The real bacterial system involves four basic 

mechanisms viz. chemotaxis, swarming, replication and elimination dispersal [37] The 

proposed BFOA-DSE process imitates these basic mechanisms in order to solve the DSE 

problem in HLS.  

The proposed mapping of BFO for DSE is as follows: 

Position of bacterium            Resource configuration 

                                   Dimension                         Number of Resource types 
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The flowchart of proposed BFOA driven DSE algorithm is shown in Figure 3.1 Based on the 

flowchart provided in Figure 3.1, the description is as follows: 

The inputs to the proposed framework are behavioral description of application in the form of 

DFG that describes datapath, user specified design constraints for power and execution time 

(with user specified weight factor), and module library. Module library comprises 

information of viz. energy consumed by each resource in Picojoule (pJ), latency of each 

resource in nanoseconds (ns), hardware area of each resource (#of transistor) and user 

specified maximum availability of resources. In the proposed approach, the initial population 

has multiple bacteria. Therefore, the initialization of bacterium positions corresponding to the 

resource configurations is done. Imitating the biological phenomenon of an E. coli bacterium, 

the proposed DSE methodology iterates within the valid temperature range [tmin, tmax] at 

which an E. coli can survive (Note: Investigations from previous literature [38–41] have 

revealed the motility range of E. coli between, tmin = 25° C and tmax = 45° C; while 

elimination of bacterium can occur at high temperature such as 40° C). Within this motility 

(valid) temperature range through chemotactic movement in every step (j) of each bacterium, 

the proposed DSE explores new feasible solutions.  

No 

No 
 Ed[ j - -]==T 

Update x 

l > 0 

No 

No 
Rep[ j - -]==T 

No 

k > 0 

j ++ 

l - - 

Elimination 

Update y 

Chemotaxis 

No tmin ≤ Temp≤ tmax 

Replication 

Stop 

k - - 

j == x 

j ≤ Nc 

j ++ 

j == y 

Input 

 Note:  

x = n. (Nc / Nre )  1≤n≤Nre 

y = n. (Nc / Ned )  1≤n≤Ned 

  

 

Stop 

Begin 

Figure 3.1 Proposed BFOA-DSE 

Methodology 
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Movement of a bacterium from one position to the other is characterized as a chemotactic 

movement. The bacterium moves to a new unexplored position based on step length (C(i)), 

past position(
Last

iX )and random number (Δ(i)). However, after a designer specified periodic 

intervals (‘x
th

’ and ‘y
th

’ iteration step respectively), the process of replication and elimination 

dispersal occurs. The replication and ED algorithm is repeated (based on its corresponding 

periodic intervals) for ‘Nre’ and ‘Ned’ times, where, ‘Nre’ is the maximum number of 

replication steps and ‘Ned’ is the maximum number of elimination dispersal steps to be 

undertaken throughout the exploration process. Further, corresponding arrays ((Rep [j–]) and 

(Ed [j–])) are created for replication and ED process each to store the outcome, checking 

whether replication and ED has been performed in last iterative step. These storage structures 

are necessary to determine whether variables ‘x’ and ‘y’ need up-gradation. If Rep [j–] = 

TRUE then it indicates that in the last iterative step (j–), replication has taken place, 

therefore, ‘x’ needs to be updated. Else, the up-gradation is bypassed. Similar logic holds for 

Ed[j–] in terms of operation functionality. In case of DSE, the bacterium positions are 

dispersed, with an aim of exploring the new positions with better cost. The least fit bacteria 

eventually die while the healthier bacteria positions yielding better fitness value are retained. 

The iteration process continues until the stopping criterion is reached (the stopping criterions 

are described in later section). Hence, on completion the process yields an optimal solution 

which is the global best resource configuration for the given application and user constraints. 

3.1.4 Models for Evaluation of Design Points During BFOA-DSE 

The bacterium positions are determined based on power consumed, execution time, and the 

cost function illustrating the fitness of the bacteria. 

3.1.4.1  Power Model 

Power consumption (PT ) by a resource set is represented in terms of static power (PS ) and 

dynamic power (PD ). ‘PT ’ is represented as [21, 36]: 

                                                      T S DP P P                                     (3.1) 

Static power is a function of area of resources and leakage power per transistor. Accordingly, 

static power is: 

                       
1

( ( ). ( ).
D

S d d c

d

P N R K R p


                         (3.2) 

                     1 1 2 2( ( ) ( ) ( ) ( ) .. ( ) ( ) ).S D D cP N R K R N R K R N R K R p                          (3.3) 
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Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area 

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power 

dissipated per area unit (e.g. transistors). 

However, the average dynamic power consumed by a resource configuration is a function of 

dynamic activity of the resources and can be formulated as [21, 36, 42]:                                   

.

( 1).

FU
D

C

N E
P

L N T


 
                (3.4) 

Where, ‘EFU’ is the total energy consumed by the resources obtained [43], ‘N’ is the c, ‘L’ is 

the latency of a scheduling solution and ‘Tc’ is the initiation interval or cycle time of a 

scheduling solution. Equation (3.4) can be further written as: 

                                               
c

demuxmuxs

D
TNL

EEEN
P






)1(

)( Re                                          (3.5) 

Where, ‘ERes’ is the energy consumed by the major FU’s such as adders, subtractors, multipliers 

and comparators. ‘Emux’ and ‘Edemux’ are the energy consumed by the multiplexers and de-

multiplexers used. 

Substituting equation (3.5) and (3.2) in equation (3.1): 

                             Re

1

( )
( ( ) ( ) )

( 1)

D
s mux demux

T d d c

dc

N E E E
P N R K R p

L N T 

  
   

  
                                (3.6) 

3.1.4.2  Execution Time Model 

For a given system with ‘D’ functional resources the time of execution can be represented as:  

                                                 TE = [L + (N − 1).Tc]                                                (3.7) 

The equation (3.7) has been adopted from [21, 36, 42], which denotes the total execution time 

considering data pipelining of N data sets where the mathematical quantity (N-1).Tc indicates 

the delay consumed by the data (except the first element) during pipelining. The variables L, 

N and Tc have already been defined in section 3.1.4.1. 

3.1.4.3  Model for Fitness Function 

The fitness function (considering execution time and power consumption of a solution) is 

defined as [36]:  

                                          
1 2

max max

( ) T cons E cons
f i

P P T T
C X

P T
 

 
                                            (3.8) 

Where, )( if XC  is the fitness of bacterium Xi, 1  and 2 are the user defined weights for 

power and execution time parameters and 
maxT is the maximum execution time of a solution in 
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design space while 
maxP is the maximum power of a solution in design space, while the 

functions to calculate PT and TE are stated in equations (3.6) and (3.7) respectively. 

 

3.2 Description of the Proposed Methodology with Demonstration 

3.2.1 Module Library Information and Operating Constraints  

The module library information used is shown in Table 3.1. The values of EFU, area and 

latency assumed have been adopted from [43, 101, 102, 103].  

For the purpose of explanation, a DFG for Differential Solver benchmark shown in Figure 3.2  

is used for demonstration of the proposed algorithm. Figure 3.2 has four types of resources 

(i.e. D = 4). The assumed values for the sake of demonstration are: maximum available 

multiplier FUs: 4, adder FUs: 2, subtractor FUs: 2, and comparator FUs: 1; Number of data 

sets, N = 1000; while power dissipated per transistor (pc) is assumed to be 29.33 mW; 

additionally, number/type of mux/demux is directly extracted from the scheduling solution. 

Note: the proposed approach is capable to handle evolving technology by altering the 

component values in the module library. With change in technology, the supply voltage is 

scaled resulting in different ‘pc’ value. Further, due to technology scaling the number of 

transistors for each component specified in the library can be changed. Therefore, the 

proposed theory is capable to adapt to evolving technology. Since, Figure 3.2 has four types 

of resources (i.e. D = 4), therefore, a bacterium position can be given by: Xi = (N(mul),  

Table 3.1 Module Library Used 

Major FU`s Add16 Mul16 Sub16 

Energy (pJ) 0.739 9.8 0.739 

Area(#transistor) 2032 2464 2032 

Latency (ns) 
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Figure 3.2 DFG of Differential Solver Benchmark [5] 
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N(add), N(sub), N(comp)). Additionally, we will assume some constraint values for Power 

(Pcons) and Execution time (Tcons) as well as user defined specifications. 

The goal of exploration problem is to generate and evaluate design points or configurations 

by simultaneously meeting the user provided constraints for power and execution time. 

3.2.2 Maximum Threshold  

Before evaluation of the fitness of a design, a minimum and maximum value of power and 

execution time has to be determined. The maximum values of the power and execution time 

are identified corresponding to the provided boundary constraint values of the resources. 

Typically, an application consumes maximum execution time when a single instance of a 

resource type is available at a particular timestamp (i.e. when using minimum resources). 

Such execution corresponds to a serial implementation of the target application. However, a 

maximum power is consumed by utilizing maximum available resources to execute the 

operations. This indicates maximum parallelization of the target application.  

3.2.3 Boundary Constraints Check Module 

To check whether the provided user constraints values are within the acceptable limits a 

boundary constraint check is performed. The following conditions are checked for each 

parametric constraint specified:  

1. If Pmin > Pcons > Pmax or  Tmin > Tcons > Tmax 

2. If above condition is true then stop and correct the constraints. 

3. Else proceed to next step of the process. 

3.2.4 Initialization of Bacterium 

The bacteria are initialized to uniformly cover the design space. For a DFG, the bacterium 

position ‘Xi’ of an ‘i
th

’ bacterium is given as:  

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD)) 

The efficiency of an exploration algorithm depends upon how well is the initial population 

distributed over the design space. Therefore, to have a better exploration the algorithm 

initializes the bacteria as follows:  

 The first bacterium is initialized by minimum resources (serial implementation): 

X1= (min(R1), min(R2),.. min(RD)) 

X1= (1, 1, 1, 1) 

 The second bacterium is initialized by maximum resources (maximum parallel 

implementation): 

X2 = (max(R1), max(R2),.. max(RD))  
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Therefore based on the user defined resources assumed in section 3.2.1, X2 can be 

customized as follows: 

X2= (4, 2, 2, 1) 

 The third bacterium is initialized by average of maximum and minimum values: 

 X3= ((min(R1)+max(R1))/2,......,((min(RD)+max(RD))/2     

Therefore, X3 can be customized as: 

X3 = (2, 1, 1, 1)    

 The rest of the bacteria (X4....Xn) are initialized by following equation:                                             

( ) (min( ) max( )) / 2d d dN R R R                                     (3.9) 

This function has been proposed to introduce an element of stochasticity (as well as diversity) 

into the initialization process. Where, ‘min(Rd)’ is minimum resource of d
th

 type, ‘max(Rd)’ is 

maximum resource of d
th

 type (obtained from module library) and ‘α’ is a random value 

between max(Rd) and min(Rd). 

3.2.5 Calculation of Fitness of a Bacterium 

After the initialization of bacteria is performed (as shown in section 3.2.4), the fitness of 

initial bacteria is identified. The fitness is evaluated using equation (3.8). For determining the 

initial cost of the solution/bacterium, PT and TE are evaluated from equation (3.6) and (3.7). 

For example, the calculation of total power (PT) of X1= (1, 1, 1, 1) using equation (3.6) is as 

follows:  

Re

1

( )
( )

( 1) i i

D
s mux demux

T R R c

ic

N E E E
P N K p

L N T 

  
   

  
  

1000 (7*(9.8) 2*(0.739) 1*(0.739) 1*(0.739) 8*(0.2) 4*(0.2))

66270 (1000 1) 66000
TP

     


  

 (1*2464 1*2032 1*2032 1*2032)*29.33     

                 = 0.25 mW 

Similarly, the execution time is calculated using equation (3.7) as : 

                                        TE = [L + (N − 1).Tc]                                                 

                                        TE = [66270 + (1000 − 1).66000]                                                 

      = 66 ms 

Note- the values of L=66270ns and Tc = 66000ns are derived from the scheduled DFG with 

resource combination: 1 (*), 1 (+), 1(-), 1(<).Further, Pmax = 0.587mW and Tmax = 66 ms 

have been calculated based on worst case analysis of the scheduled DFG. For calculating the 
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cost equal weightage to power and execution time is given ( 1  = 2 = 0.5). Finally, 

Begin 

1. 2)()(  iCiC     // Set the step size; initial C(i) = 0. 

       If max( ( ) ( ) )dC i N R  

          ))2)(()(()()(  LastNewNew iCiCiCiC  

       Else if 
min( ( ) ( ) )dC i N R

 

          ))2)(()(()()(  LastNewNew iCiCiCiC
 

2. Tumble: Generate a random vector ( )i   with each element 

             
( ) 1,2,......m i m D  a random number in [-1, 1].  

3. For i = 1 to p Do 

3.1       Compute cost: 1 2( ( ), ( ),......... ( )............ ( ))f d DC N R N R N R N R
  

3.2       
Last

i iX X  

           1 2( ) ( ( ), ( ),............ ( )............ ( ) )Last

f i f d DC X C N R N R N R N R
 

3.3       Move: Let

     

( )
( )

( ) ( )

New Last

i i
T

i
X X C i

i i


 

 
 

3.3.1           If ( ( )New

d iX R < 0) 

                       ( ) ( ) 2 | ( ) |New New New

d i d i d iX R X R X R    // techniques to handle boundary problem         

                    Else If 
max( ( ) ( ) )New

d i dX R X R
 

                       
( ) ( ) 1)New New

d i dX R N R 
     

// techniques to handle boundary problem
 

                    Else If 
min( ( ) ( ) )New

d i dX R N R
 

                 
      ( ) ( ) 1)New New

d i dX R N R    // techniques to handle boundary problem 

3.3.2             If 
New

iX  exists 
 

                    Goto: Move in Step 3.3  

3.4       Compute cost: 1 2( ) ( ( ), ( ),.............. ( ).......... ( ))New

f i f d DC X C N R N R N R N R  

3.4.1.          If 
( ( ) ( ))New Last

f i f iC X C X
    

 

                               ( ) ( )Last New

f i f iC X C X  

   
Last New

i iX X  

               Else 

              Tumble: Generate a random vector ( )i   with each element 

              
( ) 1,2,......m i m D  a random number in [-1, 1]. 

                    Goto: Move in Step 3.3 
 

3.5. i++ 

4.   Temp = Temp + ∆t 

 

 
Figure 3.3 Pseudo code for Proposed Chemotaxis Algorithm 
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substituting the values in equation (3.8), the fitness of the bacterium X1 is calculated as : 

1

0.25 0.40 66 39
( ) 0.5* 0.5*

0.58 66
fC X

 
   

                           = 0.0676 

Similarly, the fitness of rest bacterium’s calculated using equation (3.8) is: 

1( )fC X   = 0.0676 fitness of X1 (1, 1, 1, 1) 

   2( )fC X   = 0.0181 fitness of X2 (4, 2, 2, 1) 

   3( )fC X  = -0.121 fitness of X3(2, 1, 1, 1)  

3.2.6 Determination of New Configuration of the Bacterium 

Once the initialization and fitness evaluation of initial population is done, the exploration 

starts and the bacteria (representing a candidate design solution containing resource 

configuration) moves to new unexplored positions (
New

iX ). Every bacterium in the population 

iterates through a process of chemotaxis, replication and elimination dispersal to explore new 

resource configurations in the design space. Therefore, the process of DSE is driven through 

BFO containing its biological steps of chemotaxis replication and elimination dispersal.  

3.2.6.1  Proposed Chemotaxis Algorithm for Exploration  

The chemotactic movement involves two basic steps viz. move and tumble. The bacterium 

can either move for a certain period of time in the same direction or it may tumble in the 

design space, therefore, may alternate between these two locomotive operations. The 

proposed chemotaxis algorithm, motivated from the basic chemotactic movement is shown in 

Figure 3.3. It is based on proposed chemotaxis function (equation 3.10) which is a modified 

derivative of basic chemotaxis function proposed in [37, 44]. In context of DSE, chemotaxis 

helps in exploring new/unexplored resurce configurations within the design space.  

The proposed chemotaxis function incorporates the behavior of tumble/swim in order to 

explore the new design solutions (resource configurations). The proposed chemotaxis 

function is: 

                                   ( )
( )

( ) ( )

New Last

i i
T

i
X X C i

i i


 

 

                                                (3.10) 
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Where, 
New

iX is the new resource configuration of i
th

 bacterium, 
Last

iX is the last resource 

configuration of i
th

 bacterium, C(i) is the step size taken in random direction specified by the 

tumble and ∆ is a random vector whose elements lie in [-1, 1]. 

In context of DSE in HLS, a constant (as well as small) step size (C(i))  is not productive 

owing to rendering unable to explore the wide design space quickly. Therefore, C(i) is 

continually increased by a constant length in every iteration in the proposed chemotaxis 

abiding the lower and upper threshold limits specified by the designer. This feature is shown 

in step 1 of the algorithm (in Figure 3.3), while step 3 indicates the adaptation ability of the 

algorithm when invalid solution for a certain dimension is obtained. 

3.2.6.2   Demonstration of Proposed Chemotaxis Algorithm 

For the proposed DSE, it is assumed that: Nc = 120, Nre = 5, Ned = 4; tmin= 25deg C and 

tmax=45deg C. Now assuming at j (chemotactic step counter) =19 the bacterium’s X1, X 2, X 3 

are subjected to chemotactic movement with step size C(i) = 2 (as per Step 1 in Figure 3.3), 

tumble vector = [1, 0.1, 0, 0.9].  

Then for first bacterium,  

X1= (1, 1, 1, 1), a new resource configuration, 
New

iX is yielded as:  

( )
( )

( ) ( )

New Last

i i
T

i
X X C i

i i


 

 

 

     

2 2 2 2

1,0.1,0,0.9
(1,1,1,1) 2*( )

1 0.1 0 0.9

1,0.1,0,0.9
(1,1,1,1) 2*( )

1.82

1,0.1,0,0.9
(1,1,1,1) 2*( )

1.35

1 0.1 0 0.9
(1,1,1,1) 2*( , , , )

1.35 1.35 1.35 1.35

(1,1,1,1) 2*(0.74,0.07,0,0.66)

(1,1,1,1) (1.48,0.14,0,1.

 
  

 

 

 

 

  32)

(1,1,1,1) (2,1,0,2)

(3,2,1,3)

 



 

1

NewX = (3, 2, 1, 3) using step 3.3 (Figure.3.3). Since the value of N(R4)is greater than the 

N(R4)
max

, therefore, it is clamped using Step 3.3.1 (Figure 3.3).  

This yields 1

NewX = (3, 2, 1, 1).  
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Further as the algorithm, this 1

NewX position has not been explored, so its fitness is evaluated 

as:  

1( ) (3,2,1,1 0.014)New

f fC X C   ; 

which is accepted as, 1 1( ) ( )New Last

f fC X C X  

where 1( )Last

fC X = 0.0676.  

Similar, calculations is performed for other bacteria. Once the new values are found, the temp 

is increased by ∆t. 

3.2.6.3  Proposed Replication Algorithm 

In the proposed approach a modified replication algorithm has been proposed which has been 

customized to the demands of the problem. Regular replication approach where the 

information is copied to the replicated bacterium will render the resultant configuration 

redundant in context of DSE. The new bacterium position is therefore manipulated by a 

random α. However, while replicating from the original, the position ordering) of resource 

types (dimension) is preserved in the bacterium configuration.  

