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ABSTRACT

With changing trends in technology and to effectively compete in the market, designers are
focussing on attempts to optimize Very Large Scale Integration (VLSI) digital systems.
Attempts to devise design systems with higher performance, accuracy and efficiency along
with lower overall cost are being made. In order to achieve this, High Level Synthesis (HLS)
/ architectural synthesis has come into force. However, there is a paradigm shift in the area of
HLS as more and more designs are suffering from reliability and hardware security issues.
These are expected to become the key focus due to massive scaling in nanometre technology
and globalization involved in the VLSI design process. This thesis proposes methodologies
for generating low cost security solutions for both transient fault and hardware Trojan with
respect to data intensive and control intensive applications during design of application
specific datapath processor at behavioural level. This thesis solves five different types of
problems in generating reliable//hardware secured designs: a) Problem of design Space
Exploration (DSE) during power-performance trade-off for data intensive applications that
produces high quality design solutions. In addition, a novel Bacterial Foraging Optimization
(BFO) driven DSE methodology is proposed which explores the design points in the design
space. A novel chemotaxis, replication and elimination-dispersal algorithm is proposed which
generates the design points. b) Problem of exploration of low cost optimal k-cycle transient
fault secured datapath during power-performance trade-off for data intensive applications. A
novel fault security algorithm for handling single and multi-cycle transient faults is proposed.
A novel multi-cycle Single Event Transient (SET) fault security aware multi objective DSE
methodology that explores an optimal combination of transient fault secured (Double
Modular Redundant) DMR datapath configuration has been proposed. Moreover, a novel
scheme for selecting appropriate edges for inserting cuts in the scheduled Data Flow Graphs
(DFG) minimizing delay overhead associated with transient fault security, a novel execution
time model for estimating the execution time of a transient fault secured/Trojan secured
design during DSE process, a novel fitness function, used for design quality assessment in
DSE process has been proposed. ¢) Problem of exploration of low cost optimal k-cycle
transient fault secured datapath during area-delay trade-off for control intensive applications.

a novel multi-cycle SET fault security aware multi objective DSE methodology that explores

VI



an optimal combination of transient fault secured DMR datapath configuration and loop
Unrolling Factor (UF) for Control Data Flow Graphs (CDFG) has been proposed. Moreover,
a novel estimation model for computation of execution delay of a loop unrolled CDFG (based
on a resource configuration explored) without tediously unrolling the entire CDFG for the
specified loop value has been proposed. d) Problem of exploration of low cost optimal k-
cycle transient fault tolerant datapath based on power-performance tradeoff for data intensive
applications. In relation to this, a novel multi-cycle transient fault tolerant algorithm that has
capability to isolate original and duplicate units in a DMR with respect to the transient fault
has been proposed. Moreover, a novel equivalent circuit that works with DMR systems
performs the function of extracting the correct output from the DMR design has been
proposed. €) Problem of exploration of low cost optimal Trojan secured datapath during
behavioural synthesis for data intensive applications has been tackled. A novel encoding
scheme for representing bacterium in the design space (comprising of candidate datapath
resource configuration and vendor allocation information for hardware Trojan secured
datapath) has been proposed. Moreover, a novel exploration process of an efficient vendor
allocation procedure that assists in yielding a low cost hardware Trojan secured datapath

within user constraints has been proposed.
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Chapter 1

Introduction

1.1 Preamble

With the explosion of technology, the 20™ century era witnessed a drastic change in the
lifestyle. The key inventions on Integrated Circuits (ICs) have led to high speed
microprocessors and memories. With the advent of such breakthroughs, there have been
equally important developments which have brought steady growth in digital systems. In
early 60s, Moore, predicted the exponential growth of the number of transistors on an
integrated circuit. This in turn provided higher functionalities within a single unit at low cost,
leading to higher complexity while designing and verification.

As the complexity of systems increases, there arises need for automation at higher
abstraction levels where functionalities and tradeoffs are easier to understand. Automation
assures a shorter design cycle. Also, there is a greater possibility of quickly exploring
different and better designs. Raising the design abstraction to behavioural level or
architectural level boosts the design productivity [1, 60, 61, 62]. An architectural level
specification describes the algorithm to be implemented, without the details of the structure

of the circuit.

1.2 Circuit Design and Synthesis
The Very Large Scale Integration (VLSI) design flow consists of a number of design and test
levels to match the design specifications. The design engineer accepts the user requirements,
and translates them into specifications. Once the specifications are determined, the designing
is performed. The process includes system level, high level, gate or logic level, transistor or
circuit level and physical or layout level. The levels can be described as [1]:
e System level: This is the highest level of abstraction, where the system is represented
as processes, tasks, hardware and software. This level deals with the overall system

and the information flow within the system.



Behavioural or Algorithmic or High level: This level controls the computation by
individual processors within the system. It monitors the mapping sequences of inputs
to the outputs.

Register Transfer Level (RTL): At this level, the system is specified as a set of
storage elements and functional units.

Logic or Gate level: At the logic level system is viewed as a network of gates and
flip-flops. The behaviour of the system is specified in terms of logic equations.
Circuit or Transistor level: this level describes the circuits as a netlist of transistors.
The issues related to the nature and numbers of transistors to be used are dealt at the
circuit level.

Physical or Layout level: This is the lowest level of circuit abstraction in which the
system is specified in terms of individual transistors.

The design process proceeds from higher to lower abstraction levels. The automated process

of designing the VLSI circuits is referred as synthesis. Specifying the design at a higher

abstraction level has been an effective way to deal with the complexity.

1.3 High Level Synthesis (HLS) Details

With the increasing design complexity of ICs the idea of automatically generating circuit

implementations from high-level behavioural specifications has gained interest. Initially,

multiple prototype tools were developed to call attention to the methodology and to

experiment with various algorithms. In late 80s and early 90s, a number of similar HLS tools
were built, mostly for research and prototyping. MIMOLA [2], ADAM [3, 4], HAL [5],
Hercules/Hebe [7, 8], and Hyper/Hyper-LP [6, 9] were some academic efforts. These tools

decompose the synthesis task into following steps:

a)
b)
c)
d)
€)

Code transformation,
Module selection,
Operation scheduling,
Datapath allocation, and

Controller generation.

These problems were individually addressed later using algorithms like list scheduling

algorithm, force-directed scheduling algorithm and many others. This provided a base for

HLS. However, these efforts were not enough for wide acceptance of HLS among designers

due to low quality solutions generated.



r=atb;
s =c*d;
t = e*f;
U =r+s;
V=u-+t

Figure 1.2 Sample Data Flow

Figure 1.1 Sample Behavioural description Graph

In 1995 several tools like Behavioural Compiler [11] from Synopsis, Monet from Mentor
Graphics [10] and Visual Architect from Cadence [12] were introduced which received a
wide attention. However, the tools were not widely accepted since these tools used Hardware
Description Languages (HDL) such as Very High Speed Integrated Circuit Hardware
Description Language (VHDL) or Verilog for behavioural description as input. Since then a
wide range of tools are developed which are commercially accepted and use C/C++ or C-

based languages to capture the design.

1.4 Theoretical Background on HLS

HLS is a process of transforming a software behavioural description into a hardware circuit
description with equivalent functionality [60-63]. It is sometimes referred as behavioural or
architectural or C-to-gates synthesis. The behavioural description describes the input and
output behaviour of the algorithm in terms of operations and data transfers. It consists of
algorithmic statements containing the different operations viz. additions, multiplications,
logical operations and control operations like loops, conditional statements and function calls.
The behavioural description is represented in the form of a Data Flow graph (DFG). The
DFG comprises of operations in the algorithmic description and the data dependencies
between them are represented by the vertices and edges, respectively. Figure 1.2 gives an
example of a sample DFG for the behavioural description shown in Figure 1.1. The hardware
circuit description is divided into segments, datapath unit and control unit. The datapath
includes the functional units such as multipliers, arithmetic logical units, and the storage units
while the control unit coordinates the data flow between the datapath elements. Traditionally
HLS is divided into datapath synthesis and controller synthesis. Datapath synthesis can be
modelled as the process of searching a complex multidimensional space represented by the



set of possible schedules, allocations, and bindings that can realize a given behavioural

specification.

1.5 Phases of HLS

The various phases or tasks of HLS include compilation, transformation, scheduling,
allocation, binding and RTL generation. During compilation the behavior of the system
specified in the form of an algorithmic description or HDL (VHDL or Verilog) is compiled
into internal representations. These internal representations are generally in the form of a
DFG or a Control Data Flow Graphs (CDFG). Further in the transformation phase, the
generated DFG is transformed into an optimized DFG or a suitable DFG for scheduling and
allocation purpose. Dead-code elimination, common subexpression elimination, loop
unrolling, constant propagation and code motion are some possible transformations which
can be done on an application. Once the transformations are done, the Design Space
Exploration (DSE) process is performed. During DSE several choices have to be evaluated
for executing any decision. Therefore, it is important to perform DSE at early design stage or
higher abstraction level (behavioural level) in order to investigate tradeoffs between all
possible design goals, and to select the most appropriate solution. Finally, to realize a RTL
design, HLS performs scheduling, allocation and binding. Scheduling divides the algorithmic
behaviour/DFG into control steps. Each step contains a small section of code that can be
executed in a single clock cycle. This process optimizes the number of execution steps based
on constraints of hardware resource and cycle time. Allocation decides how much resources
are needed in hardware while binding map the instructions and variables to hardware
components, such as adders, multipliers, and registers [64]. The scheduling, allocation and

binding phases are described in detail in next sections.

e Scheduling

The scheduling is a process which maps operations belonging to the algorithmic description
onto a set of discrete time steps, in a way such that all data dependencies/precedence
constraints specified in the algorithmic description are met. The mapping of operations to
time steps is done such that the total number of time steps required to implement the specified
behaviour meets the given timing constraints and minimizes implementation area. Scheduling
can either be constructive or iterative [1, 66, 67, 69].

In constructive scheduling the solutions are constructed by adding operations/nodes one at a

time until all the operations have been scheduled. As Soon As Possible (ASAP), As Late As



Possible (ALAP), List scheduling [13], Force direct scheduling [14], and Integer linear
programming based scheduling [15, 16] fall under constructive category. ASAP is the
simplest type of scheduling. It assumes that the number of Functional Units (FU’s) required
are already specified. Further, process arranges the operations topologically according to their
data or control flow. Once the operations are sorted, they are selected one by one from the list
in order and scheduled into earliest control step possible, preserving its dependency and the
resource availability. However, another constructive scheduling approach, ALAP, places the
operations in the latest possible control step. ALAP uses the number of steps resulting from
the ASAP schedule as a latency constraint [1]. ASAP, ALAP are also referred as the
unconstrained scheduling algorithms. List scheduling is primarily resource-constrained
scheduling algorithm. The list-based algorithm takes a sequencing DFG and resource
constraints as inputs and generates a scheduled sequencing DFG as output. The operations
available for scheduling are kept in a list for each control step. This list is further ordered by
some priority function, either mobility of the vertex or the length of path from the operation
to the sink while ranking the vertices in decreasing order. An operation on the list is
scheduled one by one if the resource needed by the operation is free; otherwise, it is deferred
to the next clock cycle. Further, a Force-directed scheduling is a heuristic algorithm that can
consider both resource and time constraints. The basic idea of this algorithm is to balance the
concurrency of operations without increasing the total execution time to maximize the

utilization of resources such that the number of required resources is minimal [1].

However, in iterative scheduling the designer starts with an initial (random) solution and
iteratively updates the solution. Finally a scheduling solution is generated which is optimal
and satisfies the user constraints of power/area and latency. In iterative scheduling the
designer possesses multiple designing solutions which are generated in intermediate steps.
Genetic Algorithm (GA) based scheduling, ant colony based scheduling, simulated annealing

based scheduling are some examples of iterative approaches [65, 68, 70].

e Allocation and Binding
Allocation involves mapping operations onto functional units, assigning values to registers,
and providing interconnections between operators and registers using buses and multiplexers.
While binding is the task to assign operation to particular resource such as computation to
functional unit, storage to register and data transfer to interconnect. Binding can be solved by
using various graph theoretic techniques like clique partitioning [1, 13, 71], circular-arc graph

colouring [1, 13, 71] or left edge algorithm [1, 13]. In cligue partitioning, an undirected graph
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reffered as “compatibility graph” is constructed to analyze the compatibility between the
operations of the graph. Two operations are compatible and can use same resources if they

need resources of same type and are scheduled in different clock cycles.

However, in graph colouring a respurce conflict graph is constructed to analyze the conflicts
of the operations, wherein, the graph is an undirected graph whose vertex set is in one-to-one
correspondence with the operations and whose edge set denotes the conflicting vertex pairs.
In such a resource conflict graph, two operations have a conflict if they are not compatible.
The conflict graph and compatibility graph are complementary to each other. The choice

between them is driven by the type of circuit.

Furthermore, in the left edge algorithm [1, 13], the birth time of a variable is mapped to the
left edge, and the death time of a variable is mapped to the right edge. The variables are
sorted in increasing order of their birth time. The first variable is then assigned to the first
register. Then, the current register receives the next variable whose birth time is larger or

equal to the death time of the previous variable.

1.6 Why HLS?

There has been an increase in trend towards automating synthesis at higher levels of
designing in the recent years. Also, there has been substantial interest shown in RTL design
obtained from higher levels of abstraction (algorithmic) using HLS. There are a number of
reasons for this [1, 63, 65]:

e Shorter design cycle: Automation has reduced the designing time and manpower
involvement metrics. Hence there is a reduction in the overall cost of the chip.

e Continuous and reliable design flow: HLS facilitates a continuous and reliable
automatic translation of high level specification into RTL description of the circuit in
the form of VHDL or Verilog.

e Fewer errors: Correct design decisions at the higher levels of circuit abstraction can
ensure that the errors are not propagated to the lower levels.

e The ability to search the design space: Automating the design process helps in
producing several designs for same specification in a reasonable amount of time. This
benefit helps the designer in exploring different trade-offs between cost, speed,
power and other factors to take an existing design and produce a functionally

equivalent one that is efficient.



e Easy availability of IC technology: As more design expertise is moved into the
synthesis system, it becomes easier for a non-expert to produce a chip that meets a

given set of specifications.