In the proposed approach, ‘Nre’ is the maximum number of times, replication can occur in the 

entire DSE process. As shown in Figure 3.4, a random variable ‘α’ manipulates the given 

Begin 

For i = 1 to p Do 

    For d = 1 to D Do 

1. Generate  ; where ))()(( maxmin

dd RNRN   

2. ( ) ( )New

d dN R N R     

     If 
max( ( ) ( ) )New

d dN R N R  

 ( ) ( ) 1New New

d dN R N R    //techniques to handle boundary problem  

    Else if 
min( ( ) ( ) )New

d dN R N R  

 ( ) ( ) 1New New

d dN R N R    //techniques to handle boundary problem 

           //End For of d 

3.  If 
New

iX  exists 
 

          Goto: Step 1 

          // End For of i 

4.  Temp = Temp + ∆t 

5.   j++; 

6. Goto: Chemotaxis 

Figure 3.4 Pseudo code for Proposed Replication Algorithm 
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configuration with respect to each dimension (N(Rd)). After performing replication, resource 

clamping is performed (if necessary) which limits the resource magnitude on the basis of 

maximum and minimum available resources of a certain type. Finally, if the new solution 

Begin 

If (Temp ≥ 40) 

For i = 1 to p Do 

1.  Arr[i] = 1 2( ( ), ( ),.............. ( ).......... ( ))i

f d DC N R N R N R N R
 

       i++; 

End For 

2.  (i) 
( ( [ ]))u iX X Least fit Arr i

 

     (ii) ( ( [ ]))z iX X Best fit Arr i
 

3. Eliminate the least fit bacterium and perform dispersal 

4.   Dispersal: 

4.1 Select the least fit bacterium. 

4.2  Determine the midpoint configuration between the  

two bacteria (best fit and the least fit). 

1 2 3( ( ), ( ), ( )............ ( ))u DX N R N R N R N R and 

1 2 3( ( ), ( ), ( )............ ( ))z DX N R N R N R N R  

M = 
( ( )) ( ( ))

2

u d z dX N R X N R
    

4.3  Select any configuration randomly which lies beyond the mid 

of the configurations. 

 1 2 3( ( ), ( ), ( )............ ( ))v DX N R N R N R N R  

 ( ( ) )New

v dX N R M omega   

 
1 ( ( ))z domega X N R     

4.4 If vX  exists 

Goto: Step 4.3 in Dispersal  

4.5  Calculate cost of this new configuration of the bacterium: 

 1 2 3( ) ( ( ( ), ( ), ( )............ ( )))f v f v DC X C X N R N R N R N R  

4.6      If 
( ) ( )f v f uC X C X

 

1 2 3( ( ), ( ), ( )............ ( ))u DX N R N R N R N R = 1 2 3( ( ), ( ), ( )............ ( ))v DX N R N R N R N R
 

Else 

Goto: Step 4.2 in Dispersal 

5. Temp = Temp + ∆t 
6.  j++; 

7. Goto: Chemotaxis
 

 

 
Figure 3.5 Pseudo code for Proposed Elimination-Dispersal Algorithm 
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(
New

iX ) found after replication is found to be already explored, then the replication (step 1) is 

again performed. However, it is important to note that if the new cost of the replicated 

bacterium position is found to be higher than its original position, then it is not accepted. 

3.2.6.4  Demonstration of Proposed Replication Algorithm 

Let us assume j (current iteration count) = 24 in the iterative process, then at this step 

according to the flowchart shown in Figure 3.4 x = 24 (as k > 0; Nre= 5) which indicates 

replication can be performed for the bacterium’s at this current ‘j’ step. Now for X1= (3, 2, 1, 

1), as per replication algorithm after generating new random ‘α’ for every resource type 

(every dimension), say we get, 1

NewX = (5, 2, 2, 2) as new resource configuration.  

However, N(R1) > N(R1)
max

 and N(R4) > N(R4)
max

, therefore resource clamping is needed, 

which results in 1

NewX = (4,2,2,1). Since, if this resource configuration is found explored so 

far, then a new configuration is explored using different ‘α’ as shown in step3 (Figure 3.4). 

Once new values are found, temp is increased by ∆t. 

3.2.6.5   Proposed Elimination-Dispersal Algorithm to Introduce Diversity 

The number of times ED algorithm is performed is denoted by ‘Ned’. We imitate the 

biological phenomenon of an E.coli where a small rise in the temperature may kill a certain 

group of bacteria [37, 44] in our ED algorithm of the proposed DSE. Here, the temperature 

chosen after which the elimination has to be performed is 40deg C. So, in order to implement 

this behavior, new replacements are randomly initialized over the search space (between the 

least fit and best fit bacterium position but beyond their midpoint) by eliminating the least fit 

bacterium as shown in Figure 3.5. If the new replacement found (Xv) is already found to be 

explored, then the dispersal is repeated (step 4.3). Moreover, similar to replication algorithm 

it is important to note that if the new cost of the dispersed bacterium position is found to be 

higher than the replaced bacterium, then it is not accepted. 

3.2.6.6   Demonstration of Proposed Elimination-Dispersal Algorithm 

Let us assume j= 30 in the iterative process, then at this step according to the flowchart in 

Figure 3.5. x = 30 (as l > 0; Ned = 4) which indicates ED can be performed for the bacterium’s 

at this current ‘j’ step. However, before performing ED, the initial temp is verified in order to 

simulate the real life biological phenomenon. Since, the value of Temp is not ≥ 40 deg C, 

therefore the ED is not executed at this j step. 
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3.2.7 Termination Criteria (Z) 

Two important aspects have been considered while deciding the condition of termination: 

 The algorithm must not go into infinite loop. 

 The proposed approach should not prematurely converge. 

Considering these aspects, the termination criteria for the proposed approach has been fixed. 

The criteria are: 

 Terminates when the temperature has reached to the maximum value (45 °C) or 

reached designer specified ‘Nc ’ (i.e. maximum possible chemotactic step). 

 When no improvement is seen in the global best among the bacteria population over 

last 10 iterations (chemotactic steps). 

If either of them is true then the exploration process will terminate. 

Note – Results of the proposed method are given in chapter 8 section 8.1. 

3.3 Summary  

This chapter presents a fast and efficient DSE methodology for exploring power/area-

performance tradeoff in HLS. The proposed methodology transforms a BFO algorithm for 

solving DSE of datapaths in HLS. The algorithm mimics the biological phenomenon of E. 

coli bacteria and simulates the DSE process within the operating temperature of E. coli. The 

process is able to efficiently explore the architectures within the design space by yielding 

optimal results and resolves the multi-conflicting objectives by concurrently handling the 

orthogonal issues such as QoR and exploration time.   
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Chapter 4 

Automated Design Space Exploration of Multi-Cycle 

Transient Fault Detectable Datapath based on Multi-

Objective User Constraints for Application Specific 

Computing 

Solving the DSE problem for data intensive applications and optimizing area, power and 

performance has no longer been sufficient now. Specifically, for current generation of 

systems which demand designs (especially for space applications where radiation induced 

faults are highly possible) that requires ability to detect errors occurring due to transient faults 

(such as single event upsets). Transient faults are radiation induced faults which are non-

permanent in nature. These nonrecurring faults can be caused by energized particles, 

environmental noise or electromagnetic interference. The duration of such faults is in order of 

a few picoseconds [28, 37]. In order to achieve high reliability, multi cycle transient fault 

security [48-52] should be considered as design metric (or constraint) during multi-objective 

DSE in HLS. Generation of an optimal fault secured datapath structure based on user power-

delay budget during HLS in the context k-cycle (kc) transient faults is considered a NP 

complete problem. This is due to the fact that for every type of candidate design solution 

produced during exploration; a feasible kc fault secured datapath may not exist satisfying the 

conflicting user constraints/budget. 

  This chapter presents an automated DSE approach of multi-cycle transient fault 

detectable datapath based on multi-objective user constraints (power and delay) for 

application specific computing. The proposed DSE framework is driven by an intelligent 

PSO algorithm which incorporates multiple parameters and conditions to handle efficient 

exploration. To the best of the authors’ knowledge, this is the first work in the literature to 

address this problem. Moreover, novel schemes for selecting appropriate edges for inserting 

cuts in the scheduled DFG, minimizing delay overhead associated with fault security are 
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proposed in the chapter. The detailed description of the proposed methodology is given in 

subsequent sections. 

4.1 Problem Formulation 

To explore the design space of a given DFG, and determine an optimal resource set 

1 2{ ( ), ( ), ( ).... ( )}i d DX N R N R N R N R  

which satisfies conflicting user constraints and minimizes the overall cost. 

The problem can be formulated as:  

Find: an optimal Xi 

with minimum hybrid Cos ( , )DMR DMR

T Et P T  

subjected to: 
DMR DMR

T cons E consP P and T T   and kc fault. 

Where, N(Rd) is number of instances of a  resource type ‘d’,
DMR

TP is power consumed by a 

fault secured DMR system, 
DMR

ET is the delay of a fault secured DMR, Tcons and Pcons are the 

user specified execution delay and power constraints while kc is the strength of the fault.  

4.2 Proposed Methodology 

4.2.1 Motivation  

As already discussed in chapter 2, due to escalation in technology trends and density per unit 

area, there have been serious concerns related to security and faults in the devices. It can be 

said that the increase in density per unit area is negatively impacting the device and overall 

systems reliability by making it susceptible to transient fault or the Single Event Upset (SEU) 
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[48] leading to SET especially in space applications. In terrestrial applications, the SEU can 

also be caused by the alpha particles emitted from the impurities during IC packaging.  

Transient faults can be single or multi-cycle in nature. So, it is important to consider the 

strength of the transient fault (kc) during specification as design objective while designing a 

system. This worst case transient pulse duration (kc) value is used as a design specification 

(or fault constraint) before initiating the exploration of optimal kc transient fault secured 

datapath during HLS [49]. 

Let us take an example to demonstrate the multi-cycle transient faults and its effect. 

Given a sample scheduled data flow graph (SDFG) in Figure 4.1. It shows a scheduled data 

flow graph of an application which uses two multipliers (M1, M2) and one adder (A1). Under 

standard conditions, the circuit undergoes a traditional computation, thereby generating a 

feasible error free output. However, if a transient fault occurs at any unit in the circuit due to 

particle strike, the corresponding output becomes erroneous, thereby affecting the entire 

circuit.  For example, let us assume, if a two cycle fault occurs at Multiplier M1, when the 

state of the system is in control step 1. Then the error developed affects all the operations 

performed by the operator M1 during those two cycles. The span of the error affecting similar 

operators depends upon the nature of the transient fault (cycle duration). Thus, M1 

incorrectly executes operation 1 at step 1 and also, operation 4 at step 2. But as soon as the 

system propagates to step 3, the effect of fault generated on M1 normalizes and the fault 

disappears. Hence, M1 operates correctly for the operation 7 at step 3. Such faults which 

occur once and then disappear are referred as transient faults. Once this fault occurs on a 

logic element of a system, the fault is associated as transient fault of the operator. 

 Therefore, it is important to consider transient fault (kc) as a design metric while 

Figure 4.2 Block Diagram of Proposed Approach 
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designing a datapath during HLS. The framework to obtain a low cost kc cycle transient fault 

secured datapath during behavioural level (reliability centric design) is explained in later 

sections. 

4.2.2 Proposed Framework 

This section presents a framework which handles transient faults with kc strength and 

generates a low cost kc cycle transient fault secured datapath during behavioural level. The 

framework of the proposed multi cycle fault secured PSO-DSE is shown in Figure 4.2. The 

input block comprises of module library, behavioral description of DFG, predefined user 

parametric constraints for power and delay as well as k-cycle fault constraint (kc). Further, the 

input block for control parameters such as acceleration coefficient, inertia weight, swarm size 

and terminating criteria are used for regulating the exploration process. The proposed 

framework has a subunit for initialization/encoding of the particles. Each encoded particle is 

passed through the block for designing fault secured SDFG
DMR

, which is responsible for 

converting an untimed DFG into a scheduled kc fault secured DMR system.  

During this process appropriate cut (for checkpointing) is inserted based on proposed 

scheme (discussed in later sections) to optimize the delay overhead associated with fault 

security. Once the optimized SDFG
DMR

 is built, it is subjected to fitness evaluation and the 

new velocity of each particle is determined for obtaining the new design solution (new 

location in the design space). The new design solutions obtained are again similarly subjected 

to the fault secured SDFG
DMR

 block to convert it into a fault secured SDFG, followed by its 

fitness evaluation. Subsequently, the global best and local best solutions in the process are 

also updated. This process continues until the terminating criterion is reached yielding an 

optimal fault secured datapath architecture (or SDFG
DMR

) which comprehensively satisfies 

the constraints of Pcons, Tcons, kc and minimizes cost. 

4.2.2.1  DSE Framework  

The DSE framework used for generating a lost cost kc cycle transient fault secured datapath 

during HLS is PSO-DSE. To solve the problem mentioned in this chapter, PSO as DSE 

framework is used to explore the design space. This is because PSO is considered more 

suitable than other Evolutionary Algorithms (EA) such as GA, hybrid GA and BFOA. This is 

due to reason that the later approaches do not provide enough flexible options for introducing 

stochasticity into the exploration process as well as is computationally more expensive.  
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Algorithm: PSO-DSE 
Input- DFG, Module library, User Constraints Output- Optimal resource configuration 
{ 
 Read Library ( ) 
 Read DFG ( ) 
 Determine boundary constraints for power and execution time  

 If (( ||min max min maxP P P T T Tcons cons    )) //checking validity of user constraints 

 { 
   !! Show error message and request for valid constraints 
 }  
 Initialization (resource configuration, velocity) 
 For i =1 to S     //S = # of particles) 
 { 

  ( , )( )
f iC f Power Execution timeX  // calculate fitness of all particle 

 }  
 //find best resource configuration that is the current global best resource configuration 
 // M = # of iteration 
 

1 1 11 2 3[ ( ( ), ( ), ( ).... ( ))]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X  

 While (Z) 
 { 
  For i=1 to p   //p = (# of particle) 
  { 
   For d=1 to D 
   { 

 // determine new resource configuration and velocity for i
th

 particle and d
th

 dimension 

    ( , )
d d di i i

R f V R
 


 

    IF (
max max

d d di i i
V V V


   ) 

    { 
     Perform Velocity Clamping ( ) 
    } 
    //check boundary constraints outreach 

    IF ( min(R ) R max(R )
d d di


  ) 

    { 
     Adaptive-end-terminal-perturbation ( ) 
    } 
   }  // check for local best resource configuration 
   IF ( ( )( ) ( )f i flb iC X t C X ) 

   { 

    
 

 
lbi i

 t  

 X  X t

( ) ( )
flb fi iC CX X


 

   } 
   } 
  // determine new global best resource configuration  
  

1 1 11 2 3[ ( ( ), ( ), ( ).... ( ))]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X    

     Adaptive-Rotation-Mutation    
     

 
1 1 11 2 3[ ( ( ), ( ), ( ).... ( ))]

lb lb lb lbngb i f f f f nX X Min C X C X C X C X  

  t++; 
 } // end of while loop; 

 Output optimal resource configuration 
 } 
 
 
 
 
 

Figure 4.3 Pseudo code for PSO-DSE 
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Moreover, it has been proved in previous works [53, 54, 55, 56] that PSO is highly adaptable, 

provides faster convergence and offers higher chances of reaching optimal solution in less 

exploration time. 

The pseudo code of the PSO-DSE approach is presented in Figure 4.3. While the proposed 

mapping is given as follows:  

a) 

b) 

c) 

Figure 4.4 Algorithm for generating a k-cycle Fault Secured SDFG
DMR 

Not 

Available 

Xi, kc, DFG 

Build SDFG
DMR

 comprising of U
OG

 and U
DP

 based on: Xi 

Where Xi = N(R1), N(R2)……N(Rd) 

Assign opn: v & v’; where v ϵ U
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 and v’ ϵ U
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 (v and v’ are same 

operations of original and duplicate) to distinct hardwareif available 

(this assignment helps in detection for kc> 1& kc= 1) 

Goto checkpointing rules to insert 

checkpoints/cuts based on Xi 

Keep same 

assignment for v’ 

(as v) as long as:  

t(v’) – t(v) ≥ kc 

Push v’ 

one CS 

Xi 

violation? 

Assign v’ to any other available hardware 

from Xi 

kc violation  
between 
v&v’ ? 

Change v’ to original assignment and assign 

vc to new hardware unit 

Evaluate cost 

of SDFG
DMR

 

Do not insert 

checkpoint/Cut  

kc violation  
still between 

v&v’ ? 

PSO-DSE framework 

kc not satisfied kc constraint satisfied 

No 

Yes 

Yes 

No 

No 

Yes 

START 

kc constraint 

satisfied 
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Position of particle   Resource configuration 

Velocity of particle   Exploration deviation/drift 

Dimension                 Number of Resource type 

To transform the PSO into multi-objective DSE problem the position of a particle is 

represented by a set comprising of resource combination, total number of dimensions is 

represented by sum of the number of resource types, while the velocity of the particle in d
th

 

dimension acts as a parameter that provides the drift during DSE.  

The later subsection describes the proposed approach (based on particle swarm optimization 

[84, 85])  

4.2.2.2  Assumptions of Proposed Algorithm 

This subsection illustrates the assumptions which have been considered while designing the 

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath. 

 Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration 

of single fault model for transient faults is widely assumed and adopted in all related 

works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle 

transient fault detectable datapath also uses the same assumption.   

 The faults occur only at the hardware units and not at interconnecting wires. 

 The system only handles the transient-faults and not permanent faults. 

 The pair of unit in the DMR system has a comparator for error detection, whereby the 

comparators are considered fault detectable. 

4.2.2.3  Proposed Algorithm for Design of kc Fault Secured DMR System 

The proposed methodology for designing kc fault secured DMR system is shown in Figure 

4.4. The proposed algorithm accepts the following as inputs: Xi (particle position denoting 

datapath configuration), the DFG, fault security constraint (kc) indicating the strength of the 

fault and module library indicating the hardware units available for allocation. The output of 

the proposed algorithm is a valid kc cycle fault secured scheduled DMR system that is 

iteratively feedback to the PSO-DSE framework for exploring the next design solution based 

on the fitness evaluation. The DMR system involves a SDFG
DMR

, consisting of schedules of 

original unit (U
OG

) and duplicate unit (U
DP

). The pair of units is concurrently scheduled on 

the basis of ASAP scheduling using the user supplied resource constraints Xi and available 

dependency information of the nodes. After obtaining the scheduled DMR system, the 
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hardware allocation of both the units (U
OG

 and U
DP

) is performed. Operations of the 

SDFG
DMR

 system are allocated to hardware on the basis of fault security conditions 

(schemes) shown in Figure 4.4 (sub-block (a), (b) & (c)). Allocation of hardware to 

duplication unit of SDFG
DMR 

without obeying the rules proposed in the algorithm may result 

in Transient Fault Hazards (TFH) between similar operations (of original and duplicate) 

assigned to same hardware unit i.e. TFH between similar operations belonging to a same 

hardware exists when: 

t(v
’
)- t(v) <  kc, where v ϵ U

OG
 and v

’ 
ϵ U

DP.          
(4.1) 

These hazards are resolved in the proposed algorithm by pushing the affected operation v’ 

(and accordingly its successor) of the duplicate unit in later control steps, if assignment 

(allocation) rules (a) and (b) fails.  The push is done such that the interval between v ϵ U
OG

 

and v
’
ϵ U

DP
 is greater than (or equals to) kc. This resolution of the TFH is done until the TFH 

of the whole DMR system is resolved, i.e. SDFG
DMR 

obeys either of the fault security scheme 

((a) or (b) or (c)) proposed in Figure 4.4. The blocks after the cut condition block are for 

handling the possible assignment violations that could occur in the modified fault secured 

SDFG
DMR

 due to insertion of cut. 