1.7 Thesis Organization

The rest of the thesis is organized as follows: chapter 3 describes the proposed framework to
solve the problem of DSE during power-performance trade-off for data intensive
applications. Chapter 4 describes a framework to solve the problem of exploration of low cost
optimal k-cycle transient fault secured datapath during power-performance trade-off for data
intensive applications. Chapter 5 solves the problem of exploration of low cost optimal k-
cycle transient fault secured datapath during area-delay trade-off for control intensive
applications. In chapter 6, a framework to solve the problem of exploration of low cost
optimal k-cycle transient fault tolerant datapath based on power-performance tradeoff for data
intensive applications is presented. Moreover, chapter 7 solves the problem of exploration of
low cost optimal Trojan secured datapath during behavioural synthesis for data intensive
applications. Further, the results of the proposed approaches in context to the problems, for
various well known HLS benchmarks indicating exploration time and quality improvements
obtained, compared to the current existing approaches are provided in chapter 8. Chapter 9
concludes the research work presented in the thesis and provides future scope of work in this

area.



Chapter 2

Previous Work and Thesis Contribution

2.1 Related Work

The problem of DSE in HLS is a NP-complete problem [72, 73, 74]. In the literature, many
attempts have been made to solve the DSE problem in HLS [79-83]. The approaches
developed; aim at exploring the design space along with balancing multi-conflicting issues
during generation of the optimal/near-optimal design alternative (or Pareto front). For solving
various NP complete problems, GAs is the most popular evolutionary algorithms in terms of
diversity of their applications. In order to solve DSE problem, GA is used by many
researchers in [18, 20, 21, 65, 66]. For example, researchers in [18] used a time constrained
scheduling based on GA. In [18], authors combined the constructive scheduling methods with
GA and later used for searching a suitable order to perform scheduling. The work presented
an encoding scheme where allocation of supplementary resources was done during
scheduling, to deal with the lower bound estimations. Authors in [20, 21, 65, 66] used GA to
solve integrated scheduling and datapath exploration problem. In these approaches, the
chromosome contains the scheduling information and the datapath information. In [20], the
scheduling information is encoded with ‘node priority’. However, authors in [21], used the
scheduling information in chromosome encoded by ‘load factor’ and used a heuristic to
decode the scheduling information from encoded chromosome. Authors in [65, 66] encoded
scheduling information in chromosomes as ‘work remaining’. However, the second part of
the chromosome in [20, 21, 65, 66] is encoded with maximum number of functional units
available during scheduling. Furthermore, in [20] the cost function is evaluated on the basis
on area-latency tradeoff. But, there is no concept of total execution time, data pipelining and
power during exploration. Further, the chance of yielding an optimum result is not
guaranteed. Researchers in [21] did not consider dynamic power while calculating total
power. In the work, a multi-structure chromosome representation for the datapath nodes was

used for scheduling. The approach also had a drawback of huge computation time besides



generating non-optimal solutions in some cases. Authors in [65, 66] used binary encoding of
the chromosomes for DSE in architectural synthesis for area-latency trade-off. Moreover,
authors in [65, 66], optimized area and latency, but failed to consider power and execution
time (function of latency as well as cycle time for pipelined dataset), which are critical issues
for modern handheld, battery operated high speed devices. In order to explore new solutions
the approaches [18, 20, 21, 65, 66] perform genetic operator (such as crossover and mutation)
between two chromosomes. In [19] a discrete Particle Swarm Optimization (PSO) based
exploration method is proposed to solve the DSE problem in HLS. In the approach every
swarm explores the design space by considering all conflicting objective simultaneously. The
approach suffers from several drawbacks. The authors divided the swarm into sub-swarms
and each objective was accomplished by one sub-swarm only. Hence, the technique required
a large swarm size which may lead to heavy computation time per iteration. In the work, the
authors have not considered the concept of local best while exploration. While updating
velocity, the authors updated only the direction keeping the step length constant. Another
drawback of the approach is that, there is no concept of mutation and clamping in case of
boundary overreach problem.

Further in [17], authors described an approach based on integration of GA with PSO referred
as Weighted Sum Particle Swarm Optimization (WSPSO). In [17] authors adopted the
encoding scheme from [20], which is a combination of scheduling information and maximum
available FUs. In their work, the concept of global and local best solution/position is used. To
find new solutions, crossover is performed between current position with global best position
and local best position. Thus, to incorporate GA, crossover is performed, which is the basic
operator of GA and to incorporate PSO, the crossover is performed between current position
and global and local best position. The shortcoming of this approach is that mathematically
no velocity parameter is used while updating the particle position. Moreover, authors used a
weighted combination of latency, area and power during fitness evaluation. But, the metrics
such as execution time and actual power are not taken into account in cost function

determination.

Besides these approaches, certain tools are introduced which deal with the DSE problem in
HLS. In [22] a tool called SystemCoDesigner has been introduced which deals with tradeoff
between area-delay. The tool offers automated and fast DSE with prototyping of behavioral
systemC models. Some other commercial tools like GAUT [23], LegUp [24], ROCCC [25]
and CatapultC [26] are also available in the market for electronic design automation. GAUT
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takes a C/C++ behavioral description as input for automatically generating equivalent RTL
implementation based on constraints of throughput and clock period. LegUp is an open
source HLS tool available for FPGA-based processor/accelerator systems. Further, another
tool called AutoPilot is introduced in [27] which address the problem of exploration in HLS.
It performs C/C++/systemC-to-RTL synthesis. The tool was targeted for FPGAs.

The approaches mentioned so far suffered from multiple drawbacks and were not useful.
Therefore, one of the objectives of this thesis is to develop an efficient DSE methodology in

HLS which addresses the above drawbacks.

Over the years the process of DSE has evolved where the requirements specified by the user
have also become more convoluted, ranging from simple area-delay tradeoff in initial years to
complex power-delay-reliability tradeoff in recent years. To resolve this, some HLS
approaches were proposed which included the consideration of fault security aspect with
hardware redundancy, but without focusing on low cost solution of an optimized fault
detectable design based on user power-delay constraint. The literature includes works that
only deal with the fault detection issue of the designs without ability to explore a low cost
optimized fault detectable datapath based on user specified power-delay. For example, HLS
approaches such as [28, 29, 30, 31, 87] just included the aspect of single cycle fault security
with hardware redundancy, but without any focus on evolving/exploring an optimal multi-
cycle fault secured design based on user power-delay constraints. In [28] authors use
duplication of the CDFG and map the second onto the same hardware as the first, adding FUs
as needed. The technique uses the algebraic properties of associativity, distributivity, and
commutativity to aid mobility in scheduling the duplicate CDFG and thus take better
advantage of idle resources. The approach in [29] involves partitioning of the CDFG into
regions or sub graphs. The authors presented a hardware redundancy based Concurrent Error
Detection (CED) approach which breaks the data dependences between the nodes. This is
done to improve the sharing between normal and duplicate computations. The original and
the duplicate computations which are represented by a region are performed on distinct
hardware. This is done so that, every regions output can be compared to identify the faults
within the regions. For this, voting on the results of the regions is done. In [30], a CED
scheme is employed to detect and isolate the faults within a system while it is in use. In [31]
authors investigated a method for exploring the tradeoff between the area and latency of the
CED design in HLS. The approach sometimes used hardware redundancy or time redundancy
or a combination of both to produce fault secure designs. Designs were made secure on the

10



basis of check pointing introduced in the system. Instead of adding extra FUs for fault
detection, they use re-computation on the same hardware using different allocations.
Therefore approaches [28, 29, 30, 31] are all fault detectable approaches (using hardware
redundancy) with no provision of producing an optimized fault detectable datapath system

based on conflicting power and delay constraint of user.

Additionally, there have been no approaches developed which concurrently propose a multi-
objective DSE process of a multi-cycle (or single cycle) fault tolerant design during HLS. A
complete fault tolerant system should possess different capabilities. Depending upon the fault
tolerance level required it should be capable of identifying the fault, detecting it, followed by
its isolation, masking and then recovering from it. Efforts have only been made for the error
detection issue of the designs without ability to isolate the faults as well as explore the
optimized fault tolerant datapath based on power-performance objective. The fault detection
technique involves the redundancy factor to identify the faults prevailing in the system. It
either uses the hardware redundancy or the time redundancy or a combination of both to
determine the presence of fault within a system. Therefore, exploration of a multi-cycle fault
tolerant datapath for conflicting user constraints becomes non-trivial. In the literature so far,
only one approach has been proposed by authors in [32] who discussed a HLS approach for
multi-cycle transient fault tolerant datapath. However, there was no algorithm for exploration
of an optimal fault tolerant datapath based on power-performance constraint. Also, the work
did not include any concept of multi-cycle transient fault during DSE. Moreover, a Triple
Modular Redundant (TMR) system for k-cycle faults tolerance for Single Event Transient
(SET) was presented. Wherein, the outputs of the units were voted upon by the help of voter,
to mask the errors. Additionally, comparators were used to detect the difference in the outputs
of the units. Therefore, [32] involved higher redundancy which sometimes involved TMR

system with tripled resource usage.

The approaches in the literature so far were not capable to address transient fault
security/tolerance and generate low cost optimal fault secured/tolerant datapath
simultaneously and therefore were not much useful. However, some of the approaches which
could handle the transient faults involved higher redundancy leading to generation of a non-
optimal design solution. Therefore, one of the objectives of this thesis is to develop a
methodology which generates a low cost optimal transient fault secured/tolerant datapath
during HLS.
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With the emergent globalization of System-on-Chip (SoC) designs, penetration of hardware
Trojan in Intellectual Property (IP) cores resulting from untrustworthy Third Party (3P)
vendors has become a matter of grave security concern amongst the SoC integrators.
Hardware Trojan’s are malicious hardware components embedded by adversaries in order to
induce malfunctioning of ICs [95, 96, 97]. During the design process an adversary may
corrupt the IP by inserting hardware Trojan into it. This matter gets further intricate as
hardware Trojans can be of multiple types [33, 34]. To have a trustworthy design it should be
ensured during HLS that any possible infection of 3PIP is detectable. In case of HLS, the
hardware Trojan mostly considered is the one which is capable of maliciously altering the
digital output of a 3PIP. The detection procedure as suggested by [35] is accomplished by
having IP cores of same functionality from different vendors. This is because different
vendors will have different implementations and it is less likely that both are Trojan infected.
Even if they are, the chances of different vendor IPs generating same output behavior is
considered extremely uncommon. However, detection process of the Trojan during design of
hardware Trojan secured schedule in HLS inevitably requires multiple redundant hardware
instances from different vendors, which if not accounted for its power and delay during
fitness evaluation, may result in a secured circuit violating user constraint. The focus on
hardware Trojan detection during HLS has been very little with absolutely zero effort so far
in DSE of a user multi-objective constraint optimized hardware Trojan secured schedule.
However a number of approaches have been proposed for Trojan detection at lower levels of
chip design [89, 90, 91, 93, 94]. This problem mandates attention as producing a Trojan
secured schedule is not inconsequential. Merely the detection process of Trojan is not as
straightforward as CED of transient faults as it involves the concept of multiple 3PIP vendors
to facilitate detection [92], let aside the exploration process of a user optimized Trojan
secured schedule based on Multiobjective (MO) constraints. Efficient vendor allocation
procedure needs to be devised for Trojan detection during HLS, besides robust and adaptive
exploration scheme for low cost optimal hardware Trojan secured scheduling. A low cost
optimal Trojan secured schedule indicates an optimized robust Double Modular Redundant
(DMR) scheduling obtained through a heuristic comprising of intelligent hardware
assignment to operations such that any possible Trojan infection in the underlying hardware

is detectable.

12



2.2 Objective

The objective of this thesis is to develop highly reliable/hardware secured designs for data

intensive and control intensive applications during design of application specific datapath

processor at behavioural level. In order to realize this, the following objectives have been set:

Develop a methodology to solve the problem of DSE during power-performance
trade-off for data intensive applications that produces high quality design solutions.
Develop an approach to solve the problem of exploration of low cost optimal k-cycle
transient fault secured datapath during power-performance trade-off for data intensive
applications.

Develop an automated approach to solve the problem of simultaneous exploration of
low cost optimal k-cycle transient fault secured datapath and unrolling factor for
control intensive applications during area-delay trade-off.

Develop a execution time prediction model for faster exploration process in case of
single loop based CDFGs without tediously unrolling CDFG loop completely.
Develop an approach to solve the problem of exploration of low cost optimal k-cycle
transient fault tolerant datapath based on power-performance tradeoff for data
intensive applications.

Develop an approach that solves the problem of exploration of low cost optimal

Trojan secured datapath during behavioural synthesis for data intensive applications.

2.3 Summary of Contribution

The focus of this thesis is to provide a number of low cost solutions to the aforesaid problem

in the field of security (against hardware Trojan) and reliability (against transient fault) aware

HLS for both data and control intensive applications.

In order to resolve the issues present in the state-of-the-art approaches, the following

contributions have been made through this research.

Solve the problem of DSE during power-performance trade-off for data intensive
applications.
[Publications: J1, J5, C10]
a) Proposed a novel temperature dependent bacterial foraging optimization
methodology for automated exploration of datapath in HLS, capable of

yielding optimal results.

13



b)

Introduced a novel chemotaxis algorithm for exploration drift, replication
algorithm for inducing efficient exploration ability and elimination-dispersal

algorithms for sudden diversity introduction.

e  Solve the problem of exploration of low cost optimal k-cycle transient fault secured

datapath during power-performance trade-off for data intensive applications.
[Publications: J2, C7, C8, C9]

a)

b)

Proposed a novel fault security algorithm for handling single and multi-cycle
transient faults.

Proposed a low cost approach for generating a high quality fault secured
structure based on user provided requirements of power-delay, which is
capable of transient error detection in the datapath.

Introduced a novel scheme for selecting appropriate edges for inserting cuts in
the scheduled DFG minimizing delay overhead associated with transient fault
security.

Proposed a novel execution time model for estimating the execution time of a
transient fault secured/Trojan secured design during DSE process.

Proposed a novel fitness function, used for design quality assessment in DSE
process.

Proposed a novel multi-cycle SET fault security aware multi objective DSE
methodology that explores an optimal combination of transient fault secured

DMR datapath configuration.

e Solve the problem of exploration of low cost optimal k-cycle transient fault secured

datapath during area-delay trade-off for control intensive applications
[Publications: J4]

a)

b)

Proposed a novel multi-cycle SET fault security aware multi objective DSE
methodology that explores an optimal combination of transient fault secured
DMR datapath configuration and loop Unrolling Factor (UF) for CDFG.