4.2.2.4  Demonstration of Proposed kc fault secured DMR system 
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In the figure below: kc violation occurs as fault is active till 
5 cycles (i.e. from CS 1 to CS 5). The non-fault secured 
(uncorrected) SDFG

DMR
 with Xi = (1M, 3A), Kc = 5: 

Figure 4.5 Uncorrected 5-cycle fault secured 

SDFG
DMR
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Let us consider an example and demonstrate such condition. Consider the example shown in 

Figure 4.5. In the Figure 4.5 both the conditions, a) and b) mentioned in Figure. 4.4 are not 

satisfied. Therefore, condition c) (from Figure 4.4) is applied which successfully converts the 

non-fault secured SDFG
DMR 

into a kc fault secured SDFG
DMR

. Let us analyze the SDFG
DMR 

shown in Figure 4.5.  Assuming the particle position Xi as: (1M, 3A) and kc = 5, a fault 

secured SDFG
DMR

 has to be designed. Based on the availability of resources (as per Xi), only 

one multiplier is present for building the entire DMR system during scheduling. However, for 

enabling single fault model security feature for kc> 1, distinct hardware assignment is 

necessary between similar operations in original and duplicate e.g. opn 1 and opn 1’ cannot 

be assigned to same hardware units (according to condition (a)) (Note: in duplicate unit, 

hardware M2 is crossed to indicate that it is prohibited to use distinct hardware due to lack of 

availability specified in Xi). Next, according to the condition (b) of Figure 4.4 stated above, 

same hardware assignment may be kept if t(v’) – t(v) ≥ kc, however t(1) – t(1’) ≤ kc. Similarly, 

t(2) – t(2’) ≤ kc , t(3) – t(3’) ≤ kc etc. Therefore as per proposed algorithm, condition (c) is 

applied which pushes 1’ ϵ U
DP 

into next CS. Automatically, 2’ ϵ U
DP 

is pushed down into next 

CS due to lack of available multiplier. Similarly other operations suffering from kc violation 

is also pushed down in lower CS. The resultant corrected 5-cycle fault secured SDFG
DMR

 is 
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In the figure below: kc violation is removed by pushing v’ (and 

associated operations) one CS below. The corrected SDFG
DMR

 

with Xi = (1M, 3A), Kc = 5: 

Figure 4.6 Corrected 5cycle Fault Secured SDFG
DMR
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shown in Figure 4.6. 

4.2.2.5  Proposed Schemes for Insertion of Appropriate Cuts in Corrected kc SDFG
DMR

 

This section proposes schemes for inserting cuts in corrected kc SDFG
DMR

. Insertion of inapt 

cut to optimize delay overhead associated with fault security in most cases may not yield 

optimal solutions in the context of user constraints/budgets. In cutting some data edge of the 

duplicate unit is broken to remove the data dependency between operations thereby moving 

the dependent operation in upper CS (which then obtains its dependent output from similar 

operation in original unit). According to our algorithm (Figure 4.4) explained in previous 

section, insertion of appropriate cut is performed after the corrected kc SDFG
DMR

 is obtained. 

However, insertion of appropriate cut (i.e. selecting the correct location/edge in the scheduled 

DMR) is not a trivial task. This is due to the fact that inapt cutting does not facilitate in 

optimizing delay occurring due to fault security, thereby resulting in resulting in longer delay 

increasing chances of possible  violation of user delay constraint. Further, hit and trial process 

of inserting cut is highly time consuming thereby may increase exploration runtime beyond 

an acceptable range.  

Motivating from these bottlenecks, schemes for insertion of appropriate cuts in 

corrected kc SDFG
DMR 

are discussed later in this section. The schemes guarantee reduction of 

delay overhead due to fault security, if any possibility exists. The cuts (checkpoints) are 

inserted by traversing each node of corrected DMR schedule bottom to top searching for 

existence of any condition 3 (C3)/condition 4 (C4) illustrated later. This is because as 

described each of C3 or C4  is able to reduce delay overhead in fault secured DMR system.  
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Figure 4.7 Example for C1 
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Note: Only single cuts (single additional checkpoint besides the regular checkpoint at 

the final output) are allowed in all cases in order to avoid excess hardware overhead 

(comparator/voter).  

The Conditions are as follows: 

 C1: If v’ & v’’ are the inputs to v, such that CS (v’’) – CS (v’) = 0 (i.e. v’ & v’’ are 

allocated in same CS),  

then:  

No cut is allowed between v’ & v or v’’ & v. 

o Demonstration of C1 

For example, consider a SDFG
DMR 

with Xi = (3M, 3A) shown in Figure 4.7. If a fault of kc>1 

(multi cycle) effects the system, then, a cut between 6’ & 8’ or 7’& 8’does not reduce delay 

as 8’ cannot shift up to CS 5. Therefore, no cut is allowed between any nodes. 

  C2: If v’ & v’’ of same operator type are the outputs of v, such that CS (v’’) – CS (v’) 

= 0 (i.e. v’ & v’’ are allocated in same CS),  

then: 

      No cut is allowed between v’ & v or v’’ & v. 

o Demonstration of C2 

For example, consider a SDFG
DMR 

with Xi= (3M, 3A) shown in Figure 4.8. If a fault of kc>1 

(multi cycle) effects the system, then, cut between 5’ &6’ (or 5’ & 7’) does not reduce delay 

as shifting 6’ (or 7’) to CS5 does not benefit. Therefore, no cut is allowed between any nodes. 

+ 
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Figure 4.8 Example for C2 



42 

 

 C3: If v’ & v’’ of different operator type (tv’’ < tv’ i.e. delay of v’’< delay of v’) are 

the outputs of v, such that CS (v’’) – CS (v’) = 0 (i.e. v’ & v’’ are allocated in same 

CS),  

then: 

Cut is allowed between v’& v. 

o Demonstration of C3 

For example, consider a SDFG
DMR 

with Xi= (3M, 3A) shown in Figure 4.9. If a fault of kc>1 

(multi cycle) effects the system in Figure 4.9 then, a cut between 5’ & 6’reduces delay in 

nanosecs as 6’ is a multiplication. So after shifting 6’, CS 5 only contains 7’ (addition).  

 C4: If v’ & v’’ are the inputs to v, such that v is a single operation in a CS in 

duplicate and CS (v’) – CS (v’’) > 1 (i.e. v’ & v’’ are greater than one CS apart), 

then, 

  Cut is allowed between v & v’. 

o Demonstration of C4 

For example, consider a SDFG
DMR 

with Xi= (3M, 3A) shown in Figure 4.10. If a fault of kc = 

1 effects the system in Figure 4.10, then, as seen in Figure 4.11, an additional checkpoint is 

inserted at the output of 3’. Now, if a fault occurs at M3 affecting opn 3, then this faulty 

output affect opn 5’. The checkpoint at final output (comparing 8 and 8’) is not able to detect 

the fault. However opn 3’ remains fault secured. Therefore, the additional checkpoint inserted 

at output of opn 3’ (comparing 3 and 3’) detects the transient fault. 

Figure 4.9 Example for C3 Before Cut 
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Note: While deciding for inserting cuts in duplicate, only C3 andC4 is checked. If 

either of the conditions (C3/C4) yield benefit, further checking is not carried out for that 

SDFG
DMR 

i.e. if C3 is found to yield benefit, then C4 is not checked further. 

4.3  Proposed Evaluation Models 

For evaluation of a particle (or design point), the following models have been proposed. 

4.3.1 Proposed Power Model 

PT
DMR

 of a resource set is represented in terms of Static Power (PS
DMR

) and Dynamic Power 

(PD
DMR

). ‘PT
DMR

’ is represented as: 

                                          DMR DMR DMR

T S DP P P                                                       (4.2) 

PS
DMR

 is a function of area of resources and leakage power per transistor. It can be 

formulated as:- 

                                       
1

( ( ). ( ).
D

DMR

S d d c

d

P N R K R p


                                                         (4.3) 

Figure 4.10 Example for C4 Before Cut 
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Figure 4.11 Example for Condition 4 After Cut 
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Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area 

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power 

dissipated per area unit (e.g. transistors). 

While, the average dynamic power consumed by a resource configuration is a function of 

dynamic activity of the resources and can be given as: 

DMR
DMR FU

D DMR

E

E
P

T
                                 (4.4) 

Where, DMR

FUE  is the total energy consumption of the resources in fault secured DMR system 

and DMR

ET  is the total execution time of DMR system. 

4.3.2 Proposed Execution Time (Delay) Model 

For given ‘D’ functional resources the execution time is: 

' '

. 1

( ( ),.... ( ), ( ),...... ( ))
n

DMR

E i n i n

c s

T Max D op D op D op D op


            (4.5) 

Where,    1 ≤ i ≤ n   and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate are labelled as 

i and i’ respectively; n and n’ are maximum value of node); D(opn) is the delay of operation 

‘n’ while  c.s is the control step.  

4.3.3 Proposed fitness function 

To assess the quality of explored configuration, the proposed fitness function motivated from 

the existing fitness function discussed in equation (3.8) is defined as: 

         1 2

max max

( )
DMR DMR

T cons E cons
f i DMR DMR

P P T T
C X

P T
 

 
                                             (4.6) 

Where, ( )f iC X  is the cost of particle with resource set Xi, 1  and 2 are the user defined 

weights for power and execution time parameters, 
max

DMRT is the maximum execution time of 

a fault secured DMR system in design space while 
max

DMRP is the maximum power of a fault 

secured DMR system in design space. The above function is a normalized penalty function 

where the cost value obtained, considers the power and execution time of DMR design. The 

normalization is achieved by dividing the value obtained by placing the maximum value in 

the denominator of the function. 

 

 



45 

 

4.4  Demonstration of PSO-DSE Methodology 

4.4.1 User Specification 

The goal of exploration problem is to simultaneously meet the user provided constraints for 

power and execution time and generate a low cost optimal kc transient fault secured datapath. 

Therefore, the exploration process requires constraint inputs of power and execution time i.e. 

consP  and consT , before initiation. 

4.4.2 Boundary Constraints Check Module 

 This module checks whether the specified user constraint falls in the valid range of boundary 

limits. The following condition is checked for each parametric constraint specified: 

1. Check: min max min max||
DMR DMR DMR DMR

P P P T T T
cons cons

     

2. If the above condition is true then stop and correct the constraints. 

Else the above condition fails and goes to step 3. 

3. Execute the initialization process of Module. 

4.4.3 Particle Encoding/Initialization 

The particles are initialized to uniformly cover the design space. The initialization is done on 

the basis of proposed scheme discussed in previous chapter. For example, in Figure 4.1 used 

for demonstration, as evident there are three types of resources (i.e. D= 3) viz. multiplier, 

adder and subtractor. Therefore with respect to the example, a particle position is given by: Xi 

Adaptive end terminal perturbation 
Input- Resource configuration which crosses the design space 
Output- New value of resource configuration with in design space 
 
//When Rid crosses the design space boundary 
 
While (Rid< L) 
{ 

Rid = Rid + Y 
} 
While(Rid> U) 
{ 

Rid=Rid-Y 
} 

/* where ‘Y’ is a random value between minimum resource constraints and 
maximum resource constraints. 
‘L’ is lower boundary which means minimum resource value single instance. 
‘U’ is the upper boundary which means maximum # of resources*/ 

 

 Figure 4.12 Adaptive End Terminal Perturbation Algorithm 
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= (N(mul), N(add), N(sub)). Hence, using initialization as done in chapter 3, X1 = (1, 1, 1); X2 

= (4, 2, 2); X3= (2, 1, 1) can be obtained assuming maximum available multiplier resources: 

4, and adder resources: 2 and subtractor resources: 2. 

4.4.4 Initialization of Velocity, Acceleration Coefficient 

Velocities of all particles are initialized to zero. Further, in order for the PSO-DSE to achieve 

convergence, it has been theoretically established before in [56] that the cognitive learning 

factor (b1) and the social learning factor (b2) can be initialized to any value between [1-2]. 

(Note: It is mathematically proved by authors in [51] that, when the value of ‘b’ is pre-tuned 

between [1-2] and value of ‘ω’ between [0.9 to 0.1], the algorithm will converge for any 

given initial value of position and velocity). Therefore, the value of b=2 and ω linearly 

decreasing from 0.9 to 0.1has been used during experimentation. 

 

4.4.5 Determination of Fitness and Update Local and Global Best Position 

Based on the initialization of particles performed in section 4.4.3, the initial fitness of the 

individual values of power and execution time for all particles needs to be calculated.  

Adaptive rotation mutation 
Input – Local best resource configuration R

lb 

Output – New mutated local best resource configuration 
R

lb
 

 
For i=1 to p // where p = Swarm size(#of particles)  
{ 
 if (i%2==0) // Left Rotation 

{ 
For  j=1 to D 
{ 

Temp = Rj 
Rj = Rj +1 
Rj+1 = temp 
j++ 

} 
 } 
 
 if(i%2==1) 
 { 
  For j=1 to D 
  { 
   Rj = Rj   X  

// X is a random number between [1,3] 
j++ 
} 

 } 
i++; 

} 
 

Figure 4.13 Adaptive Rotation Mutation Algorithm 
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4.4.6 Determination of Local and Global Best Position 

Since in iteration 1, there is no previous local best position for an i
th

 particle (Xlbi) therefore 

the current position (Xi) assumes the value of Xlbi. The global best position (Xgb) of the 

population so far is determined using equation (15) as follows [31, 32]: 

1 1 11 2 3[ ( ( ), ( ), ( ).... ( )]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X    (4.7) 

Where, ( )
lbif iC X is the local best fitness of particle ‘Xi’ and ‘Xgb’ indicates the global best 

particle position with minimum cost among all particle positions (X1 …..Xn). 

The PSO-DSE [31, 32] also comprises of mutation performed on the local best with 

probability Pm = 1.0 and adaptive algorithms to handle boundary overreach (shown in Figure 

4.12) and mutation (shown in Figure 4.13) during exploration. 

4.4.7 Determination of new position of each particle 

Iteration process initiates at this step. According to PSO-DSE, each individual iteration 

computes new resource value of a particle Xi in d
th

 dimension through: ( , )
d d di i i

R f V R
 
 which 

can be expanded as specified in equation 4.8 [54, 55, 57]: 

 
idi d di

R R V
 
              (4.8) 

Where, 
di

R
 is the new resource value of particle Xi in d

th
 dimension and 

idR  is the previous 

resource value of particle Xi in d
th

 dimension; di
V 

 is the new velocity of particle Xi in d
th

 

dimension (i.e. step length taken per unit time in d
th 

dimension) which is updated by equation 

(4.9) [54, 55, 57]: 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

                                      (4.9)  

Where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension and ‘

gbdR ’is the resource value of 

Xgb in d
th

 dimension. 

Note- 
1 2{ , ... }

lbi lbi lbilbi DX R R R and
1 2{ , ... }

gb gb gbgb DX R R R  

4.5  Stopping Criteria (Z) 

The proposed algorithm terminates when one of following condition holds true:  

 When the maximum number of iteration have been exceeded (M = 100) or,  

 S
1
: When no improvement is seen in 

gbR over ‘£’ number of iteration. (£=10) or, 

 S
2
: If the population reaches to equilibrium state i.e. all particles velocity become zero 

(V
+
 = 0). 
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Note: Results of the proposed method are given in chapter 8 section 8.2. 

4.6 Summary  

Over the years the DSE process has evolved where the requirements specified by the user 

have also convoluted, ranging from simple area-delay tradeoff in initial years to complex 

power-delay tradeoff in recent years. The approaches developed so far aimed at exploring the 

design space along with balancing some multi-conflicting issues during generation of the best 

possible solution. Solving the DSE problems with such objectives has no longer been 

sufficient now. There is demand for designs, which require ability to detect errors occurring 

due to transient faults. To achieve this, high reliable designs that have ability to detect errors 

are generated. This chapter presented an automated DSE approach to detect transient faults 

and generate an optimal fault secured datapath for data intensive applications based on user 

specified power-delay budget during HLS.  
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Chapter 5 

Multi-Cycle Single Event Transient Fault Security Aware 

MO-DSE for Single loop CDFGs in HLS 

The availability of faster devices is a feature of future technologies that induces major 

concerns to the fault detection community. For those technologies, even particles with modest 

Linear Energy Transfer (LET) values will produce transients lasting longer than the predicted 

cycle time of circuits. Therefore the technology evolution and LET of particle impact both 

plays a major role in inducing multi-cycle (k-cycle) transient fault (longer duration transient) 

in a device [58. 59]. Therefore, fault security should be considered early in the design cycle 

as design objective, besides traditional design objectives such as area and delay during DSE. 

Multi-cycle SET fault security aware Multi Objective Design Space Exploration (MO-DSE) 

for single loop CDFGs during behavioural synthesis has not received much attention in the 

literature. Solving the aforesaid problem in the context of CDFG is non-trivial. This is 

because it involves simultaneous generation of an optimal combination of multi-cycle fault 

secured datapath and loop unrolling factor satisfying conflicting user constraints (such as 

hardware area and delay). 

This chapter solves the aforementioned problems and proposes a multi-cycle SET 

fault security aware MO-DSE methodology that explores an optimal combination of transient 

fault secured DMR datapath configuration and loop UF for CDFG. The proposed approach 

maintains a trade-off between hardware area and delay as user constraints during exploration 

process. The detail description of the proposed approach is given in subsequent sections in 

this chapter. 

5.1 Problem Formulation 

The problem can be formulated as: 

Find: Optimal (Xi) = (Rx, UFN) 

with minimum hybrid Cost ( , )DMR DMR

T EA T  

Subjected to: 
DMR DMR

T cons E consA A and T T  and kc transient fault constraint; 

where, ‘Xi’ is a set comprising of resource combination and UF formally represented as : 
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Xi = (Rx, UFN)  = }),()....(),(),({ 21 NDd UFRNRNRNRN  

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D’ is the total number of 

resource types; UFN is the N
th

 unrolling factor; ‘Rx’ is a candidate resource combination for 

optimal solution; UFN is a candidate UF; ‘AT
DMR

’ and ‘TE
DMR

’ are the areas used by a fault 

secured DMR system and execution delay of a fault secured DMR system respectively; 

‘Acons’ and ‘Tcons’ is area and execution time constraints specified by the user. 

5.2 The Proposed Framework and Mapping Process 

The framework for exploration of an optimal multi-cycle transient fault secured solution is 

presented in Figure 5.1. To transform the PSO into multi-objective DSE problem the position 

of a particle is represented by a set comprising of resource combination and UF; total number 

of dimensions is represented by sum of the number of resource types and UF. Finally, the 

velocity of the particle in dth dimension acts as a parameter that provides the drift during 

DSE.  

During exploration process the design points are evaluated. To evaluate the design 

points, model for execution time, model for area evaluation and model for cost (fitness) have 

been presented in the upcoming section. 

5.3 Proposed Evaluation Models and Formulation 

In the proposed PSO-DSE, each particle position represents a resource set (Rx) in the design 

space.  

5.3.1 Proposed Model for Execution Time 

PSO-DSE Process 

 

(Initialization, velocity 

calculation/clamping, 

Global best position and 

fitness evaluation of 

candidate design 

solutions) 

Module Library 

User Constraints 

Pre-processing algorithm 

Single loop CDFG 

Transient fault strength 

INPUT BLOCK 

Block for designing 

multi-cycle Transient 

Fault secured scheduled 

DMR CDFG 

Optimal multi-cycle transient 

fault secured solution 

Figure 5.1 Proposed Multi-cycle Transient Fault Security Aware DSE During 

Behavioural Synthesis 
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In order to describe the formulation of proposed execution time (
DMR

ET ) (function of loop 

unrolling factor) for a CDFG, an example of loop unrolling is used shown in Figure 5.2. 

Figure 5.2(a) shows the original loop part of CDFG for FFT and Figure 5.2(b) shows the 

same loop part unrolled twice. Figure 5.3 shows ASAP scheduled CDFG
DMR

 for FFT 

unrolled twice with resource constraint of 4(+), 2(*), 1(-) and 1(<); UF=2 and iteration 

count=4. It also shows the trailing loop part of the unrolled CDFG is not available for this 

case. 

The generic execution delay model for a loop unrolled CDFG
DMR

 is shown as follows: 

 * mod * ,

floor

DMR DMR DMR

T body first

I
C C I U F C

UF

  
      

   (5.1) 
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Figure 5.2(a) FFT Loop   Figure 5.2(b) FFT Loop Unrolled Twice 
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Where, *

floor

DMR

body

I
C

UF

  
     

are total CS for unrolled loop,  mod * DMR

firstI U F C are total CS 

for sequential loop. 
DMR

TC is total CS required to execute the loop of CDFG
DMR

 completely, 

DMR

bodyC is the number of CS required to execute loop body of CDFG
DMR

 once, ‘I’ is the 

maximum number of iteration (loop count), 
DMR

firstC is number of CS required to execute first 

iteration of the CDFG
DMR

. However, if the system design supports enough hardware 

instances such that sequential loops are possible to be fed to multiple hardware instances in 

parallel, then the total CSs for sequential loops from above equation (5.1) is,
DMR

firstC . Finally, 

execution time for the system calculated as:  
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(adopted from [9]) 

 

 

Duplicate Unit 

Unrolled Loop Original Unit 



53 

 

*DMR DMR

E TT C                       (5.2) 

where, ‘Δ’ is the delay of one CS in nanoseconds. 