Proposed an estimation model for computation of execution delay of a loop
unrolled CDFG (based on a resource configuration explored) without

tediously unrolling the entire CDFG for the specified loop value.
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Solve the problem of exploration of low cost optimal k-cycle transient fault tolerant
datapath based on power-performance tradeoff for data intensive applications.
[Publications: J3, C11]

a) Proposed a novel multi-cycle transient fault tolerant algorithm that has
capability to isolate original and duplicate units in a DMR with respect to the
transient fault.

b) Proposed a novel equivalent circuit that works with DMR systems performs
the function of extracting the correct output from the DMR design.

Solve the problem of exploration of low cost optimal Trojan secured datapath during
behavioural synthesis for data intensive applications.
[Publications: C6, C12]

a) Proposed a novel encoding scheme for representing bacterium in the design
space (comprising of candidate datapath resource configuration and vendor
allocation information for hardware Trojan secured datapath).

b) Proposed a novel exploration process of an efficient vendor allocation
procedure that assists in yielding a low cost hardware Trojan secured datapath

within user constraints.
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Chapter 3

Adaptive  Bacterial Foraging Driven  Datapath
Optimization: Exploring Power-performance Trade-off in
HLS

This chapter presents a novel application of Bacterial Foraging Optimization Algorithm
(BFOA) in the area of DSE of datapath in HLS for data intensive applications. For the DSE
process, the BFOA has been transformed into an adaptive automated DSE framework that is
capable to handle tradeoffs between power and execution time during HLS. The BFOA-DSE
is capable to resolve orthogonal issues such as enhancing Quality of Result (QoR) as well as
exploration speed, thereby being able to produce higher-quality results in lesser exploration
time than existing approaches [20, 36]. This is the first work which directly maps the BFO
process for multi-objective DSE during power-performance trade-off for data intensive
applications in HLS. The work proposes a novel chemotaxis driven exploration drift
algorithm, a novel replication algorithm for manipulating the position of the bacterium by
keeping the resource information constant (useful for inducing exploitative ability in the
algorithm). Moreover, a novel Elimination-Dispersal (ED) algorithm is proposed to introduce
diversity during the exploration process. The detailed explanation of the proposed
methodology along with the demonstration of the proposed framework has been given in

subsequent sections.

3.1. Description of Proposed Methodology

3.1.1. Problem Formulation
Given a DFG, explore the design space and determine an optimal resource configuration,

X, ={N(R)), N(R,), N(R,)....N (R, )}satisfying conflicting user constraints and minimizing the

overall cost. The formal formulation of the problem is:

For a given DFG find a resource combination (X;):
X; ={N(R), N(R,), N(Ry)-...N(Rp)}>

with minimum hybrid cost: (Pr, Tg);
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subjected to: Pt < Peons and Te < Teons.
Where, N(Ry) is the number of instances of resource type ‘Rq’; ‘D’ is the total number of
resource types; ‘X;’ is a candidate resource combination for optimal solution; ‘Pt” and ‘Tg’
are the power and execution time consumed by a candidate resource combination; ‘P¢ons’ and

‘“Teons” are power and execution time constraints specified by the user.

3.1.2. Motivation of using BFOA in Context of Proposed Problem

The DSE process for Application Specific Integrated Circuits (ASICs) is an intricate process
which involves identifying the best solution from a set of given design alternatives of
assorted nature. The DSE algorithms proposed so far using the evolutionary approach such as
PSO, GA and hybrid GA do not provide flexible options for guided/adaptive searching such
as change in directions when a certain search path is found unproductive. Moreover, PSO is
known to be a highly sensitive algorithm, therefore failing to clinically pre-tune the
parameters often would result in convergence to local optima. However, bacterial foraging
uses a simplified framework and is less sensitive than other evolutionary techniques. BFOA
comprises of primarily of two major steps: chemotaxis and dispersal for locomotion of
bacterium. Using locomotion mechanisms (such as flagella) bacteria can move around in
their environment, sometimes moving chaotically (tumbling and spinning), and other times
moving in a directed manner that may be referred to as swimming. Therefore, the intuition or
science behind adopting Bacterial foraging is the simplified nature of its heuristic framework
and features that provide directed based searching compared to typical evolutionary
algorithms such as GA and PSO.

3.1.3. Proposed BFOA Driven DSE Methodology

Social foraging behaviour of the E. coli inspired BFOA is aimed in optimizing the real world
problems in several application domains. The real bacterial system involves four basic
mechanisms viz. chemotaxis, swarming, replication and elimination dispersal [37] The
proposed BFOA-DSE process imitates these basic mechanisms in order to solve the DSE
problem in HLS.

The proposed mapping of BFO for DSE is as follows:

Position of bacterium - Resource configuration

Dimension - Number of Resource types
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Figure 3.1 Proposed BFOA-DSE
Methodology

The flowchart of proposed BFOA driven DSE algorithm is shown in Figure 3.1 Based on the
flowchart provided in Figure 3.1, the description is as follows:

The inputs to the proposed framework are behavioral description of application in the form of
DFG that describes datapath, user specified design constraints for power and execution time
(with user specified weight factor), and module library. Module library comprises
information of viz. energy consumed by each resource in Picojoule (pJ), latency of each
resource in nanoseconds (ns), hardware area of each resource (#of transistor) and user
specified maximum availability of resources. In the proposed approach, the initial population
has multiple bacteria. Therefore, the initialization of bacterium positions corresponding to the
resource configurations is done. Imitating the biological phenomenon of an E. coli bacterium,
the proposed DSE methodology iterates within the valid temperature range [tmin, tmax] at
which an E. coli can survive (Note: Investigations from previous literature [38-41] have
revealed the motility range of E. coli between, tnin = 25° C and tnx = 45° C; while
elimination of bacterium can occur at high temperature such as 40° C). Within this motility
(valid) temperature range through chemotactic movement in every step (j) of each bacterium,

the proposed DSE explores new feasible solutions.
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Movement of a bacterium from one position to the other is characterized as a chemotactic

movement. The bacterium moves to a new unexplored position based on step length (C(i)),

Last

past position( X, )and random number (A(i)). However, after a designer specified periodic

th ths

intervals (‘X" and ‘Y™ iteration step respectively), the process of replication and elimination
dispersal occurs. The replication and ED algorithm is repeated (based on its corresponding
periodic intervals) for ‘N’ and ‘Neg’ times, where, ‘Ny’ is the maximum number of
replication steps and ‘Neg’ is the maximum number of elimination dispersal steps to be
undertaken throughout the exploration process. Further, corresponding arrays ((Rep [j-]) and
(Ed [j-])) are created for replication and ED process each to store the outcome, checking
whether replication and ED has been performed in last iterative step. These storage structures
are necessary to determine whether variables ‘X’ and ‘y’ need up-gradation. If Rep [j-] =
TRUE then it indicates that in the last iterative step (j—), replication has taken place,
therefore, ‘X’ needs to be updated. Else, the up-gradation is bypassed. Similar logic holds for
Ed[j-] in terms of operation functionality. In case of DSE, the bacterium positions are
dispersed, with an aim of exploring the new positions with better cost. The least fit bacteria

eventually die while the healthier bacteria positions yielding better fitness value are retained.

The iteration process continues until the stopping criterion is reached (the stopping criterions
are described in later section). Hence, on completion the process yields an optimal solution

which is the global best resource configuration for the given application and user constraints.

3.1.4 Models for Evaluation of Design Points During BFOA-DSE
The bacterium positions are determined based on power consumed, execution time, and the
cost function illustrating the fitness of the bacteria.
3.1.4.1 Power Model
Power consumption (Pt) by a resource set is represented in terms of static power (Ps ) and
dynamic power (Pp ). ‘Pt ’ is represented as [21, 36]:

R =R +P, (3.1)
Static power is a function of area of resources and leakage power per transistor. Accordingly,

static power is:

P = 2 (NR)K(R,).p. 2)
P, = (N(R)-K(R)+N(R), "K(R), +.+N(R), K(R),).p, @3)
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Where ‘N(Ry)’ represents the number of instances of resource Rq. ‘K(Rg)’ represents the area
occupied by resource Ry, ‘D’ is the number of resources (FU’s) and ‘p.” denotes the power
dissipated per area unit (e.g. transistors).

However, the average dynamic power consumed by a resource configuration is a function of
dynamic activity of the resources and can be formulated as [21, 36, 42]:

i T 34
Where, ‘Ery’ is the total energy consumed by the resources obtained [43], ‘N’ is the ¢, ‘LS
the latency of a scheduling solution and ‘T’ is the initiation interval or cycle time of a
scheduling solution. Equation (3.4) can be further written as:

_ N - (ERes + Emux + Edemux)
B L+(N—-1)-T,

o (35)

Where, ‘ERres” is the energy consumed by the major FU’s such as adders, subtractors, multipliers
and comparators. ‘Eny’ and ‘Egemux’ are the energy consumed by the multiplexers and de-
multiplexers used.

Substituting equation (3.5) and (3.2) in equation (3.1):

_ N - (ERes + Emux + Edemux) $ . . 36
PT N L+(N _]_).TC +§(N(R)d K(R)d) P ( )

3.1.4.2 Execution Time Model

For a given system with ‘D’ functional resources the time of execution can be represented as:
Te=[L+(N-1).T] (3.7)

The equation (3.7) has been adopted from [21, 36, 42], which denotes the total execution time

considering data pipelining of N data sets where the mathematical quantity (N-1).T. indicates

the delay consumed by the data (except the first element) during pipelining. The variables L,

N and T, have already been defined in section 3.1.4.1.

3.1.4.3 Model for Fitness Function
The fitness function (considering execution time and power consumption of a solution) is
defined as [36]:

P—P T.-T
C (X)) = gh o ., € (38)

Where, C, (X;) is the fitness of bacterium X;, ¢ and ¢,are the user defined weights for

power and execution time parameters and T, is the maximum execution time of a solution in
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Table 3.1 Module Library Used

Major FU's | Add16 | Mull6 | Subl16

Energy (pJ) 0.739 9.8 0.739
Area(#transistor) | 2032 | 2464 | 2032

Latency (ns) 270 | 11000 | 270

\./ NN

o
} o

Figure 3.2 DFG of Differential Solver Benchmark [5]

design space while P is the maximum power of a solution in design space, while the

functions to calculate Prand Tg are stated in equations (3.6) and (3.7) respectively.

3.2 Description of the Proposed Methodology with Demonstration

3.2.1 Module Library Information and Operating Constraints

The module library information used is shown in Table 3.1. The values of Egy, area and
latency assumed have been adopted from [43, 101, 102, 103].

For the purpose of explanation, a DFG for Differential Solver benchmark shown in Figure 3.2
is used for demonstration of the proposed algorithm. Figure 3.2 has four types of resources
(i.e. D = 4). The assumed values for the sake of demonstration are: maximum available
multiplier FUs: 4, adder FUs: 2, subtractor FUs: 2, and comparator FUs: 1; Number of data
sets, N = 1000; while power dissipated per transistor (pc) is assumed to be 29.33 mW,
additionally, number/type of mux/demux is directly extracted from the scheduling solution.
Note: the proposed approach is capable to handle evolving technology by altering the
component values in the module library. With change in technology, the supply voltage is
scaled resulting in different ‘p.’ value. Further, due to technology scaling the number of
transistors for each component specified in the library can be changed. Therefore, the
proposed theory is capable to adapt to evolving technology. Since, Figure 3.2 has four types

of resources (i.e. D = 4), therefore, a bacterium position can be given by: X; = (N(mul),
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N(add), N(sub), N(comp)). Additionally, we will assume some constraint values for Power
(Pcons) and Execution time (Tcons) as Well as user defined specifications.
The goal of exploration problem is to generate and evaluate design points or configurations

by simultaneously meeting the user provided constraints for power and execution time.

3.2.2 Maximum Threshold

Before evaluation of the fitness of a design, a minimum and maximum value of power and
execution time has to be determined. The maximum values of the power and execution time
are identified corresponding to the provided boundary constraint values of the resources.
Typically, an application consumes maximum execution time when a single instance of a
resource type is available at a particular timestamp (i.e. when using minimum resources).
Such execution corresponds to a serial implementation of the target application. However, a
maximum power is consumed by utilizing maximum available resources to execute the

operations. This indicates maximum parallelization of the target application.

3.2.3 Boundary Constraints Check Module
To check whether the provided user constraints values are within the acceptable limits a
boundary constraint check is performed. The following conditions are checked for each
parametric constraint specified:

1. If Phin = Peons = Pmax OF Tiin= leons= Minax

2. If above condition is true then stop and correct the constraints.

3. Else proceed to next step of the process.

3.2.4 Initialization of Bacterium
The bacteria are initialized to uniformly cover the design space. For a DFG, the bacterium
position ‘X;’ of an ‘i bacterium is given as:

Xi = (N(R1), (N(Rz2),..(N(Rq).. (N(Rp))
The efficiency of an exploration algorithm depends upon how well is the initial population
distributed over the design space. Therefore, to have a better exploration the algorithm
initializes the bacteria as follows:

e The first bacterium is initialized by minimum resources (serial implementation):
X1= (min(R1), min(Ry),.. min(Rp))

X1=(1,1,1,1)

e The second bacterium is initialized by maximum resources (maximum parallel
implementation):
Xz = (max(Ry), max(Ry),.. max(Rp))
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Therefore based on the user defined resources assumed in section 3.2.1, X, can be
customized as follows:
X=(4,2,2,1)
e The third bacterium is initialized by average of maximum and minimum values:
X3= ((min(Ry)+max(R1))/2,......,((min(Rp)+max(Rp))/2
Therefore, X3 can be customized as:
X3=(2,1,1,1)
e The rest of the bacteria (Xs...Xn) are initialized by following equation:

N(R,)=(min(R,)+max(Ry))/ 2+« (3.9)

This function has been proposed to introduce an element of stochasticity (as well as diversity)
into the initialization process. Where, ‘min(Rgq)’ is minimum resource of d" type, ‘max(Rq)’ is
maximum resource of d” type (obtained from module library) and ‘e’ is a random value

between max(Rq) and min(Ry).