5.3.2 Proposed area model 

Total area consumed (AT
DMR

) by a resource set is given by: 

             
1

( ( )* ( ))
n

DMR

T i i

i

A N R K R


                         (5.3) 

where, DMR

TA  is the total area of a DMR design, ‘N(Ri)’ is the number of instances of 

resource type ‘Ri’.Note: The area component includes area due to functional resources, 

interconnect units (mux and demux), comparator (for error detection) as well as overhead 

incurred from internal buffering (during temporary storage of operation output in DMR 

scheduling). 

5.3.3 Proposed Fitness Function 

A fitness function which is a normalized penalty function where the cost value obtained 

considers the constraints for area and execution time of DMR design is proposed as follows: 

1 2

max max

( )
DMR DMR

T cons E cons
f i DMR DMR

A A T T
C X

A T
 

 
              (5.4) 

The above equation is motivated from the existing fitness function discussed in equation 

(3.8). Where, ( )f iC X is the cost of particle with resource set iX ; 
max

DMRT  is the maximum 

execution time of a fault secured DMR system in design space while 
max

DMRA is the maximum 

area of a fault secured DMR system in design space. 

5.4 Proposed Methodology 

As seen from Figure 5.1 the input blocks comprise of module library, behavioural description 

of CDFG, predefined user parametric constraints for area and delay as well as pre-processing 

of unrolling factors. The pre-processing of UFs is explained in later sections. Wherein, the 

iteration count is provided as an input for pre-processing. Furthermore, the input block for 

control parameters comprises of acceleration coefficient, inertia weight, swarm size and 

terminating criteria which are used for regulating the PSO driven exploration process. PSO 

exploration process used has been explained in chapter 4.  

The inputs required are further fed to the PSO-DSE block where, initialization and 

encoding of the particles, velocity and position up-gradation, velocity clamping and end-

terminal perturbation, mutation and finally the updating of local best and global best positions 



54 

 

are done. To evaluate the fitness of a particle, each encoded particle is passed through 

transient fault security block for designing a fault secured DMR Scheduled Control Data 

Flow Graph (SCDFG
DMR

) which is responsible for converting an untimed CDFG into a 

scheduled kc fault secured DMR Control Data Flow Graph (CDFG
DMR

). After this process, 

appropriate cut for additional checkpointing is inserted based on proposed scheme to 

optimize delay overhead associated with fault security, followed by its fitness evaluation. 

Every such new design solutions (particle) obtained are again similarly convert it into a fault 

secured SCDFG
DMR

. Subsequently, the global best and local best solutions in the PSO 

process are also updated. This process continues until the terminating criterion is reached 

yielding an optimal fault secured datapath architecture (or SCDFG
DMR

) which 

comprehensively satisfies the constraints of Acons, Tcons, kc and minimizes cost. 

5.4.1 Pre-processing of Unrolling Factors  

A pre-processing of the unrolling factors is done to prune the design space. The pre-

processing algorithm, shown in Figure 5.4, filters unfit UFs to create a list of viable solutions.  

The algorithm filters UFs with higher value since UFs with higher value offer minor 

improvement in the execution time and consume more power thereby increasing the overall 

cost of the solution. UFs which produce higher sequential loops are also removed from the 

Pre-processing of unrolling factor 

Input – value of ‘I’ (Total no. of loop iteration) 

Output – screened set of unrolling factor (UF) 

 

1 Begin 

// Screening of UF// 

2 For UF =2 to I Do 

2.1 IF ((I mod UF <
2

UF  ) &&  

 (UF <= I/2)) Then 

//Add UF into the accepted UF list// 

2.2 Accepted UF[k] = UF 

2.3 k++   

2.4  End IF 

2.5 End For 

3 End  

Algorithm 

1 Begin 

2 For UF =2 to I do  

//All U F are added into the accepted list until (I 

mod UF) <
2

UF
//  

2.1 IF ((I mod UF)< 
2

UF ) Then 

2.2  Terminate adding process jump to the 

end of the function 

2.3 End IF 

2.4 Accepted UF[k] =UF 

2.5 k++ 

2.6 End For 

3 End 

 

 

Figure 5.4 Pre-processing of UF  

 

Figure 5.5 Algorithm for Inclusion of Some 

Special UFs 
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set. However, some special UFs are added which might be initially screened out in pre-

processing to include good solutions. This is accomplished using the algorithm shown in 

Figure 5.5. 

5.4.2 Proposed Initialization Process of Particles 

After preprocessing step initialization of the particle take place. During initialization process 

particles position, are initialized as follows: 

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD-1),UF) 

the initialization of particles is such that it uniformly covers the entire design space 

             X1= (min(R1), min(R2),.. min(RD-1),min(UF))                     (5.5) 

           X2 = (max(R1), max(R2),.. max(RD-1),max(UF)                     (5.6) 

       X3=(((min(R1)+max(R1))/2..,((min(RD-1)+max(RD-1))/2,max(UF)/2)            (5.7) 

Rest of the particle positions(X4…Xn) are initialized with random values between minimum 

and maximum values of resources and UF. Since, an optimal design solution to a multi-

objective exploration problem will always lies between the maximum parallel and serial 

implementation of the application. Therefore, keeping in mind the above, X1 is represented by 

the serial implementation, X2 by parallel implementation, X3 with the mid value between 

serial and parallel implementation and X4-Xn scattered anywhere between serial and parallel 

implementation. 

5.4.3 Initialization of Velocity, Acceleration Coefficient and Inertia Weight 

The details about velocity, acceleration coefficient and inertias weight initialization have 

already been discussed in section 4.4.4 of chapter 4. 

5.4.4 Assumptions of Proposed Algorithm 

This subsection illustrates the assumptions which have been considered while designing the 

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath. 

 Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration 

of single fault model for transient faults is widely assumed and adopted in all related 

works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle 

transient fault detectable datapath also uses the same assumption.   

 The faults occur only at the hardware units and not at interconnecting wires. 

 The system only handles the transient-faults and not permanent faults. 

 The pair of unit in the DMR system has a comparator for error detection, whereby the 

comparators are considered fault detectable. 
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5.4.5 Proposed Algorithm for Design of kc Fault Secured DMR system 

The proposed methodology for designing kc fault secured DMR system is shown in Figure 

5.6. The proposed algorithm accepts the following as inputs: Xi (particle position denoting 

datapath configuration), the CDFG, fault security constraint (kc) indicating the strength of the 

fault and module library indicating the hardware units available for allocation. The output of 

a) 

b) 

c) 

Figure 5.6 Algorithm for Generating a kc Fault Secured SCDFG
DMR 
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the proposed algorithm is a valid kc cycle fault secured scheduled DMR system that is 

iteratively feedback to the PSO-DSE framework for exploring the next design solution based 

on the fitness evaluation. The DMR system involves a SCDFG
DMR

, consisting of schedules of 

U
OG

 and U
DP

. The pair of units is concurrently scheduled on the basis of ASAP scheduling 

using the user supplied resource constraints Xi and available dependency information of the 

nodes. After obtaining the scheduled DMR system, the hardware allocation of both the units 

(U
OG

 and U
DP

) is performed. Operations of the SCDFG
DMR

 system are allocated to hardware 

on the basis of fault security conditions (schemes) shown in Figure 5.6 (sub-block (a), (b) & 

(c)). Allocation of hardware to duplication unit of SCDFG
DMR 

without obeying the rules 

proposed in the algorithm may result in TFH between similar operations (of original and 

duplicate) assigned to same hardware unit i.e. TFH between similar operations belonging to a 

same hardware exists when: 

      t(v
’
)- t(v) <  kc, where v ϵ U

OG
 and v

’ 
ϵ U

DP.           
        (5.8) 

These hazards are resolved in the proposed algorithm by pushing the affected operation v’ 

(and accordingly its successor) of the duplicate unit in later control steps, if assignment 

(allocation) rules (a) and (b) fails.  The push is done such that the interval between vϵ U
OG

 

and v
’
ϵ U

DP
 is greater than (or equals to) kc. This resolution of the TFH is done until the TFH 

of the whole DMR system is resolved, i.e. SDFG
DMR 

obeys either of the fault security scheme 

((a) or (b) or (c)) proposed in Figure 5.6. The blocks after the cut condition block are for 

handling the possible assignment violations that could occur in the modified fault secured 

SCDFG
DMR

 due to insertion of cut.  

The cut conditions employed in order to reduce the additional execution time delay incurred 

due to shifting of operations in later control steps have been discussed in section 4.2.2.5 of 

chapter 4. 

5.4.6   Determine Global Best Position  

The global best position of the population is determined as follows: 

                                    
1 1 11 2 3[ ( ( ), ( ), ( ).... ( ))]

lb lb lb lbngb i f f f f nX X Min C X C X C X C X       (5.9) 

The global best particle position has minimum cost among all particle positions (X1 …..Xn). 

5.4.7 Determination of New Position of Each Particle 

Iteration process initiates at this step. According to PSO-DSE, each individual iteration 

computes new resource value of a particle Xi in d
th

 dimension through: ( , )
d d di i i

R f V R
 
 which 

can be expanded as specified in equation 4.8 [54, 55, 57]: 
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idi d di

R R V
 
              (5.10) 

Where, 
di

R
 is the new resource value of particle Xi in d

th
 dimension and 

idR  is the previous 

resource value of particle Xi in d
th

 dimension; di
V 

 is the new velocity of particle Xi in d
th

 

dimension (i.e. step length taken per unit time in d
th 

dimension) which is updated by equation 

(5.11) [54, 55, 57]: 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

                                      (5.11)  

Where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension and ‘

gbdR ’is the resource value of 

Xgb in d
th

 dimension. 

Note- 
1 2{ , ... }

lbi lbi lbilbi DX R R R and
1 2{ , ... }

gb gb gbgb DX R R R  

5.4.8 Adaptive end Terminal Perturbation and Adaptive Rotation Mutation 

To handle boundary outreach problem during exploration process we propose adaptive end 

terminal perturbation, described in chapter 4.  

In order to increase variation and diversity, mutation is performed on all the local best 

position of each particles with probability Mp =1.0 using Adaptive rotation mutation 

described in chapter 4. 

5.5 Stopping Condition (Z) 

The proposed algorithm terminates when the maximum number of iterations exceeds 100, or 

when no improvement is visible in Xgb over ‘£’ number of iteration. (£=10). Details on 

stopping criteria have already been discussed in chapter 4. 

Note: Results of the proposed solution are explained in chapter 8 section 8.3. 

5.6 Summary 

This chapter presented a novel multi-cycle SET fault security aware MO-DSE approach 

which explores an optimal transient fault secured datapath configuration and loop UF for 

control intensive applications. The datapath generated abides by the user specified area-delay 

constraints during exploration process.  
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Chapter 6  

Bacterial Foraging Driven Exploration of Multi Cycle 

Fault Tolerant Datapath based on Power-Performance 

Tradeoff in High Level Synthesis 

Due to recent advancements in technology, the idea of packing millions of transistors on a 

single chip has become more feasible. Technology evolution and impact of particle both plays 

a major role in inducing multi-cycle transient fault (longer duration transient) in a device. 

However, designing an optimized multi-cycle fault tolerant system is non-trivial. A multi-

cycle fault tolerant system is a design that is, resilient against transient fault eminating due to 

SETs. For the current and future technology transient faults can span more than one clock 

cycle resulting in its multi cycle nature. Therefore, a multi-cycle fault tolerant system not 

only has capability to detct a transient fault but also to recover from it. 

This chapter presents a novel multi-cycle fault tolerant DSE approach based on 

power-performance tradeoff during HLS. To the best of the authors’ belief, this is the first 

effort to solve this problem in the literature so far. The proposed methodology is based on an 

adaptive BFOA that allows reaching the true Pareto optimal curve. The chapter also discusses 

about a novel DMR with equivalent circuit scheme that performs the equivalent function of 

extracting the correct output. 

6.1 Problem Formulation 

To explore the design space of a given DFG, and determine an optimal resource set 

1 2{ ( ), ( ), ( ).... ( )}i d DX N R N R N R N R  

which satisfies conflicting user constraints and minimizes the overall cost. 

The problem can be formulated as:  

Find: an optimal Xi 

with minimum hybrid Cos ( , )DMR DMR

T Et P T  

subjected to: 
DMR DMR

T cons E consP P and T T  and kc fault. 
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Where, N(Rd) is number of instances of a  resource type ‘d’, 
DMR

TP is power consumed by a 

fault tolerant DMR system, 
DMR

ET is the delay of a fault tolerant DMR, Tcons and Pcons are the 

user specified execution delay and power constraints while kc is the strength of the fault. 

6.2 Proposed Framework 

The framework of a fault tolerant DSE scheme has been shown in Figure 6.1. A BFOA 

driven DSE framework is used for exploration of designs. The input block comprises of: 

module library, behavioral description of DFG, predefined user parametric constraints for 

power and time execution as well as kc. Further, the control parameters such as Nc, Ned, p 

explained in chapter 3 are used for regulating the BFOA driven exploration process. The 

proposed framework has a subunit for initialization/ encoding of bacteria. The encoded 
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Figure 6.1  Proposed Multi Objective Multi Cycle Fault Tolerant BFOA-DSE 

Approach 



61 

 

bacteria are then subjected to chemotaxis and dispersal algorithms during the DSE process to 

explore new and diverse resource configurations. The solutions generated through the 

algorithms are fed into the fault tolerant block for converting into a kc error-correctable 

design (masking the fault) by evaluating the DMR schedule on the basis of kc fault behavior. 

A DMR design is obtained corresponding to each bacterium solution during DSE where the 

TFH due to kc fault are identified and resolved subsequently to obtain a fault tolerant DMR 

schedule through the proposed algorithm. The obtained fault tolerant DMR schedule is 

passed into the fitness block to determine the cost of the fault-tolerant solutions generated. 

This process continues through the proposed BFOA-DSE framework to generate an optimal 

fault tolerant DMR system that comprehensively satisfies Pcons, Tcons, kc as well as minimizes 

the hybrid cost. 

6.2.1 Framework for DSE 

BFOA DSE framework generates intermediate solutions during exploration that are fed into 

the proposed multi cycle fault tolerant algorithm. The multi cycle fault tolerant algorithm 

uses these explored solutions to convert them into a fault tolerant DMR schedule considering 

the user specified power budget and performance requirement. This process continues until 

an optimal solution i.e. a fault tolerant DMR system that comprehensively minimizes and 

satisfies the multi objective power and execution time constraint. The proposed multi cycle 

fault tolerant algorithm is described in next section. 

6.2.2 Proposed DMR System for kc Fault Tolerance 

6.2.2.1    Assumptions of Proposed Algorithm 

In the proposed work, following assumptions have been considered while designing the 

proposed BFOA driven multi objective DSE for multi-cycle fault tolerant datapath. 

 Single fault model i.e. fault occurring at a single site in the circuit. 

 Faults occurring only in the original unit of the DMR design. 

 The pair of unit in the DMR system has a comparator for error detection, whereby the 

comparators are considered fault tolerant. 

 The system only handles the transient-faults and not permanent faults. 

 The faults occur only at the hardware units and not at interconnecting wires. 

6.2.2.2  Proposed Multi Cycle Fault Tolerance (MCFT) Algorithm 

An explored fault tolerant DMR system for dealing with kc faults, based on user specified 

power budget and execution time constraint has been proposed in Figure 6.2. The DMR 
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system involves a SDFG
DMR

, consisting of schedules of U
OG

 and U
DP

. The pair of units is 

concurrently scheduled on the basis of ASAP scheduling using the user supplied resource 

constraints Xi, and available dependency information (Dc) of the nodes. After obtaining the 

scheduled DMR system, the critical paths (pcri) from the units (both U
OG

 and U
DP

) are 

identified. Operations of the SDFG
DMR

 system are allocated to operators on the basis of 

following scheme:-  

i. Allocate opn (oi) of pcri
 
ϵ U

OG
 and pcri

 
ϵ U

DP
 to distinct operators (hardware units). 

ii. Allocate the remaining operations by: 

 If opn(oi) ϵ U
OG

 , then assign operator on the basis of availability 

Inputs: DFG, Xi, kc, DC 

Output: Fault tolerant SDFG
DMR

 

Begin 

1. Build a DMR scheduling graph (SDFG
DMR

) comprising of U
OG 

+ U
DP

;  

SDFG
DMR

 = U
OG 

+ U
DP

 

Subjected to: a. Constraint Xi; where Xi = (R1, R2,….Rd-1, RD) 

         b. Constraint Dc 

       2.    Identify the critical path (pcri) from both U
OG

 and U
DP

. 

       3.    Allocate opn (oi) of pcri
 
ϵ U

OG
 and pcri

 
ϵ U

DP
 to distinct operators (hardware units). 

      4. Allocate opn (oi) of non-critical paths by keeping assigned operations to similar operators 

in both U
OG

 and U
DP

 if available.  

 Loop 1: 

do 

{ 

5. Identify the transient fault hazards (TFH), if any, and prepare a list L[k] which 

indicates the transient fault hazards (TFH) between v and v
’ 
of similar operators 

in the current scheduling (SDFG
DMR

) such that: 

v ϵ U
OG 

v
’ 
ϵ U

DP
 

Loop 2: 

do 

{ 

      6.   Select TFH to be resolved from L[k]. 

      7.   Push v
’
 and its successor’s ϵ U

DP
 in lower CS such that: 

a) t(v
’
)- t(v) => kc (i.e. interval between v and v

’ 
is greater than kc)    

b) Constraints Xi and Dc satisfies. 

      8.    k++; 

      9.                Goto: Step 6 

  }while (L(k)!= φ); 

  Goto: Step 5 

 }while(all t(v
’
)- t(v) => kc in SDFG

DMR
 (i.e. no TFH exists in the SDFG

DMR
)) 

10. Are similar operators of U
DP 

used in U
OG

 in subsequent control steps within range of kc 

cycle? If reused then, adjust the conflicting operations of U
DP

 
 

Loop 1: Prepares a list L[k] containing TFH in intermediate schedules of DMR. 

 

Loop 2: Iterates to resolve the successive TFH from L[k]. 

 
Figure 6.2 Pseudo code for Multi Cycle Fault Tolerant Algorithm 
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 If opn(oi) ϵ U
DP

, then assign operations to similar operators as in U
OG

, if available to 

enable resource sharing and reduction of usage of extra operators.  

NOTE: This is because during designing fault tolerant datapath (for multi cycle faults) 

assigning to distinct hardware operator sin duplicate unit does not assist in masking the fault 

in duplicate. This is owing to the reason that faults anyways affects some other operation 
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assigned to the same operator in duplicate. Assigning to distinct hardware only assists in 

fault security (i.e. detection). 

Once the assignment of operators is done, the behavior of the system due to k-cycle fault is 

observed by identifying the TFH between any operations belonging to an operator. The TFH 

between any operations belonging to an operator exists when :  

Figure 6.4 Intermediate Fault Tolerant SDFG
DMR

 of ARF for kc = 2 
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t(v
’
)- t(v) <  kc, where v ϵ U

OG
 and v

’ 
ϵ U

DP.                                   
(6.1) 

These hazards are then resolved by pushing the affected operation of the duplicate unit in 

later control steps, thereby shifting its successors accordingly.  The push is done such that the 

interval between v ϵ U
OG

 and v
’ 
ϵ U

DP
 is greater than (or equals to) kc. This identification and 
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resolution of the TFH is done until all the TFH of the whole DMR system are resolved, i.e. in 

SDFG
DMR

 all: 

t(v
’
)- t(v)≥ kc        (6.2) 

Figure 6.2 illustrates the pseudo code of the proposed MCFT algorithm. 

6.2.2.3  Demonstration of MCFT using DMR 

The proposed approach is explained with the demonstration of Auto Regression filter (ARF) 

DFG. Figure 6.3 and Figure 6.4 shows the non fault tolerant SDFG
DMR

 and Figure 6.5 shows 

the fault tolerant SDFG
DMR

 of ARF respectively based on the final explored solution of 1(+), 

2(*) obtained through the proposed DSE framework. In other words, this indicates while 

designing DMR schedule of ARF the operations of both the units have to simultaneously 

obey the resource configurations explored by BFOA DSE. The DMR system has operations 

labeled as 1, 2, … n for the original unit while the duplicate unit operations are represented as 

‘1, ‘2, … ‘n, where n and ‘n are the values of maximum number of node in the particular 

application. In the SDFG
DMR

 shown in Figure 6.3, the value of n is 28 for the original unit 

while that of ‘n is ‘28 for the duplicate unit. Suppose if a 2-cycle fault occurs in the system, 

then, the TFHs occurring in the system are first identified. TFH occur between operations 
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belonging to a particular operator in U
OG

 and operations performed by similar operator in 

U
DP

, if the operations are not k-cycle apart. Corresponding to the Figure 6.3, list L[k] 

contains hazards between 18(M2) and ‘1(M2), 17(M1) and ‘2(M1), 8(A1) and ‘5(A1) and so 

on. For example, if a 2 cycle fault occurs at M1 at control step 4, whose effect continues until 

step 5. Accordingly multiplier M1 may incorrectly execute operation ‘2 at step 5 in U
DP

, 

thereby producing a faulty output. Therefore, in order to make the system fault tolerant (i.e. 

mask the fault occurring in original) and to generate an error free output, operation ‘2 

assigned to M1 of U
DP

, is pushed below into step 6 (where equation 6.2 is satisfied and 

explored resource configuration is met (in this case: 1(+), 2(*))) to avoid the propagation of 

2-cycle fault in the U
DP

 as well as propagation of fault from UDP to UOG (using step 10 of 

algorithm in Figure 6.2). Similarly as per step 7 and 10 of the algorithm (Figure 6.2), opn ‘3 

and ‘4 is scheduled in step 14 as in the prior steps either resource constraint (Xi) was being 

violated or kc fault was being propagated. Figure 6.5 shows 2-cycle fault isolated SDFG
DMR

 

obtained through this process. This arrangement ensures that similar operators in both units 

are isolated by more than 2-cycles to prevent propagation of faults from one unit to other. 

6.2.2.4  Proposed equivalent circuit for a voter 

Figure 6.6 shows the equivalent circuit diagram for a voter to compare the outputs of the  

respective units in DMR system. The outputs are compared, in order to find whether a fault 

has occurred in the system or not. If a fault has occurred in the system, the duplicate 

scheduling unit obtained through the proposed algorithm always remains fault free. This 

indicates the outputs of the original and duplicate scheduling unit will always have a 

difference (original producing faulty output, while duplicate producing non faulty). 

Therefore, the comparator units are used to perform this comparison of outputs. In case of 

multiple outputs from original and duplicate the outputs of comparators are OR’ed (oring the 

outputs of comparison from multiple comparators helps the system in indicating fault if 

atleast one of the output is faulty i.e atleast one comparator produces a difference) and fed 

Table 6.1 Output Unit Selection 

F* F’ F Output 

1 1 1 U
DP

 

1 0 0 U
OG

 

0 1 0 NOT VALID 

0 0 0 U
OG
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into the select line ‘F’ of the multiplexers. As seen in Table 6.1, if F = 1 (indicating fault 

because of difference produced by comparators), then the output is taken from duplicate unit 

else for a fault free system (F=0 indicating no difference in outputs of both units), the output 

is taken from the original. This scheme described above assists in extracting the outputs from 
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respective units without extra redundancy (such as TMR) and saves unnecessary clock 

cycles. 

Figure 6.7 shows the datapath circuit of the demonstrated fault tolerant ARF application 

(Figure 6.5). The data path circuit incorporates multiplexers and demultiplexers into the 

system. These multiplexing and demultiplexing units are used for representing the systems 

resources with their respective inputs, outputs, the operations performed by them and the 

necessary storage units along with the necessary interconnections. The empty boxes in Figure 

6.7 represent the register units, required to store the inputs or the intermediate results of an 

operation. The equivalent circuit of voter is represented with a dashed block. The block 

contains multiplexers and comparators units to compare the outputs ((27 or ’27) and (28 or 

’28)) based on the value of select line ‘F’ (either 0 or 1). Further, generating the error free 

output from the system. 

6.3 Proposed Evaluation Models 

For evaluation of a particle (or design point), the following models have been proposed. 

6.3.1 Proposed Power Model 

PT
DMR

 of a resource set is represented in terms of Static Power (PS
DMR

) and Dynamic Power 

(PD
DMR

). ‘PT
DMR

’ is represented as: 

                                          DMR DMR DMR

T S DP P P                                                            (6.3) 

PS
DMR

 is a function of area of resources and leakage power per transistor. It can be 

formulated as:- 

                                         
1

( ( ). ( ).
D

DMR

S d d c

d

P N R K R p


                                                      (6.4) 

Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area 

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power 

dissipated per area unit (e.g. transistors). 

While, the average dynamic power consumed by a resource configuration is a function of 

dynamic activity of the resources and can be given as: 

             
DMR

DMR FU
D DMR

E

E
P

T
                        (6.5) 

Where, DMR

FUE is the total energy consumption of the resources in fault secured DMR system 

and DMR

ET  is the total execution time of DMR system. 
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6.3.2 Proposed Execution Time (Delay) Model 

For given ‘D’ functional resources the execution time is: 

' '

. 1

( ( ),.... ( ), ( ),...... ( ))
n

DMR

E i n i n

c s

T Max D op D op D op D op


            (6.6) 

Where,    1 ≤ i ≤ n   and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate are labelled as 

i and i’ respectively; n and n’ are maximum value of node); D(opn) is the delay of operation 

‘n’ while  c.s is the control step.  

6.3.3 Proposed fitness function 

The proposed fitness function is defined as: 

1 2

max max

( )
DMR DMR

T cons E cons
f i DMR DMR

P P T T
C X

P T
 

 
                                               (6.7) 

Where, ( )f iC X  is the cost of particle with resource set Xi, max

DMRT is the maximum execution 

time of a fault tolerant DMR system in design space while 
max

DMRP is the maximum power of 

a fault tolerant DMR system in design space. 

6.3.4 Advantages of proposed scheme over existing scheme 

The proposed MCFT scheme offers several novelties/ advantages over the fault tolerant 

approach [32]. 

 The existing approach [32] employs triple modular redundancy (TMR) scheme to 

make the entire schedule fault tolerant. While the proposed scheme generates a fault 

tolerant schedule using double redundancy.  The respective TMR obtained for ARF 

benchmark through [32] is shown in Figure 6.8.  However, in contrast, the proposed 

1 1   M1 2  M2           

2 3   M1 4  M2 5  A1          

3 15  M1 16  M2 6  A1 7  A2 ‘1  M3 ‘2  M4       

4 17  M1 18  M2 23  A1 8  A2 ‘3  M3 ‘4  M4 ‘5  A3      

5 24  A1 10  M1 11  M2  ‘15  M3 ‘16  M4 ‘6  A3 ‘7  A4 ‘‘1  M5 ‘‘2  M6   

6 9  M1 12  M2   ‘17  M3 ‘18  M4 ‘23  A2 ‘8  A3 ‘‘3  M5 ‘‘4  M6 ‘‘5  A4  

7 13  A1 14 A2   ‘24  A3 ‘10  M3 ‘11  M4  ‘‘15  M5 ‘‘16  M6 ‘‘6  A4 ‘‘7  A5 

8 20  M1 21  M2   ‘9  M3 ‘12  M4   ‘‘17  M5 ‘‘18  M6 ‘‘23  A3 ‘‘8  A4 

9 19  M1 22  M2   ‘13  A1 ‘14  A2   ‘‘24  A3 ‘‘10  M3 ‘‘11 M4  

10 25  A1 26  A2   ‘20  M3 ‘21  M4   ‘‘9  M5 ‘‘12  M6   

11 27  A1 28  A2   ‘19  M1 ‘22  M2   ‘‘13  A3 ‘‘14  A4   

12     ‘25  A3 ‘26  A4   ‘‘20  M1 ‘‘21  M2   

13     ‘27  A1 ‘28  A2   ‘‘19  M1 ‘‘22  M2   

14         ‘‘25  A1 ‘‘26  A2   

15         ‘‘27  A1 ‘‘28  A2   

 

Original  unit 

Duplicate   unit   1 

Duplicate   unit   2 

Note: The operation numbers above correspond to the nodes of ARF benchmark shown previously  

in Figure 6.3 
Figure. 6.8 SDFG

TMR
 for [32] Corresponding ARF with Xi = 5(+), 6(*) for kc = 2 
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algorithm obtains a fault tolerant schedule for ARF using DMR as shown in Figure 

6.5 before. As observed from Figure 6.8, the structure obtained consumes 5(+), 6(*) 

and control steps = 15 (Latency = 121.5 us); while the final fault tolerant DMR for 

ARF (Figure 6.5) obtained through proposed BFOA-DSE approach occupies 1(+), 

2(*) and control steps = 30 (Latency = 179.5 us). The corresponding cost of the fault 

tolerant solutions calculated using equation (6.7) for proposed and [32] is -0.217 and 

0.0443 respectively. This indicates a substantial improvement in final cost (quality).  

  The final solutions obtained through the proposed and [32] have a significant 

difference in quality (optimality). This is because the solution obtained through [32] 

does not satisfy the power budget and execution time constraint specified by user. 

However, the proposed approach explores (by iteratively refining through BFOA) a 

solution which not only satisfies the power budget and execution time constraint 

specified by user but also comprehensively minimizes the total cost of the solution.  

  The proposed approach produces a fault tolerant structure using DMR (without using 

conventional voter scheme) in contrast to previous fault tolerant approach [32] using 

TMR. 

6.4 Termination criteria 

The BFOA driven exploration process has following terminating criteria: 

 Terminates when a designer specified ‘Nc’ is reached. 

 When no improvement is seen in global best among bacteria population over last 10 

iterations (chemotactic steps). 

Details on termination criteria have already been discussed in chapter 3. 

Note: Results of proposed approach are explained in chapter 8 section 8.4. 

6.5 Summary 

The availability of faster devices is a feature of future technologies that induces major 

concerns to the fault detection community for longer duration transient faults. The technology 

evolution and LET of particle both play a major role in inducing multi-cycle (k-cycle) 

transient fault (longer duration transient) in a device. Hence, optimizing power and delay 

remains no longer sufficient now, specifically for current generation of systems which 

demand designs (especially for space applications where radiation induced faults are highly 

possible) that requires ability to detect errors occurring due to transient faults (such as single 

event upsets). Therefore, an adaptive/intelligent system for solving the DSE problem of 

multi-cycle transient fault tolerant datapath during HLS has been proposed in this chapter. 
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Chapter 7 

Untrusted Third Party Digital IP cores: Power-Delay 

Trade-off Driven Exploration of Hardware Trojan 

Secured Datapath during High Level Synthesis 

Complexity of the SoC has increased tremendously over the years. This allows us to have 

more complex systems. However, the design productivity has not increased with the same 

pace. Therefore, to address this issue reuse based methodology has come into context, which 

will benefit in producing complex designs at a higher productivity. To design complex 

systems IPs are used which increase the productivity of design. This process requires 

globalization of IPs through third party vendors. That is, globalization incurs importing IPs 

from various 3P vendors. But there are serious security concerns for SoC integrators, due to 

involvement of untrustworthy 3P vendors supplying IP cores. During the design stage of a 

3PIP, an adversary (possibly an untrustworthy vendor) can deliberately infuse a Trojan logic 

resulting in malfunctioning of the digital circuit. Typically, the Register Transfer Level 

(RTL) files of the modules/IPs of the library are provided by the HLS Company which it may 

have imported from third party vendors as RTL files. Therefore, to have a trustworthy design 

it should be ensured during HLS that any possible infection of 3PIP is detectable. Detection 

process of the Trojan during design of hardware Trojan secured schedule in HLS inevitably 

requires multiple redundant hardware instances from different vendors, which if not 

accounted for its power and delay during fitness evaluation, may result in a secured circuit 

violating user constraint.  

This chapter solves the aforementioned problem and proposes an approach which 

generates a low cost Trojan secured schedule during HLS. The focus on hardware Trojan 

secured schedule generation during HLS has been very little with absolutely zero effort so far 

in DSE of a user MO constraint optimized hardware Trojan secured schedule. The design 

process of hardware Trojan secured schedule should hence administer the usage of intelligent 
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DSE strategy that is driven through user power-performance constraints for exploring an 

optimized hardware Trojan secured schedule. The detail description of the proposed approach 

is given in subsequent sections of this chapter. 

7.1 Problem Formulation 

To explore the design space of a given DFG, and determine an optimal solution 

( , )i n vX R A  

1 2( ( ), ( ), ( )... ( ))n d DR N R N R N R N R  

1 2{ ( ), ( ), ( ).... ( ), }i d D VX N R N R N R N R A  

which satisfies conflicting user constraints and minimizes the overall cost. 

The problem can be formulated as:  

1 

F 

S (Sum) 

C (Carry)/  

B 

(Borrow) 

S 

A B 

         Mux 

Mux 

        Mux 

Trojan  

Trojan  

Trojan  

0 1 

0 1 

0 1 

An infected 1- bit adder IP present in  

the module library of a HLS  

tool 

Note: Only when select (S) = 1 is triggered by an adversary (controlled externally), then, Trojan blocks 

get activated and the adder IP starts performing subtraction resulting in functional failure. Until 

triggered, it remains dormant in the system and behaves like a normal adder IP. 

 

Figure 7.1 An Infected 1- bit Adder IP Present in Module Library of a HLS Tool 
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Find: an optimal Xi 

with minimum hybrid Cos ( , )DMR DMR

T Et P T  

subjected to: 
DMR DMR

T cons E consP P and T T   and hardware Trojan fault secured. 

Where, N(Rd) is number of instances of a  resource type ‘d’, DMR

TP  is power consumed by a 

fault secured double modular redundant (DMR) system, DMR

ET is the delay of a DMR design, 

Tcons and Pcons are the user specified execution delay and power constraints while Av is the 

vendor allocation procedure type (where Av = ‘1’ or ‘0’).  

7.2 Proposed Methodology 

7.2.1 Motivation 

Let us consider a scenario to explain the problem of hardware Trojan in 3PIP and hardware 

security during HLS. During HLS, an untrusted IP vendor may malevolently insert Trojan 

logic into the module/IP that is used in the module library of a HLS tool. This Trojan logic 

remains hidden until triggered externally by the adversary and is therefore not possible to 

detect during normal RTL simulation. This is because during normal situations (when not 

triggered), it behaves like a functionally correct IP. Figure 7.1 shows an example of Trojan in 

a third party IP/module present in the module library of a HLS tool.  Here a 1 bit adder IP 

that is used in the module library of a HLS tool may behave as a subtractor IP on triggering 

(through external activation by setting S = 1). The detection process of such Trojans during 
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HLS becomes impossible with the Trojan detection techniques applied at lower levels of 

abstraction such as side channel analysis and RTL simulation.  

Note: The work presented in this chapter targets Trojans in 3PIPs that affect notmal 

functional output.  

The detection procedure suggested in the recent literature is accomplished by having IP cores 

of same functionality from different vendors. This is because different vendors will have 

different implementations and it is less likely that both are Trojan infected. Even if they are, 

the chances of different vendor IPs generating same output behavior is considered extremely 

uncommon. However, detection process of the Trojan during design of hardware Trojan 

secured schedule in HLS inevitably requires multiple redundant hardware instances from 

different vendors, which if not accounted for its power and delay during fitness evaluation, 

may result in a secured circuit violating user constraint. Therefore, the design process of 

hardware Trojan secured schedule should govern the usage of adaptive intelligent DSE based 

on user power-delay constraint as well as effective vendor allocation procedure during 

scheduling. The framework to obtain Trojan secured schedule is explained in the subsequent 

sections of this chapter. 

7.2.2 Proposed Framework 

This section presents a framework which generates a low cost optimal hardware Trojan 

secured schedule based on user power-delay constraint during HLS. The framework has been 

shown in Figure 7.2 Module library, behavioral description of DFG and predefined user 

parametric constraints for power and time executions (or delay) are provided as inputs to the 

exploration process. A set of control parameters such as ‘Nc’ (maximum number of 

chemotaxis steps allowed which is the stopping criterion that indicates the maximum limit of 

the iterations that the proposed approach is allowed to execute) and ‘p’ (population size) are 

used for regulating the BFOA driven exploration process where ‘p’ indicates the number of 

individuals/bacterium (initial design solutions) participating in the evolutionary process of 

exploration. 

7.2.3 DSE Framework 

The DSE framework employed for generating a lost cost Trojan secured schedule during 

HLS is BFOA-DSE. To solve the problem mentioned in this chapter, BFOA as DSE 

framework is used to explore the design space. The framework of this algorithm provides the 

flexibility to be configured in a proficient way for eliciting efficient search behavior for this 
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problem. BFOA comprises of primarily of two major steps: chemotaxis and dispersal for 

locomotion of bacterium. Using locomotive mechanisms (such as flagella) bacteria can move 

around in their environment, sometimes moving chaotically, and other times moving in a 

directed manner, referred to as swimming. The details about BFOA-DSE have already been 

explained in chapter 3.  

7.2.4 Proposed Encoding  

A bacterium position (candidate design solution) is labeled as Xi:  

                                 Xi = (  nR , Av)                                                                                          (7.1)                                                 

Where,  nR indicates the resource array (resource configuration e.g. number of adders, 

multipliers etc) and ‘Av’ is the vendor allocation procedure type adopted. The reason behind 
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incorporating the last dimension with vendor allocation procedure type ‘Av’ is discussed in 

later sections. 

7.2.5 Motivation of using Vendor Allocation Procedure ‘Av’ in Problem Encoding 

During Exploration 

In order to detect hardware Trojans a minimum of two vendors are always needed to provide 

distinctness. However, technique of usage of the two vendors during allocation inside the 

DMR scheduling (i.e. assignment process) of each vendor IPs inside the system during 

allocation) dictates the final latency and power of entire system. This is because same 

resource type/IP from two different vendors has different area, power and delay. Hence, 

merely using distinctive vendor assignment for detection without probing into the procedure 

of allocation (assignment) of vendor type in DMR system may lead to skipping of an 

alternate better solution in context of DSE of a low cost optimal Trojan secured schedule, 

exploration of an additional dimension, ‘Av’ (indicating allocation procedure of IP’s from 

different vendor type) which can either be ‘0’ or ‘1’ is incorporated in the bacterium 

encoding along with resource array. The value of ‘Av’ as ‘0’ or ‘1’ is interpreted as follows: 

7.2.5.1  Vendor Allocation Procedure (Type 1): Av = 1 

 All operations of a specific unit being strictly assigned to resources of same vendor 

type (say: all operations of original unit strictly assigned to same vendor ‘V1’ and all 

operations of duplication to same vendor ‘V2’). 

 Similar operations of both original unit U
OG

 and duplicate unit U
DP 

being assigned to 

different vendors. 

7.2.5.2  Vendor Allocation Procedure (Type 2): Av = 0 

 Alternate vendor assignment to operations in control step of a unit. (Example, in 

Figure 7.3, operation 3 & 6 assigned alternatively to ‘V1’ and ‘V2’. Next multiplication 

if any would have been assigned to ‘V1’ alternately). 

 Similar operations of both U
OG

 and U
DP 

being assigned to different vendors. 

In both above cases, whenever there is a conflict of operation during scheduling between 

operation of U
OG 

and U
DP

, preference is given to the operation of U
OG

 during scheduling. 