3.2.5 Calculation of Fitness of a Bacterium

After the initialization of bacteria is performed (as shown in section 3.2.4), the fitness of
initial bacteria is identified. The fitness is evaluated using equation (3.8). For determining the
initial cost of the solution/bacterium, Pt and Tg are evaluated from equation (3.6) and (3.7).
For example, the calculation of total power (P1) of X;= (1, 1, 1, 1) using equation (3.6) is as

follows:
N (Eres + Epiy + Egor) .
— es mMux emux + N K .
T L+(N-1)-T, le( v Ke) P
P 1000 (7*(9.8) +2*(0.739) +1*(0.739) +1*(0.739) +8*(0.2) + 4*(0.2))
) =

66270+ (1000 —1) -66000

+(1*2464 +1*2032+1*2032+1*2032) *29.33
=0.25 mW

Similarly, the execution time is calculated using equation (3.7) as :

Te=[L+(N-1).T]

Te=1[66270 + (1000 — 1).66000]

=66 ms

Note- the values of L=66270ns and T, = 66000ns are derived from the scheduled DFG with
resource combination: 1 (*), 1 (+), 1(-), 1(<).Further, Pmax = 0.587mW and Tpnax = 66 ms

have been calculated based on worst case analysis of the scheduled DFG. For calculating the
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Begin
1. c@)y=c(i)+2 /I Set the step size; initial C(i) = 0.

If c@) > N(R;)™)

C(i) =C()™ —(C()™ —(C()™" -~ 2))
Else if (C(i)<N(R,)™)
C(i) = C(i)™ —(CH™ ~(C[M)™ +2))
2. Tumble: Generate a random vector A(i) € R with each element
A, (()m=12,...D arandom number in [-1, 1].

3.Fori=1topDo

3.1  Compute cost: C ;(N(R),N(R,),......... N(R ) e N(Rp))
32 XM =X
C,(X™)=C (N(R),N(R,),.ccreeren. N(Ry ). N(Ry) )

3.3 Move: Let X\ = X +C(i)¢
JAT ()AG)
3.3.1 IF (X (R,)"*" < 0)
X(R)M = X (RN +2| X(R,)M™| / techniques to handle boundary problem

Else If (X(Rd)iNeW > X(Rd)max)

X (RN =N(R))™ -1) // techniques to handle boundary problem
Else If (XR™ <N(RH™)
X (RN = N(R)™ +1) /1 techniques to handle boundary problem
3.3.2 If X" exists
Goto: Move in Step 3.3
3.4  Computecost: C,(X™)=C ((N(R),N(R,), wccrerrrrere. N3 N(R,))
aar g CO<CX=)
Cf (XiLaSt) = Cf (XiNeW)
XiLaSt — XiNeW
Else
Tumble: Generate a random vector A(i) € R with each element
A, (1)m=12,...D arandom numberin [-1, 1].
Goto: Move in Step 3.3
35, i++

4. Temp =Temp + At

Figure 3.3 Pseudo code for Proposed Chemotaxis Algorithm

cost equal weightage to power and execution time is given (4 = ¢,= 0.5). Finally,
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substituting the values in equation (3.8), the fitness of the bacterium X; is calculated as :

025-0.40 ., 66-39

C.(X,)=0.5* .
r(X) 0.58 66

=0.0676

Similarly, the fitness of rest bacterium’s calculated using equation (3.8) is:

C,(X,) =0.0676 fitness of X; (1, 1, 1, 1)
C,(X,) =0.0181 fitness of X, (4,2, 2, 1)
C, (X;) =-0.121 fitness of X3(2, 1, 1, 1)

3.2.6 Determination of New Configuration of the Bacterium
Once the initialization and fitness evaluation of initial population is done, the exploration

starts and the bacteria (representing a candidate design solution containing resource

New

configuration) moves to new unexplored positions ( X;™" ). Every bacterium in the population

iterates through a process of chemotaxis, replication and elimination dispersal to explore new
resource configurations in the design space. Therefore, the process of DSE is driven through
BFO containing its biological steps of chemotaxis replication and elimination dispersal.

3.2.6.1 Proposed Chemotaxis Algorithm for Exploration

The chemotactic movement involves two basic steps viz. move and tumble. The bacterium
can either move for a certain period of time in the same direction or it may tumble in the
design space, therefore, may alternate between these two locomotive operations. The
proposed chemotaxis algorithm, motivated from the basic chemotactic movement is shown in
Figure 3.3. It is based on proposed chemotaxis function (equation 3.10) which is a modified
derivative of basic chemotaxis function proposed in [37, 44]. In context of DSE, chemotaxis
helps in exploring new/unexplored resurce configurations within the design space.

The proposed chemotaxis function incorporates the behavior of tumble/swim in order to
explore the new design solutions (resource configurations). The proposed chemotaxis

function is:

XiNew _ XiLast +C(|)$ (310)

JAT (HA()
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Where, X"*is the new resource configuration of i" bacterium, X *'is the last resource

configuration of i bacterium, C(i) is the step size taken in random direction specified by the

tumble and A is a random vector whose elements lie in [-1, 1].

In context of DSE in HLS, a constant (as well as small) step size (C(i)) is not productive
owing to rendering unable to explore the wide design space quickly. Therefore, C(i) is
continually increased by a constant length in every iteration in the proposed chemotaxis
abiding the lower and upper threshold limits specified by the designer. This feature is shown
in step 1 of the algorithm (in Figure 3.3), while step 3 indicates the adaptation ability of the

algorithm when invalid solution for a certain dimension is obtained.

3.2.6.2 Demonstration of Proposed Chemotaxis Algorithm

For the proposed DSE, it is assumed that: N; = 120, Ny = 5, Neg = 4; tmin= 25deg C and
tmax=45deg C. Now assuming at j (chemotactic step counter) =19 the bacterium’s X; X, X3
are subjected to chemotactic movement with step size C(i) = 2 (as per Step 1 in Figure 3.3),
tumble vector =[1, 0.1, 0, 0.9].

Then for first bacterium,

Xi=(1, 1, 1, 1), a new resource configuration, X.**"is yielded as:

New g tast iy A
X; X; +C(I)m
1,0.1,0,0.9

V12 +0.12+0%+0.92
1,0.1,0,09,

J1.82
1,0.10,09,

1.35

1 01 0 09

1.35'1.35'1.35'1.35
=(1,1,1,1)+2*(0.74,0.07,0,0.66)
=(1,1,1,1)+(1.48,0.14,0,1.32)
=(1,111)+(2,1,0,2)

=(3,2,1,3)

= (LL,L1)+2%(

=(1111)+2*(

= (L1,1,1) +2%(

= (LL,L,1)+2%(

)

X = (3, 2, 1, 3) using step 3.3 (Figure.3.3). Since the value of N(R,)is greater than the
N(Rs)™, therefore, it is clamped using Step 3.3.1 (Figure 3.3).
This yields X*'=(3, 2, 1, 1).
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Begin

Fori=1top Do
Ford=1toD Do
1. Generate o € R; where (N(R,)™ <a < N(R,)™)

2. NR)™=NR)*ta
If (N(Rd)NeW >N(R)™)

N(R,)™ =N(R,)"™ -1 /ltechniques to handle boundary problem
Else if (N(R)™ <N(R,)™)
N(R)™ =N(R,)™ +1 /ltechniques to handle boundary problem

/[End For of d
3. If X" exists
Goto: Step 1
/l End For of i
4. Temp =Temp + At
5. jt++;
6. Goto: Chemotaxis

Figure 3.4 Pseudo code for Proposed Replication Algorithm
Further as the algorithm, this X, position has not been explored, so its fitness is evaluated

as:

C, (XM =C, (3,2,1,1) =-0.014;
which is accepted as, C, (X,**") <C, (X))
where C, (X,*') = 0.0676.