7.2.6 Library Assumed 

It is assumed that multiplier and adder provided by vendor V1 has area = ‘2468au’ & 

‘2034au’, latency = ‘10000ns’ & ‘265ns’, and energy = ‘10.0pJ’ & ‘0.80pJ’ while multiplier 
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and adder provided by vendor V2 has area = ‘2464au’ & ‘2032au’, latency = ‘11000ns’ & 

‘270ns’ and energy = ‘9.8pJ’ & ‘0.739pJ’ respectively. 

7.2.7  Proposed Evaluation Models 

For evaluation of a particle (or design point), the following models have been proposed. 

7.2.7.1  Proposed power model 

Total power consumption (PT
DMR

) by a resource set is represented in terms of Static Power 

(PS
DMR

) and Dynamic Power (PD
DMR

). ‘PT
DMR

’ is represented: 

DMR DMR DMR

T S DP P P                                                      (7.2) 

Static power (PS
DMR

) is a function of area of resources and leakage power per transistor. It 

can be formulated as:- 

   
2

1 1

( ( ( )* ))*j

n
VDMR Vj

S i i c

j i

P A R R p
 

                                               (7.3) 

where, Ri
Vj

 is the number of instances utilized from vendor Vj for a resource type Ri, and ‘n’ is 

the maximum number of instances of resource type Ri for vendor Vj while A(Ri
Vj

) is the area 

of a resource type (Ri) corresponding to vendor (Vj). On the other hand, the average dynamic 

power consumed by a resource configuration is a function of dynamic activity of the 

resources and can be given as: 

         DMR FU
D DMR

T

E
P

L
                                                             (7.4) 

Where, EFU is the total energy consumed by the resources. Note: The power component 

includes power due to functional resources, interconnect units (mux and demux), comparator 

(for error detection) as well as overhead incurred from internal buffering (during temporary 

storage of operation output in DMR scheduling). 

7.2.7.2  Proposed Delay (Latency) model 

For given ‘D’ functional resources the delay is: 

       
. (max) 2

' '

. 1 1

( ( ),.... ( ), ( ),...... ( ))
c s

DMR V j V j V j V j

T i n i n

c s j

L Max D op D op D op D op
 

                          (7.5) 

Where, 1≤i≤ n   and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate is labeled as i and 

‘i respectively; n and ‘n = maximum number of operations in original and duplicate unit). 
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Here, D(opi
Vj

) is the delay of operation i, assigned to vendor Vj, c.s represents control steps, 

while c.s(max) is the maximum number of control steps in a schedule.  

7.2.7.3  Proposed Cost model 

The proposed fitness function (considering total delay and power consumption of a solution) 

is defined as: 

  1 2

max max

( )
DMR DMR

T cons T cons
f i DMR DMR

P P L L
C X W W

P L

 
                               (7.6) 

Where, Cf(Xi) is the cost of bacterium with resource set Xi, Pmax
DMR

 and Lmax
DMR

 are the 

maximum power and delay of the  DMR system and W1 and W2 are the user defined weights 

both kept at ½ during exploration to provide equal preference. 

7.2.8 Demonstration 

For a resource set  nR   = 2(+), 5(*), there are two possible DMR schedules generated for IIR 

filter benchmark on the basis of Av = 0 and 1, as seen in Figure 7.3 and 7.4. More specifically, 

for Rx = (2(+), 5(*), 0), the latency is: 23,080ns and power is: 0.58mW; while, for Rx = (2(+), 

5(*), 1), the latency is: 22,080ns and power is: 0.88mW. Clearly, a difference is observed in 

the delay and power of the two generated scheduling solutions both abiding by distinct 

vendor type assignment to similar operations for detect ability. The schedules generated in 

Figure 7.3 and 7.4 are both hardware Trojan fault secured (with two vendor needed), 

however, one is better than the other in different parameter. Only using distinct vendor 

assignment without probing into the procedure of allocation of vendor type in DMR system 

may lead to missing of better alternative (or optimal) solution in context of DSE. Therefore, 

in context of DSE, it is worth to explore the additional dimension ‘Av’ incorporated in the 

proposed bacterial encoding. 

7.3 Termination Criteria 

The BFOA driven exploration process has following terminating criteria: 

 Terminates when reached designer specified ‘Nc’ (maximum chemotactic steps). 

 When no improvement is seen in global best among bacteria population over last 10 

iterations (chemotactic steps). 

Details on termination criteria have already been discussed in chapter 3. 
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Note: Results of the proposed method are given in chapter 8 section 8.5. 

7.4 Summary 

Due to globalization, there have been serious concerns on the security and trustworthiness of 

3PIPs , rendering the IP susceptible to possible hardware threats. To provide secure 

information processing through digital ICs within user constraints and to ensure 

trustworthiness while designing a low cost optimized DMR, Trojan secured HLS 

methodology is crucial. This chapter presented a novel low cost Trojan security aware HLS 

methodology. The approach explores efficient vendor allocation procedure within the 

proposed DSE framework. It also provides a significant reduction in the cost of security 

aware HLS solution in comparison to similar prior work. 
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Chapter 8 

Results and Analysis 

This chapter describes the complete experimental results of the proposed methodologies for 

DSE described in previous chapters. This chapter divided into five sections where each 

section present results of the respective methodology. The sections are as follows: 

8.1 Experimental Results:  Adaptive Bacterial foraging driven Datapath 

Optimization: Exploring Power-performance Trade-off in High level 

synthesis 

This section describes the experimental results of the proposed approach explained in Chapter 

3 and the improvements obtained compared to recent approach [20, 21]. The proposed 

approach has been implemented in java and run on Intel Core-i5-3210M CPU with 3MB L3 

cache memory and 4GB DDR3 primary memory. The processor has frequency of 2.5 GHz. 

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1, 

45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1, 

98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle 

problems of any size. Many large size benchmarks have also been tested through our 

approach. The library is given in chapter 3 Table 3.1. 

Experimentation is carried out considering two aspects: 

 Analysis of variation of multiple BFOA parameters and their impact on the BFOA 

driven DSE performance. 

 Comparison of BFOA-DSE with previous DSE approaches in terms of Quality of 

Results (for cost) and exploration time of the process.  

The QoR is calculated as:   

   
max max

1

2

T EP T
QoR

P T

 
  

 
                                              (8.1) 

8.1.1 Analysis of Proposed BFOA-DSE with variation of multiple BFOA parameters 

In this section multiple internal BFOA parameters are varied and their impact on the 

results of proposed approach for selected benchmarks is noted. The bacterium size ‘p’ and the  
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step size (C(i)) parameters are varied and results are analyzed on the basis of quality of 

results, convergence time and exploration time of the proposed DSE. The quality of solution 

found and its comparison with other DSE approaches will be discussed in the next 

subsection.  

Table 8.1 Comparison of QoR and Exploration Time with respect to Bacterium size (p) for the 

Proposed Approach 

Benchmark [45, 86, 

98, 99, 100] 

Problem size of 

Benchmarks in 

terms of Nodes 

Bacterium 

Size (p) 
Cost 

Convergence 

Time 

Exploration 

time 

JPEG 

DOWNSAMPLE 
33 

3 -0.281 203 624 

5 -0.281 510 1220 

7 -0.281 700 1505 

JPEG IDCT2 112 

3 -0.372 34100 71510 

5 -0.372 73475 126595 

7 -0.371 182720 252425 

IDCT 42 

3 -0.301 1635 4310 

5 -0.301 2915 6725 

7 -0.301 4295 8695 

FEEDBACK  

POINTS 
41 

3 -0.340 4134 12714 

5 -0.340 8545 13420 

7 -0.340 9235 15200 

ARF 28 

3 -0.239 540 2500 

5 -0.239 2800 5035 

7 -0.239 5035 8725 

BPF 29 

3 -0.296 475 1140 

5 -0.296 835 1330 

7 -0.296 1165 2085 

FIR 23 

3 -0.268 155 565 

5 -0.268 330 1145 

7 -0.268 675 1675 

MESA MATRIX 

MULTIPLICATION 
84 

3 -0.342 26675 51375 

5 -0.342 92424 126532 

7 -0.342 118605 160453 
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8.1.1.1 Bacterium size, p 

In the proposed approach (BFOA-DSE), the bacterium size and configuration chosen is able 

to comprehensively cover a design space. Generally, larger the bacterium size ‘p’, larger will 

be the coverage of exploration of the design space in each iteration. However, during 

experimentation of different benchmarks it was found that best size of bacterium for 

Table 8.2 Impact in the Variation of Step Size (C(i)) on the Performance of Proposed DSE 

Benchmarks [45, 

86, 98, 99, 100] 

C(i)=C(i)+1 C(i)=C(i)+2 

Configuration 
Convergence  

Time(ms) 

Exploration 

Time(ms) 

Convergence 

Time(ms) 

Exploration 

Time(ms) 

JPEG  

DOWNSAMPLE 
312 (p=3) 687 (p =3) 203 (p =3) 624 (p =3) 3(*), 1(+) 

JPEG IDCT2 85929 (p =5) 
195481 (p 

=5) 
73475 (p =5) 

126595 (p 

=5) 
7(*), 1(+) 

IDCT 1605 (p =3) 4320 (p =3) 1635 (p =3) 4310 (p =3) 3(*), 1(+) 

FEEDBACK 

POINTS 
7845 (p =3) 

11520 (p 

=3) 
4134 (p =3) 

12714  (p 

=3) 
6(*), 1(+) 

ARF 2106 (p =3) 4602 (p =3) 540 (p =3) 2500 (p =3) 3(*), 1(+) 

BPF 780 (p =3) 3120 (p =3) 475 (p =3) 1140 (p =3) 4(*), 1(+) 

FIR 421 (p =3) 1934 (p =3) 155 (p =3) 565 (p =3) 3(*), 1(+) 

MESA MATRIX 

MULTIPLICATION 
50115 (p =3) 

80392 (p 

=3) 
26675 (p =3) 

51375 (p 

=3) 
6(*), 1(+) 
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proposed BFOA-DSE is p= 3 for most of the benchmarks. Had the design space been even 

larger (or a very large size application), the advantage of having a large size ‘p’ would had 

been visible.  During the experiment, the results have been evaluated for three different 

bacterium size, i.e for p = 3, 5 and 7.  

The results are shown in the Table 8.1. As evident from the results for most benchmarks, the 

best balance between achieving the fast exploration speed and having an optimal solution is 

obtained at the bacterium size ‘p’ = 3. The primary selection criteria was low cost (or high 

quality) solution. However, if the results found for different bacterium size ‘p’ were found to 

be same, then the bacterium size for which the fastest convergence (and exploration) was 

obtained was selected. However, there are some cases, for the larger size benchmarks like 

JPEG IDCT2, better solutions are obtained at the bacterium size p = 5. This behavior for the 

particular benchmark is due to the ability of attaining an optimal solution with more bacteria 

initialized (p=5) over the design space. 

As evident from the Table 8.1, it can be stated that a faster convergence is achieved for 

smaller bacterium size as compared to the larger ones. Also, as the bacterium size increases 

the exploration time also increases, since the number of bacteria per iteration increases, 

thereby, increasing the computation complexity per iteration. The underlined bacterium size 

‘p’ indicates the selected size which yields the most efficient results in terms of quality 

(followed by small exploration time if the quality remains same). Therefore, after analyzing 

the results it can be observed that for the tested benchmarks, the quality of results obtained 

after varying the bacterium size indicates that in most of the cases faster convergence and 

exploration of an optimal solution is achieved at smaller bacterium size. 

8.1.1.2 Step size, (C(i)) 

During experimentation, the impact in the variation of step size on the performance of 

proposed DSE has been investigated. The first variation is a step size C(i) = C(i) + 1 while 

the other is a step size C(i) = C(i) + 2. The effect of these variations is evaluated on the basis 

of convergence time exploration time and resource combination found. Table 8.2 shows the 

results obtained after varying the step size for the tested benchmarks. the variations in C(i) do 

not have any impact on the quality of result found(which is evident from the fact that 

resultant resource configuration found is same for both C(i) = C(i) +1 and C(i) = C(i) 

+2)).However, the convergence time and exploration time for step size C(i) = C(i) +1 is 

higher compared to the step size of C(i)= C(i) +2. This behavior is due to the fact when the 

step size is small (i.e. varied with a change of one unit), the exploration process consumes 
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more time to achieve an optimal solution as the chances of occurrence of repetitive 

configurations is higher (when C(i) = C(i) +1 is substituted in equation (3.9) during 

chemotaxis). On the contrary, with a bigger step size (i.e. C(i) = C(i) +2), the exploration 

ability of the algorithm is better resulting in new (changed) configurations during chemotaxis. 

The difference in step size only impacts the time to converge and not the quality (i.e. final 

configuration found). However, there is some exception to this observation as obtained for 

IDCT benchmark, where the convergence time for step size C(i) = C(i) +1 is found lesser 

than the convergence time of step size C(i) = C(i) +2. This is a special case, where at C(i) = 

C(i) + 1), the most optimal solution (1(+), 3(*)) was explored at a very early stage (at 

chemotactic step j= 2) from a bacterium position (1(+),1(*)). While at C(i) = C(i) +2, due to 

higher step jump, the chemotaxis function(eqn. (11)) from a bacterium position (1(+),1(*)) 

skips the optimal solution lying in between to reach a new bacterium  position (2(+),3(*)). 

Therefore, the optimal solution (1(+), 3(*)) was attained after few more evaluations at j =5. 

This is an example where the exploitation ability of the algorithm (using small step size) has 

better productivity than the exploration ability (using bigger step size). Figure 8.1 and 8.2 

shows the graphical representation of the variation of convergence time and exploration with 

the change in step size.  

8.1.2 Comparison of BFOA-DSE with Previous DSE Approaches  

This subsection describes the comparison of proposed BFOA-DSE with various previous 

approaches [20] and [21]. Based on these parameter selections, the detailed results for power 
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and execution time for the proposed approach are reported in Table 8.3. As evident from 

Table 8.3, the proposed approach has been comprehensively able to minimize and satisfy the 

specified constraints. For example, in case of IDCT, the explored solution, (3(*), 1(+)), 

consumes a power of 0.28mW and execution time of 32ms which substantially minimizes 

Table 8.3 Results of Estimated Power and Execution Time using Proposed Approach for DFGs 

Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of population size,p 

=3 or 5  Nc = 120, Nre = 5, Ned = 4 

Benchmark [45, 86, 98, 99, 

100] 

Resources 

found 

Execution Time Power 

Constraint 
Proposed  

solution 
Constraint 

Proposed 

solution 

JPEG 

 DOWNSAMPLE 
3(*), 1(+) 21ms 10ms 0.45mW 0.28mW 

JPEG IDCT2 7(*), 1(+) 207ms 43ms 1.655mW 0.57mW 

IDCT 3(*), 1(+) 86ms 32ms 0.45mW 0.28mW 

FEEDBACK  

POINTS 
6(*), 1(+) 108ms 21ms 0.9mW 0.50mW 

ARF 3(*), 1(+) 110ms 54ms 0.4mW 0.27mW 

BPF 4(*), 1(+) 89ms 11ms 0.3mW 0.35mW 

FIR 3(*), 1(+) 48ms 31ms 0.59mW 0.27mW 

MESA MATRIX 

MULTIPLICATION 
6(*), 1(+) 240ms 65ms 1.125mW 0.49mW 

 

 

 

Table 8.4 Comparison Of Proposed Approach With [20] in Terms of Exploration Time and 

Cost 

 

 

Benchmark [45, 86, 

98, 99, 100] 

Resource Configuration Exploration Time QoR (cost) 

BFOA [20] BFOA [20] BFOA [20] 

JPEG 

DOWNSAMPLE 
3(*), 1(+) 1(*),1(+) 0.624 sec 13.65sec 0.31 0.51 

JPEG IDCT2 7(*), 1(+) 4(*), 3(+) 126.5 sec 110.6sec 0.22 0.30 

IDCT 3(*), 1(+) 2(*), 2(+) 4.31sec 12.6sec 0.21 0.37 

FEEDBACK 

POINTS 
6(*), 1(+) 3(*), 1(+) 12.71sec 25.6sec 0.20 0.29 

ARF 3(*), 1(+) 4(*), 1(+) 2.5sec 14.3sec 0.32 0.35 

BPF 4(*), 1(+) 2(*), 1(+) 1.14sec 10.54sec 0.27 0.43 

FIR 3(*), 1(+) 4(*), 4(+) 0.565sec 8.2sec 0.30 0.38 

MESA MATRIX 

MULTIPLICATION 
6(*), 1(+) 3(*), 2(+) 51.3sec 11.65sec 0.18 0.51 

Average reduction in Run Time 

w.r.t [20] =4 % 

Average reduction in cost 

w.r.t [20] = 35.98% 
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power and execution time as well as satisfies the user constraints specified. Similar results 

were obtained for other benchmarks. During experimentation, for proposed BFOA driven 

DSE, the following settings were maintained based on inferences drawn from the results 

obtained in section 8.1.1.1 and 8.1.1.2 : φ1= φ2=0.5, p= 3 or 5, Nc = 120, Nre = 5, Ned = 4. 

8.1.2.1  Comparison with [20] 

The proposed approach when compared with [20] gave substantially better results. As evident 

from theTable 8.4, the exploration time of proposed approach is much lesser than the [20] 

approach. Also, there is a substantial improvement in the quality of result obtained in case of 

Table 8.5 Comparison Of Proposed Approach With [21] in Terms of Exploration Time 

 and Cost 

 

 

Benchmark 

Resource Configuration Exploration Time QoR (cost) 

BFOA [21] BFOA [21] BFOA [21] 

JPEG 

DOWNSAMPLE 
3(*), 1(+) 2(*), 2(+) 0.624 sec 27.8 sec 0.31 0.54 

JPEG IDCT2 7(*), 1(+) 9(*), 2(+) 126.5 sec 14.2 min 0.22 0.26 

IDCT 3(*), 1(+) 1(*), 8(+) 4.31sec 5.08min 0.21 0.69 

FEEDBACK 

POINTS 
6(*), 1(+) 9(*), 5(+) 12.71sec 1.26min 0.20 0.32 

ARF 3(*), 1(+) 1(*), 8(+) 2.5sec 3.50min 0.32 0.85 

BPF 4(*), 1(+) 1(*), 3(+) 1.14sec 2.08min 0.27 0.64 

FIR 3(*), 1(+) 8(*), 1(+) 0.565sec 43.7sec 0.30 0.36 

MESA MATRIX 

MULTIPLICATION 
6(*), 1(+) 9(*), 1(+) 51.3sec 6.57 min 0.18 0.21 

Average reduction in Run Time 

w.r.t [21] =90 % 

Average reduction in cost 

w.r.t [21]= 48 % 
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Figure 8.3 Comparison of QoR between BFOA-DSE and [20] Approach 
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the proposed approach. However, there are some cases where a higher exploration time is 

encountered. For JPEG IDCT2 the proposed approach has higher exploration time compared 

to [20]. This behavior is due to the large size of the benchmark. Though the exploration time 

for JPEGIDCT2 is slightly higher than the existing approach [20], nevertheless, the QoR cost 

of the obtained solution (7(*), 1(+)) obtained through the proposed approach is significantly 

better than [20]. This trend of better QoR has been observed for all the tested benchmarks.  

Figure 8.3 shows the comparison of QoR (cost units) between the proposed approach 

(BFOA-DSE) and the [20] approach. After experimentation, it has been found that there is an 

average improvement in QoR of 35% and in exploration time of 4% as shown in Table 8.4. 

8.1.2.2  Comparison with [21]  

Table 8.5 shows the comparison of [21] with the proposed BFOA driven DSE approach. 

From the Table 8.5 it is evident that the exploration time of [21] is multiple times higher than 

the proposed approach. Also, proposed approach achieves a better QoR factor in comparison 

to [21] for most of the benchmarks. The average improvement in QoR is more than 48% and 

an average reduction of 90% is attained in exploration time as shown in Table 8.5. 

Figure 8.4 shows the graphical representation of the comparison of QoR (cost units) between 

proposed methodologies and [21]. 

8.1.2.3  Comparison Based on Performance Metrics. 

Table 8.6 presents the analysis of the proposed and existing approaches ([20] and [21] driven 

DSE) on the performance metrics. To evaluate the effectiveness of multi objective 
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optimization algorithms, the metrics viz. GD, MFE, S, D and Wm are required to 

demonstrate how close the obtained solutions have converged to the true Pareto-optimal front 

[88]. It can be stated that a good optimization algorithm generates solutions close to the true 

Table 8.6 Comparison Of Proposed DSE Approach With [20] and [21] in Terms of Quality 

Metrics and QoR 

Approach GD MFE Spacing (S) Spread (Δ) 
Weighted 

Metric (Wm) 

JPEG DOWNSAMPLE 

Proposed 0.000 0.599 0.052 0.937 0.408 

[20] 0.571 1.050 0.000 0.742 0.656 

[21] 0.198 0.636 0.000 0.636 0.417 

JPEG IDCT2 

Proposed 0.000 0.984 0.133 0.869 0.430 

[20] 0.031 0.954 0.000 0.710 0.370 

[21] 0.004 1.007 0.000 0.830 0.417 

IDCT 

Proposed 0.000 0.627 0.027 0.830 0.415 

[20] 0.097 0.452 0.241 0.869 0.483 

[21] 0.689 1.743 0.000 0.866 0.778 

FEEDBACK POINTS 

Proposed 0.000 0.855 0.110 0.785 0.392 

[20] 0.087 0.718 0.000 0.795 0.441 

[21] 0.025 0.951 0.041 0.894 0.460 

ARF 

Proposed 0.000 0.604 0.008 0.585 0.292 

[20] 0.021 0.670 0.000 0.916 0.468 

[21] 0.510 1.574 0.122 0.918 0.714 

BPF 

Proposed 0.000 0.47 0.107 0.670 0.335 

[20] 0.199 0.722 0.000 0.996 0.598 

[21] 0.599 1.448 0.007 0.867 0.733 

FIR 

Proposed 0.000 0.707 0.072 0.586 0.293 

[20] 0.044 0.986 0.000 0.618 0.331 

[21] 0.057 0.890 0.000 0.903 0.480 

MESA MATRIX MULTIPLICATION 

Proposed 0.000 0.887 0.058 0.774 0.387 

[20] 0.033 0.959 0.091 0.941 0.487 

[21] 0.002 0.931 0.045 0.903 0.452 
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Pareto-optimal front as well as solutions that span the entire Pareto-optimal region uniformly. 

The GD metric is used to measure the convergence of solutions towards the Pareto-optimal 

front. Further, metrics which quantify the diversity among obtained non-dominated solutions 

are spacing and spreading. Spacing is the measure of relative distance between consecutive 

nondominated solutions. On the other hand, spread accounts to the diversity of the non-

dominated solutions with respect to the extremities of the Pareto-solution set. An algorithm, 

finding smaller values of both is able to find better diverse set of nondominated solutions. In 

addition, Wm provides a combined qualitative measure of both closeness and diversity of the 

solutions. An algorithm having an overall small value of Wm is good in both aspects. As 

seen, the GD is zero for almost all benchmarks revealing that the proposed approach lies on 

the true Pareto front compared to [20] and [21]. In some cases, spacing is either zero, or very 

lower indicating that there is a uniform distribution of Pareto point on the curve. Also, the 

weighted metrics is lower for the proposed approach compared to [20] and [21] indicating 

better results obtained for all benchmarks. 
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8.2 Experimental Results: Automated Design Space Exploration of Multi-

Cycle Transient Fault Detectable Datapath based on Multi-Objective 

User Constraints for Application Specific Computing 

This section describes the experimental results of the proposed approach explained in Chapter 

4 and the improvements obtained compared to recent approach [28, 30]. The proposed 

MCFD-DSE as well as [28, 30] has been implemented in java and run on Intel Core-i5-

3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and processor 

frequency of 2.5 GHz. An average of 10 runs was reported for the proposed DSE with equal 

weightage to both user objectives of power and delay (Ø1= Ø2= ½) during experimentation. 

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1, 

45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1, 

98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle 

problems of any size. The library is given in chapter 3 Table 3.1. This section discusses the 

following:   

 Results of proposed approach for multi-cycle fault values in terms of delay and power 

user constraints. 

 Comparative results of the proposed methodology and existing fault detectable 

approach [28, 30] in terms of resource solution found and cost of solutions. The user 

specified weightage of both metrics viz. power and execution time are both kept at ½ 

during exploration to provided equal preference.  

8.2.1 Results of Proposed Approach for kc = 10  

Table 8.7 illustrates the results obtained for our proposed DSE of fault detectable datapath 

based on 10-cycle faults i.e. kc = 10. It can be seen from results, the proposed approach 

comprehensively meets the user constraints of delay and power (and minimizes cost) for all 

benchmarks. This section provides the capability of the proposed approach to reach high 

quality solutions for transient fault of high strengths (kc = 10) that satisfy the conflicting 

multi-objective user constraints as well as minimizes the hybrid cost function. There have 

been no previous works which report the results of exploration of power-execution time 

constraint driven fault detectable datapath system for single and multi-cycle fault strength. 

Further, the solutions obtained for the tested benchmarks are real optimal solutions which 

were verified by comparing with the golden solutions found by exhaustive analysis.  
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8.2.2 Comparison of Proposed Approach 

As seen from Table 8.8, the proposed approach when compared with existing approaches 

gave better results. The existing approaches provide fault security however with no provision 

of guaranteeing that the solution abides the user budget of power and delay. This is due to the 

fact that [28], [30] are not able to generate a fault secured schedule for any number of 

resource instance (say single instance of each resource type). They at least need two instances 

of a resource type due to the compulsion of distinct hardware allocation. So, for a user which 

requires a transient fault secured datapath at the lowest hardware area (say single instance), 

approach [28] and [30] both will not be able to design one. Table 8.8 indicates the cost 

improvement of the proposed approach over [28] and [30] for various benchmarks for kc = 1 

(as multi cycle transient faults are not handled by [28] & [30]). As evident, the cost of final 

solution through proposed approach is significantly lower than [28] & [30]. 

Table 8.8 Comparison of Proposed Approach with Approach [28] and [30] for kc=1 

Benchmark 
[45, 86, 98, 

99, 100] 

Resource Set 
(proposed) 

Resource 
Set 
[30] 

Resource 
Set [28] 

Cost 
(proposed) 

Cost 
[30] 

Cost 
[28] 

IIR 1(+), 2(*) 1(+), 3(*) 2(+), 4(*) -0.12 -0.092 -0.010 

BPF 1(+),2(*) 2(+), 2(*) 4(+), 4(*) -0.137 -0.084 0.0467 

MPEG MV 1(+), 4(*) 3(+), 7(*) 6(+), 14(*) -0.238 -0.168 0.056 

ARF 1(+), 2(*) 4(+), 2(*) 4(+), 4(*) -0.181 -0.061 -0.094 

DCT 4(+), 2(*) 4(+), 2(*) 7(+), 4(*) -0.14 -0.122 -0.045 

FIR 3(+), 2(*) 4(+), 4(*) 6(+), 6(*) -0.116 -0.115 -0.051 

WDF 2(+), 2(*) 2(+), 2(*) 4(+), 3(*) -0.193 -0.161 -0.141 

 

Table 8.7 Results of Proposed Fault Secure DSE approach for kc = 10 

Benchmark 

[45, 86, 98, 

99, 100] 

 

Resource 

set 

Tcons 

(us) 

TE
DMR 

(us) 

Pcons 

(mW) 

PT
DMR 

(mW) 

IIR 1(+), 2(*) 70 57.1 0.3 0.238 

BPF 1(+),2(*) 175 138.7 0.3 0.238 

MPEG MV 1(+), 4(*) 170 82.67 0.7 0.405 

ARF 1(+), 2(*) 220 178.7 0.45 0.23 

DCT 4(+), 2(*) 210 143.8 0.5 0.45 

FIR 3(+), 2(*) 100 78.6 0.6 0.46 

WDF 2(+), 2(*) 172 126.1 0.4 0.3 
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8.3 Experimental Results:  Multi-Cycle Single Event Transient Fault 

Security Aware MO-DSE for Single loop CDFGs in HLS 

This section describes the experimental results of the proposed approach explained in Chapter 

5 and the improvements obtained compared to recent approach [30]. The proposed approach 

has been implemented in java language on Intel core i5-2450M processor with 3MB L3 cache 

memory and 4GB DDR3 primary memory. The processor frequency is 2.5 GHz. Various 

HLS benchmarks were chosen for experimentation such as FIR [45], FFT [86, 100], 

DIFFERENTIAL EQUATION [45, 96, 100], MPEG MV[98, 99] , ARF [45, 86], WDF[45, 

86]. The proposed approach can handle problems of any size. This section discusses the 

results in four phases:   

 Variation of exploration time with change in swarm size 

 Variation of exploration time with inertia weight 

 Results of the proposed approach in terms of area occupied and execution delay of the 

final solution along with its associated final cost 

 Comparison of proposed approach with [30] in terms of solution explored and final 

cost. 

8.3.1 Effect of swarm size (p) Variation on Exploration Time 

A larger swarm size covers larger design space during one iteration step (with a chance to get 

a better result) but is simultaneously subjected to increase in exploration time because of 

larger number of particles as well as greater computational complexity per iteration. On the 

contrary, a smaller swarm size needs more iteration to explore a better result for larger 

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on 

exploration time are reported. (Note:-based on this analysis, the selected swarm sizes for 

benchmarks used as our base line parameter are underlined). 

Table 8.9, presents the increase in exploration time with the increase in swarm size at 

the cost of no improvement in the final explored solution. In other words, final solution 

explored is optimal for all different swarm sizes. However, exploration time increases due to 

increase in computation complexity per iteration. As evident from Table 8.9, the best tradeoff 

between fast exploration and searching optimal solution can be obtained by setting p =3.  For 

example, in case of MPEG MV, p = 3 gives a minimum exploration time of 16482 ms in 

comparison to p =5 and 7. 
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8.3.2 Results of Variation of Exploration Time with Inertia Weight 

Inertia weight controls to the exploration drift process of the particle by weighing the 

involvement of the previous exploration drift. During the experiment, the following three 

variations of ‘ɷ’ have been analysed and its impact on the performance of exploration 

process has been reported: 

 Linearly decreasing ‘ɷ’ in every iteration between [0.9- 0.1] throughout the 

exploration process.  

 b) A constant value of ɷ = 1 throughout the exploration process.  

 c) A constant value of ɷ = 0.5 throughout the exploration process. 

Table 8.9 Variation of Exploration Time with Swarm Size (p) in ms 

Benchmark [45, 86, 

98, 99, 100] p =3 p =5 p =7 

FIR 1216 1621 1853 

FFT 3999 6370 7496 

Differential 1819 1924 2415 

MPEG MV 16482 24624 31604 

ARF 17666 29993 43515 

WDF 10911 17299 24781 

 Table 8.10 Exploration Time vs. Inertia Weight (at p =3) 

Benchmark [45, 86, 

98, 99, 100] 

Linearly 

decreasing 

(ms) 

ω=0.5 (ms) ω =1.0 (ms) 

FIR 1216 1259 1514 

FFT 3999 4810 4827 

Differential 1819 1776 1872 

MPEG MV 16482 17194 18484 

ARF 17666 19670 18881 

WDF 10911 11736 11624 
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As evident from Table 8.9, for all benchmarks the exploration time of proposed fault 

detectable DSE process is generally better with linearly decreasing value of ‘ɷ’. For instance 

in Table 8.9, exploration time for FFT in case of linearly decreasing inertia weight (from 0.9 

to 0.1) is 3999 ms and is much less as compared to exploration time of 4810mS and 4827 ms 

attained in constant inertia weight (ɷ =0.5 and ɷ =1). Similar trend is observed for other 

benchmarks. Further, in case of ARF, the exploration time for finding the optimal solution is 

17666 ms when ‘ɷ’ is linearly decreased between [0.9 – 0.1] compared to 19670ms and 

18881ms when ‘ɷ’ = 0.5 and ‘ɷ’ = 1 respectively as shown in Table 8.10.  

8.3.3 Results of the proposed approach 

As evident from Table 8.11 and 8.12 the solution explored by the proposed approach 

comprehensively meets the user defined constraints for power and execution time as well as 

Table 8.11 Experimental Results of the Proposed Approach for kc = 1 

Benchmark 

[45, 86, 98, 

99, 100] 

Final solution Acons AT
DMR

 
Tcons 

(us) 

TE
DMR

 

(us) 
Cost 

FIR 2(+),3(*),1(<),UF=2 23058 16506 78.54 46.24 -0.208 

FFT 2(+),2(-),4(*),1(<),UF=1 53739 36638 273.14 184.4 -0.218 

Differential 1(+),2(-),5(*),1(<),UF=1 36379 24976 308.7 137.6 -0.262 

MPEG MV 1(+), 4(*) 24000 13776 170 82.67 -0.240 

ARF 1(+), 2(*) 15500 8092 220 178.7 -0.179 

WDF 2(+), 2(*) 14000 10500 172 125.3 -0.196 

 Table 8.12 Experimental Results of the Proposed Approach for kc = 4 

Benchmark 

[45, 86, 98, 

99, 100] 

Final solution Acons AT
DMR

 
Tcons 

(us) 

TE
DMR

 

(us) 
Cost 

FIR 1(+),4(*),1(<),UF=2 23058 16940 78.54 49.6 -0.189 

FFT 3(+),2(-),3(*),1(<),UF=2 53739 36638 278.78 186.08 -0.222 

Differential 1(+),2(-),6(*),1(<),UF=1 36379 27440 308.7 139.84 -0.238 

MPEG MV 1(+), 4(*) 24000 13776 170 82.67 -0.24 

ARF 1(+), 2(*) 15500 8092 220 178.7 -0.179 

WDF 2(+), 2(*) 14000 10500 172 125.3 -0.196 
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minimizes the hybrid cost. The proposed approach was evaluated both for single cycle faults 

and multi cycle faults. (i.e. kc = 1and kc = 4). Further, the solutions obtained for the tested 

benchmarks are real optimal solutions which were verified by comparing with the golden 

solutions found by exhaustive analysis. For exploration, a swarm size of 3 was used also the 

acceleration coefficients were initialized to 2.0.  

8.3.4 Comparison of proposed approach 

The proposed approach has been compared with fault secured approach [28] in terms of final 

solution for faults secured DMR and its associated cost. Table 8.13 indicates the 

improvement in final solution cost of the proposed approach obtained over [28] for various 

benchmarks at kc = 1 (Note: kc = 1 is only considered during comparison as multi cycle 

transient faults are not handled by [28]). As evident, the cost of final solution found through 

proposed approach is significantly lower than [28]. 

 

 

 

 

 

Table 8.13 Variation of Proposed Approach with [28] 

Note: For proposed approach Φ1 = Φ 2 = 0.5 in the fitness function 

 

Benchmark 

[45, 86, 98, 

99, 100] 

Final solution 

(proposed) 

Final solution 

[28] 

Cost 

proposed 

Final 

Cost  [28] 

FIR 
2(+),3(*), 

1(<),UF=2 

2(+), 4(*), 

1(<),UF=8 
-0.208 -0.121 

FFT 
2(+),2(-), 

4(*),1(<), UF=1 

4(+), 2(-),4(*), 

1(<),UF=3 
-0.218 -0.15 

Differential 
1(+),2(-), 

5(*),1(<), UF=1 

2(+), 2(-),4(*), 

1(<),UF=4 
-0.262 -0.123 

MPEG MV 1(+), 4(*) 3(+), 7(*) -0.24 -0.168 

ARF 1(+), 2(*) 4(+), 2(*) -0.179 -0.061 

WDF 2(+), 2(*) 2(+), 2(*) -0.196 -0.161 
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8.4 Experimental Results: Bacterial Foraging Driven Exploration of Multi 

Cycle Fault Tolerant Datapath based on Power-Performance Tradeoff 

in High Level Synthesis 

 

This section describes the experimental results of the proposed approach explained in Chapter 

7 and the improvements obtained compared to recent approaches [28, 32]. The proposed 

MCFT BFOA-DSE and the approaches compared with [28, 32 ] all have been implemented 

in java and run on Intel Core-i5-3210M CPU with 3 MB L3 cache memory and 4 GB DDR3 

primary memory during experimentation. The processor has frequency of 2.5 GHz. 

Experimentation was done for various HLS benchmarks such as IIR Butterworth filter [86], 

BPF[98,86], MPEG MV [45], ARF [45, 100], DCT [99], FIR [45, 100], WDF [86, 45]. The 

proposed approach can handle problem of any size. The library is given in chapter 3 Table 

3.1. 

From the results it has been observed that, the proposed approach has always yielded 

optimal results for all tested applications. Also, the results generated are fault tolerant in 

nature. This chapter covers the following details:   

 Results and comparison of proposed algorithm and existing approach [28, 32], 

generated by varying the kc fault value. 

 Comparison of MCFT-BFOA-DSE with previous Fault tolerant approaches in terms 

of Quality of Results and resource set utilized.  

The QoR is calculated as:   

 
max max

1

2

DMR DMR

T E

DMR DMR

P T
QoR

P T

 
  

 
                                       (8.2) 

8.4.1 Pre-tuning of Parameters 

During experimentation, following settings were made for fault tolerant approach of design 

exploration: φ1= φ2=0.5, p = 3, Nc = 120, Ned = 5. 

8.4.2 Comparison of Proposed Approach with [32]  

This section describes the results obtained by comparing the proposed approach with existing 

approach [32].  

 



98 

 

8.4.2.1  Analysis of Results by Varying kc Value 

The proposed approach when compared with [32] for different kc values, gave substantially 

better results in terms of cost of solutions and the resource solutions obtained. Table 8.14, 

illustrates the results obtained by making the design system tolerable to 1-cycle faults i.e., for 

kc = 1. As evident from Table 8.15, the applications when tested through the proposed 

approach require less hardware usage than the existing approach [32]. In [32], the hardware 

usage is almost (sometimes more than) tripled for most of the applications. For instance, in 

BPF application, the proposed approach generated 1(+), 2(*) as the final solution, which has 

Table 8.14 Results of Proposed Fault Tolerant DSE Approach  for kc = 1 
 

Benchmark 

[45, 86, 98, 99, 

100] 

Tcons 

(us) 

TE
DMR

 

(us) 

Pcons 

(uW) 

PT
DMR

 

(uW) 
Cost 

IIR 66.00 55.00 308.90 205.96 -0.151 

BPF 173.00 149.70 301.19 205.59 -0.155 

MPEG_MV 165.00 82.90 727.78 352.25 -0.276 

ARF 220.00 179.50 450.97 205.93 -0.217 

DCT 207.00 154.54 450.37 384.65 -0.132 

FIR 108.00 89.60 596.19 325.20 -0.180 

WDF 172.00 137.60 330.00 265.19 -0.145 

 

Table 8.15 Comparison of Proposed Approach with [32] in Terms of Resource 

(Hardware) Utilized for Fault Tolerant Datapath for (kc = 1) 

Benchmark [45, 

86, 98, 99, 100] 

Resource 

found [32] 

kc = 1 

Resource 

utilized 

kc = 1 

% reduction in 

area 

 

IIR 3(+), 5(*) 1(+), 2(*) 62.5 

BPF 6(+), 5(*) 1(+),2(*) 72.7 

MPEG_MV 9(+), 14(*) 1(+), 4(*) 78.2 

ARF 5(+), 6(*) 1(+), 2(*) 72.7 

DCT 12(+),6(*) 4(+), 2(*) 66.6 

FIR 9(+), 8(*) 3(+), 2(*) 70.5 

WDF 6(+), 4(*) 2(+), 2(*) 60.0 
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a cost of -0.155. While, [32] yielded a solution set of 6(+), 5(*) which is much higher (more 

than triple) compared to proposed. This shows that since the hardware usage is much greater 

in [32], therefore, the solutions obtained do not satisfy the power budget or the time budget, 

thereby, generating higher cost of the solution (design). On the other hand, the final solutions 

of the proposed approach involving DMR are fault tolerant and satisfy the user specified 

power and time constraints.  

Table 8.16 Results of Proposed Fault Tolerant DSE Approach for kc = 2 

 

Benchmark 

[45, 86, 98, 99, 

100] 

Tcons 

(us) 

TE
DMR

 

(us) 

Pcons 

(uW) 

PT
DMR

 

(uW) 
Cost 

IIR 66.00 66.00 308.94 205.65 -0.101 

BPF 179.00 149.70 301.11 205.59 -0.168 

MPEG_MV 165.00 93.60 727.78 351.82 -0.258 

ARF 221.00 179.70 450.95 205.93 -0.218 

DCT 213.00 165.50 450.26 384.52 -0.124 

FIR 108.00 89.80 596.19 325.20 -0.180 

WDF 172.00 137.60 330.00 265.19 -0.145 

 

Table 8.17 Results of Proposed Fault Tolerant DSE Approach For kc = 3 

 

Benchmark 

[45, 86, 98, 99, 

100] 

Tcons 

(us) 

TE
DMR

 

(us) 

Pcons 

(uW) 

PT
DMR

 

(uW) 
Cost 

IIR 66.00 66.00 350.00 205.65 -0.148 

BPF 173.00 150.00 301.18 205.58 -0.152 

MPEG_MV 165.00 93.60 727.78 351.82 -0.258 

ARF 221.00 180.00 450.95 205.92 -0.217 

DCT 213.00 165.80 450.26 384.52 -0.124 

FIR 108.00 90.10 596.19 325.20 -0.177 

WDF 172.00 137.60 330.00 265.19 -0.145 
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 Similar results are observed for the approaches when tested for multi-cycle faults in 

the system. Table 8.16 and Table 8.17, shows the results of the proposed for 2-cycle (kc = 2) 

and 3-cycle faults (kc = 3). As seen from Table 8.18, the proposed approach generates more 

efficient results than the [32] approach against faults with kc = 2 and 3.  The solutions 

generated through proposed approach have much lower cost, then the [32] approach 

employing TMR scheme.  

Table 8.18 Comparison of Proposed Approach With [32] in Terms of Resource (Hardware) 

Utilized for Fault Tolerant Datapath for (kc = 2 and 3) 

 

Benchmark 

[45, 86, 98, 

99, 100] 

Resource 

found [32] 

kc = 2 

Resource 

utilized 

kc = 2 

% 

reductio

n in area 

 

Resource 

found [32] 

kc = 3 

Resource 

utilized 

kc = 3 

% 

reduction 

in area 

 

IIR 3(+), 5(*) 1(+), 2(*) 62.5 2(+), 5(*) 1(+), 2(*) 57.1 

BPF 6(+), 4(*) 1(+),2(*) 70.0 6(+), 4(*) 1(+),2(*) 70.0 

MPEG_MV 9(+),14(*) 1(+), 4(*) 78.2 8(+), 14(*) 1(+), 4(*) 77.2 

ARF 5(+), 6(*) 1(+), 2(*) 72.7 6(+), 6(*) 1(+), 2(*) 75.0 

DCT 12(+),6(*) 4(+), 2(*) 66.6 12(+),6(*) 4(+), 2(*) 66.6 

FIR 8(+), 8(*) 3(+), 2(*) 68.7 8(+), 8(*) 3(+), 2(*) 68.7 

WDF 6(+), 5(*) 2(+), 2(*) 63.6 6(+), 5(*) 2(+), 2(*) 63.6 

 

Table 8.19 Results of Proposed Approach (for kc = 1) in Terms of Optimality 

Benchmarks 

[45, 86, 98, 99, 

100] 

GD MFE 
Spacing 

(S) 

Spread 

(Δ) 

Weighted 

Metric (Wm) 

IIR 0.00 0.32 0.00 0.60 0.30 

BPF 0.00 0.26 0.11 0.84 0.42 

MPEG_MV 0.00 0.54 0.18 0.89 0.45 

ARF 0.00 0.65 0.07 0.78 0.39 

DCT 0.00 0.14 0.00 0.66 0.33 

FIR 0.00 0.33 0.01 0.63 0.31 

WDF 0.00 0.46 0.00 0.74 0.37 
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8.4.2.2 Results of Proposed Approach in Terms of Optimality 

Table 8.19 and Table 8.20 show the analysis of proposed approach in terms of quality metrics 

such as generational distance (GD), maximum pareto-optimal front error (MFE), spacing (S), 

spread (Δ) and weighted sum (W). Table 8.19 illustrates the results of proposed approach in 

terms of optimality for kc =  1, while Table 8.20 is for kc = 3.  

Table 8.20 Results of Proposed Approach (for kc = 3) in Terms of 

Optimality 

Benchmarks 

[45, 86, 98, 99, 

100] 

GD MFE 
Spacing 

(S) 

Spread 

(Δ) 

Weighted 

Metric (Wm) 

IIR 0.00 0.17 0.00 0.66 0.33 

BPF 0.00 0.27 0.11 0.85 0.42 

MPEG_MV 0.00 0.98 0.03 0.82 0.41 

ARF 0.00 0.68 0.00 071 0.35 

DCT 0.00 0.34 0.10 0.81 0.40 

FIR 0.00 0.42 0.00 0.70 0.35 

WDF 0.00 0.47 0.04 0.73 0.36 

 

 
 Table 8.21 Comparison of Proposed Approach With [32] Fault Tolerant Approach 

 

Benchmark 

[45, 86, 98, 

99, 100] 

kc = 1 kc = 2 

QoR 

proposed 

QoR 

[32] 

% 

Improve-

ment 

QoR 

proposed 

QoR 

[32] 

% 

Improve-

ment 

IIR 0.46 0.76 39.4 0.51 0.86 40.5 

BPF 0.55 1.01 45.5 0.55 1.00 44.9 

MPEG_MV 0.26 0.66 60.6 0.28 0.69 58.8 

ARF 0.38 0.65 41.5 0.38 0.68 42.9 

DCT 0.51 0.91 43.9 0.53 0.95 44.1 

FIR 0.40 0.65 38.4 0.40 0.68 40.5 

WDF 0.58 0.91 36.2 0.58 0.98 40.5 

For kc = 1 average improvement in QoR w.r.t [32]  = 43.4 % 

For kc = 2 average improvement in QoR w.r.t [32]  = 44.3 % 
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As seen from Table 8.19, the GD is zero for all the benchmarks, indicating that the 

solutions generated through the proposed approach lie on true pareto front. A spacing of zero 

(or a little higher than zero) for an application states that, the proposed approach is able to 

have uniform distribution of Pareto points on the curve. Similar pattern of results is evident 

from Table 8.20 where optimality of proposed approach for kc = 3 is evaluated. It can also be 

seen that, the results obtained by the proposed approach are real optimal solution as 

discovered by verifying with the golden solution found through exhaustive analysis. 

8.4.3 Comparison of Proposed Approach in Terms of Quality of Results 

8.4.3.1  Comparison with [32] 

Table 8.21 and 8.22 shows the comparison of [32] with the proposed MCFT-BFOA 

driven DSE approach. In approach [32] there was no concept of exploration of a fault tolerant 

datapath based on power-performance constraint presented in the paper, unlike the proposed 

approach. Further, the authors did not provide any concept of multi-cycle faults. Moreover, 

the approach presented a TMR (triple modular redundant) system for k-cycle fault tolerance 

for single event transient (SET). The outputs of the units were voted upon by the help of 

voter, to mask the errors.  Additionally, comparators were used to detect the difference in the 

outputs of the units. However, the proposed approach uses Double Modular Redundancy 

(DMR) scheme to explore a fault tolerant design without using voters to extract the correct 

Table 8.22 Comparison of Proposed Approach With [32] Fault Tolerant Approach 

Benchmark [45, 

86, 98, 99, 100] 

kc = 3 

QoR 

proposed 

QoR 

[32] 

% 

Improve-

ment 

IIR 0.51 0.80 36.2 

BPF 0.55 1.05 47.6 

MPEG_MV 0.28 0.67 58.2 

ARF 0.38 0.73 47.9 

DCT 0.53 0.99 46.4 

FIR 0.40 0.70 42.8 

WDF 0.58 1.03 43.6 

For kc = 3 average improvement in QoR w.r.t [32]  = 45.8 % 
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output. Therefore, [32] involved higher degree of redundancy in their system which 

sometimes involved a TMR system almost tripling the resource usage.  

Therefore, from Table 8.21 and 8.22 it is evident that proposed approach achieves a 

better QoR in comparison to [32] for all the benchmarks. The average improvement in QoR is 

more than 43%. Also, an average reduction of 70% is attained in the hardware usage of 

proposed approach as observed in Table 8.21 and 8.22. 

8.4.3.2  Comparison with [28] 

Table 8.23 shows the comparison of QoR (cost units) between the proposed approach 

(MCFT-BFOA-DSE) and fault secured approach [28]. It should be noted that [28] is just a 

fault secured approach and does not have ability to mask the fault. Therefore it has ability to 

only detect the fault but not correct it. Moreover, [28], does not have ability to explore a 

datapath circuit based on conflicting user constraint. After experimentation, it has been found 

that there is an average improvement in QoR of 7% and a reduction of 29.1 % in hardware 

usage through proposed approach. For example, in case of DCT and WDF, there is no 

reduction in hardware area observed compared to [28], however, the proposed approach with 

the same resource achieves fault tolerance as well as minimizes the hybrid cost of power and 

execution time which [28] is unable to perform. 

 

 

Table 8.23 Comparison of Proposed Approach with [28] Fault Secured Approach 

Benchmark 

[45, 86, 98, 99, 

100] 

QoR 

proposed 
QoR [28 ] 

Resource  Set 

(proposed) 

Resource 

Set [28 ] 

% reduction 

in area 

IIR 0.46 0.49 1(+), 2(*) 1(+), 3(*) 25.0 

BPF 0.55 0.58 1(+),2(*) 2(+), 2(*) 25.0 

MPEG_MV 0.26 0.33 1(+), 4(*) 3(+), 7(*) 50.0 

ARF 0.38 0.50 1(+), 2(*) 4(+), 2(*) 50.0 

DCT 0.51 0.51 4(+), 2(*) 4(+), 2(*) 0.0 

FIR 0.40 0.40 3(+), 2(*) 4(+), 4(*) 37.5 

WDF 0.58 0.57 2(+), 2(*) 2(+), 2(*) 0.0 

Average improvement in QoR = 7.10% 
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8.5 Experimental Results: Untrusted Third Party Digital IP cores: Power-

Delay Trade-off Driven Exploration of Hardware Trojan Secured 

Datapath during High Level Synthesis 

The proposed approach as well as [35] both have been implemented in java and run on Intel 

Core-i5-3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and 

processor frequency of 2.5 GHz. An average of 10 runs was reported for proposed BFOA 

DSE with equal weightage to both user objectives of power and delay (W1 = W2 = ½). 

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample, 

JPEG IDCT2, IDCT, Feedback Points, ARF, BPF, FIR, and MESA Matrix Multiplication.   

As found during the experiments, the proposed approach is scalable and is able to handle 

problems of any size. The results are divided into three phases.  

 Sensitivity Analysis 

 Results of proposed approach 

 Comparison of proposed approach with existing approaches. 

8.5.1 Sensitivity Analysis 

8.5.1.1  Pre-tuning  

During experimentation, following settings were kept for proposed approach: p= 3, 5 and 7, 

Nc = 120.  

8.5.1.2  Bacterium Size, p 

Table 8.24 shows the effect of bacterium size ‘p’ on the exploration time of proposed DSE 

method. As evident, it indicates that for all benchmarks with the increase in bacterium size, 

the exploration time of the proposed approach to find the final solution increases (with the 

cost of the final solution remaining the same for all bacterium size). The exploration time 

increase is because of increase in computational complexity per iteration (i.e. the total 

number of positions evaluated in a run increases with the increase in ‘p’). Figure 8.5 and 8.6 

shows a graphical representation of the variation of exploration time with respect to increase 

in the bacterium size ‘p’.  
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8.5.2 Results of proposed Approach 

As shown Table 8.25, the proposed approach comprehensively meets the user constraints of 

delay and power (and minimizes the hybrid cost for all benchmarks. For example, in case of 

IIR benchmark, the proposed approach generates the final optimal solution with power 

(PT
DMR

) = 0.58mW and LT
DMR

 = 23080ns, which is with the specified user constraints of 

power and delay (Pcons = 0.55mW and Lcons = 38945 ns).  Also, the proposed approach is able 

Table 8.24 Comparison of Exploration Time with respect to 

Bacterium size ‘p’ for Proposed Approach 

Benchmark 

[45, 86, 98, 

99, 100] 

Bacterium 

Size 

Exploration 

time (ms) 

Cost of final 

solution 

IIR 

3 640 -0.125 

5 703 -0.125 

7 1250 -0.125 

MPEG MV 

3 7043 -0.251 

5 7657 -0.251 

7 11422 -0.251 

ARF 

3 1907 -0.192 

5 2156 -0.192 

7 3786 -0.192 

IDCT 

3 7156 -0.154 

5 7998 -0.154 

7 8328 -0.154 

DCT 

3 3516 -0.106 

5 3891 -0.106 

7 5977 -0.106 

FIR 

3 6500 -0.245 

5 7282 -0.245 

7 12532 -0.245 
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to achieve the real optimal solution for all benchmarks as verified with the golden solution 

found through brute force. 

8.5.3 Comparison of proposed approach 

Metric such as QoR indicating the quality of final solution (lower cost solution explored) 

0

200

400

600

800

1000

1200

1400

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

IIR 

Exploration time (ms)

 

0

2000

4000

6000

8000

10000

12000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

MPEG MV

Exploration time (ms)

 

0

500

1000

1500

2000

2500

3000

3500

4000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

ARF

Exploration time (ms)

 

Figure 8.5 Graphical Representation of Variation of Exploration Time (in ms) 

with respect to Change in Bacterium size (p) 
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yielded by both approaches (proposed and [35]) is an important tool for comparison. The 

QoR for both the approaches (proposed and [35]) is evaluated by the following function:  

   
max max

1
( )

2

DMR DMR

T T

DMR DMR

P L
QoR

P L
                         (8.3) 
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Figure 8.6 Graphical Representation of Variation of Exploration Time (in ms) 

with respect to Change in Bacterium size (p) 
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The area of the single comparator/error detection block responsible to runtime Trojan 

detection at the final output is also considered in the above QoR function when evaluating its 

magnitude for both [35] and proposed approach. However, since only a single 

comparator/error detection block is used in both approaches, hence it has no impact on the 

QoR of both approaches. However, during QoR comparison, power overhead due to internal 

buffering (temporary storage of operation output), has been considered for both proposed 

approach and [35]. 

Table 8.26, illustrates the comparative results of the proposed approach and [35] when 

evaluated on the standard benchmarks. As seen from the results in Table 8.26, with the 

introduction of exploration for vendor allocation procedure type ‘Av’ and user constraint 

Table 8.25    Results of Proposed Trojan Secured Approach 

Benchmark [45, 

86, 98, 99, 100] 

Lcons 

(ns) 

LT
DMR

 

(ns) 

Pcons 

(mW) 

PT
DMR

 

(mW) 
Cost 

IIR 38945 23080 0.58 0.58 -0.125 

IDCT 119160 77080 1.02 0.93 -0.154 

ARF 130810 89890 0.63 0.48 -0.192 

MPEG MV 88307 36240 1.48 1.03 -0.251 

DCT 175442 153540 0.77 0.59 -0.106 

FIR 76387 34890 1.22 0.85 -0.245 

Note: mW = miliwatt, ns = nanoseconds 

Table 8.26 Comparison of Proposed Approach With [35] 

Benchmark 

[45, 86, 98, 

99, 100] 

Final solution 

for Trojan 

Secured 

datapath 

(proposed) 

Final 

solution for 

Trojan 

Secured 

datapath 

[35] 

Cost of final 

solution 

(proposed) 

Cost of 

final 

solution 

[35 ] 

QoR in 

cost units 

(proposed) 

QoR 

in cost 

units 

[35 ] 

IIR 
2(+), 5(*), 0 2(+), 3(*),1 -0.125 -0.016 0.53 0.64 

IDCT 
6(+), 4(*), 0 5(+), 3(*),1 -0.154 -0.027 0.50 0.63 

ARF 
2(+), 4(*),0 3(+), 3(*),1 -0.192 -0.056 0.49 0.63 

MPEG MV 
2(+), 10(*), 0 3(+), 8(*),1 -0.251 -0.226 0.30 0.33 

DCT 
4(+), 4(*), 0 5(+), 3(*),1 -0.106 -0.064 0.50 0.54 

FIR 
6(+), 6(*), 0 5(+), 5(*),1 -0.245 -0.209 0.33 0.36 
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driven exploration, the proposed approach generates better results in comparison to [35]. For 

example, in ARF benchmark, the proposed approach generates 2(+), 4(*), 0 as the solution 

(cost of -0.192) which is lesser than the cost of [35] (cost = -0.056). This is because, in 

previous approach  

there is no provision of exploring an optimal ‘vendor allocation procedure’ during scheduling 

in DMR as well as no optimization scheme based on user power- delay constraint for finding 

a better alternative solution. Figure 8.7 shows the comparison of the QoR (in cost units) of 

the proposed approach with [35]. 
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Figure 8.7 Comparison of QoR (cost units) of proposed 

and [35] approach 



110 

 

 

 

Chapter 9 

Conclusion and Future work 

9.1 Conclusion 
This thesis presented novel methodologies for designing reliability aware and hardware 

security aware designs at behavioural level for data intensive and control intensive 

applications during design of application specific datapath processor. Therefore, the 

following objectives were accomplished in this thesis work:  

 Proposed a methodology to solve the problem of DSE during power-performance 

trade-off for data intensive applications that produces high quality design solutions. 

The proposed approach provided an average improvement in QoR of > 35% and 

reduction in runtime of > 4% compared to recent approaches. 

 Proposed an approach to solve the problem of exploration of low cost optimal k-cycle 

transient fault secured datapath during power-performance trade-off for data intensive 

applications. Results of comparison of proposed approach with recent approaches 

indicated significant reduction of final cost. 

 Proposed an automated approach to solve the problem of simultaneous exploration of 

low cost optimal k-cycle transient fault secured datapath and unrolling factor for 

control intensive applications during area-delay trade-off. Results of proposed 

approach when compared to similar approach indicated better quality solution within 

acceptable runtime. 

 Proposed an execution time prediction model for faster exploration process in case of 

single loop based CDFGs without tediously unrolling CDFG loop completely.  

 Proposed an approach to solve the problem of exploration of low cost optimal k-cycle 

transient fault tolerant datapath based on power-performance tradeoff for data 

intensive applications. The results in chapter 8 showed that the proposed MCFT-

BFOA based DSE provided higher an average reduction of 7% in final cost and 29% 

in hardware utilization compared to recent approaches. 

 Proposed an approach that solves the problem of exploration of low cost optimal 

Trojan secured datapath during behavioural synthesis for data intensive applications. 
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The proposed approach achieves an improvement of 14.1% in QoR in comparison to 

existing approaches. 

Therefore, this thesis presented multiple novel methodologies for designing reliability aware 

and hardware security aware designs at behavioural level for data intensive and control 

intensive applications during design of application specific datapath processor. The proposed 

methodologies can be efficiently applied for any exploration problem in HLS based on any 

user criteria. 

9.2 Future Work 

However, generating highly reliable and secured HLS designs for application specific 

processors still requires a lot of effort in the future. Some of the important aspects which 

require future attention by the researchers area as follows: 

 Consideration of multi-checkpointing technique can be considered during transient 

fault security in HLS. 

 Development of low cost Trojan secured schedule for nested-loop based applications. 

 Consideration of other class of Trojans than the one handeled in this thesis, during 

development of Trojan security aware HLS methodology. 
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