Similar, calculations is performed for other bacteria. Once the new values are found, the temp

is increased by At.

3.2.6.3 Proposed Replication Algorithm

In the proposed approach a modified replication algorithm has been proposed which has been
customized to the demands of the problem. Regular replication approach where the
information is copied to the replicated bacterium will render the resultant configuration
redundant in context of DSE. The new bacterium position is therefore manipulated by a
random a. However, while replicating from the original, the position ordering) of resource
types (dimension) is preserved in the bacterium configuration.

In the proposed approach, ‘N’ is the maximum number of times, replication can occur in the

entire DSE process. As shown in Figure 3.4, a random variable ‘a’ manipulates the given
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Begin

If (Temp > 40)

Fori=1topDo

1. Arr[i]= C' . (N(R),N(R),c.ceerrrene. N(R ). oveenen. N(R))
i++;

End For

2. () Xu=Xi(Least fit  (Arr[i]))

(i) X, =X,(Best fit  (Arr[i]))
3. Eliminate the least fit bacterium and perform dispersal
4. Dispersal:
4.1  Select the least fit bacterium.
4.2  Determine the midpoint configuration between the
two bacteria (best fit and the least fit).

X, (N(R), N(R,), N (R, N(R,)) and
X,(N(R),N(R,),N(Ry)...0o0e. N(Rp))
M = Xu(N(Rd))+ Xz(N(Rd))

2

4.3  Select any configuration randomly which lies beyond the mid
of the configurations.

X, (N(R),N(R,), N(Ry).cve N(R,))
X,(N(R)"™) =M —omega
1<omega < X,(N(R;))

44 If X, exists

Goto: Step 4.3 in Dispersal
4.5  Calculate cost of this new configuration of the bacterium:

C,(X,)=Cy (X, (N(R), N(R), N (Ry)-wcrer-N(Rp)))
4.6 If Cf(xv)<Cf(Xu)

X, (N(R),N(R,),N(R,).ovvvec.... N(R,)) = X, (N(R),N(R,), N(Ry)ceorrmre N(R,))

Else

Goto: Step 4.2 in Dispersal
5. Temp = Temp + At
6. j++;
7. Goto: Chemotaxis

Figure 3.5 Pseudo code for Proposed Elimination-Dispersal Algorithm

configuration with respect to each dimension (N(Ry)). After performing replication, resource
clamping is performed (if necessary) which limits the resource magnitude on the basis of

maximum and minimum available resources of a certain type. Finally, if the new solution
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(X**") found after replication is found to be already explored, then the replication (step 1) is

again performed. However, it is important to note that if the new cost of the replicated

bacterium position is found to be higher than its original position, then it is not accepted.

3.2.6.4 Demonstration of Proposed Replication Algorithm

Let us assume j (current iteration count) = 24 in the iterative process, then at this step
according to the flowchart shown in Figure 3.4 x = 24 (as k > 0; Nre= 5) which indicates
replication can be performed for the bacterium’s at this current ‘j* step. Now for X;= (3, 2, 1,

1), as per replication algorithm after generating new random ‘o’ for every resource type
(every dimension), say we get, X,**'= (5, 2, 2, 2) as new resource configuration.

However, N(R1) > N(Ry)™ and N(Rs) > N(Rs)™, therefore resource clamping is needed,
which results in X**'= (4,2,2,1). Since, if this resource configuration is found explored so

far, then a new configuration is explored using different ‘a’ as shown in step3 (Figure 3.4).

Once new values are found, temp is increased by At.

3.2.6.5 Proposed Elimination-Dispersal Algorithm to Introduce Diversity

The number of times ED algorithm is performed is denoted by ‘Neg’. We imitate the
biological phenomenon of an E.coli where a small rise in the temperature may Kill a certain
group of bacteria [37, 44] in our ED algorithm of the proposed DSE. Here, the temperature
chosen after which the elimination has to be performed is 40deg C. So, in order to implement
this behavior, new replacements are randomly initialized over the search space (between the
least fit and best fit bacterium position but beyond their midpoint) by eliminating the least fit
bacterium as shown in Figure 3.5. If the new replacement found (X,) is already found to be
explored, then the dispersal is repeated (step 4.3). Moreover, similar to replication algorithm
it is important to note that if the new cost of the dispersed bacterium position is found to be

higher than the replaced bacterium, then it is not accepted.

3.2.6.6 Demonstration of Proposed Elimination-Dispersal Algorithm

Let us assume j= 30 in the iterative process, then at this step according to the flowchart in
Figure 3.5. x = 30 (as | > 0; Neg = 4) which indicates ED can be performed for the bacterium’s
at this current ‘j’ step. However, before performing ED, the initial temp is verified in order to
simulate the real life biological phenomenon. Since, the value of Temp is not > 40 deg C,

therefore the ED is not executed at this j step.
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3.2.7 Termination Criteria (Z)
Two important aspects have been considered while deciding the condition of termination:
e The algorithm must not go into infinite loop.
e The proposed approach should not prematurely converge.
Considering these aspects, the termination criteria for the proposed approach has been fixed.
The criteria are:
e Terminates when the temperature has reached to the maximum value (45 °C) or
reached designer specified ‘NC ’ (i.e. maximum possible chemotactic step).
e When no improvement is seen in the global best among the bacteria population over
last 10 iterations (chemotactic steps).
If either of them is true then the exploration process will terminate.

Note — Results of the proposed method are given in chapter 8 section 8.1.
3.3 Summary

This chapter presents a fast and efficient DSE methodology for exploring power/area-
performance tradeoff in HLS. The proposed methodology transforms a BFO algorithm for
solving DSE of datapaths in HLS. The algorithm mimics the biological phenomenon of E.
coli bacteria and simulates the DSE process within the operating temperature of E. coli. The
process is able to efficiently explore the architectures within the design space by yielding
optimal results and resolves the multi-conflicting objectives by concurrently handling the

orthogonal issues such as QoR and exploration time.
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Chapter 4
Automated Design Space Exploration of Multi-Cycle
Transient Fault Detectable Datapath based on Multi-
Objective User Constraints for Application Specific
Computing

Solving the DSE problem for data intensive applications and optimizing area, power and
performance has no longer been sufficient now. Specifically, for current generation of
systems which demand designs (especially for space applications where radiation induced
faults are highly possible) that requires ability to detect errors occurring due to transient faults
(such as single event upsets). Transient faults are radiation induced faults which are non-
permanent in nature. These nonrecurring faults can be caused by energized particles,
environmental noise or electromagnetic interference. The duration of such faults is in order of
a few picoseconds [28, 37]. In order to achieve high reliability, multi cycle transient fault
security [48-52] should be considered as design metric (or constraint) during multi-objective
DSE in HLS. Generation of an optimal fault secured datapath structure based on user power-
delay budget during HLS in the context k-cycle (k) transient faults is considered a NP
complete problem. This is due to the fact that for every type of candidate design solution
produced during exploration; a feasible k. fault secured datapath may not exist satisfying the

conflicting user constraints/budget.

This chapter presents an automated DSE approach of multi-cycle transient fault
detectable datapath based on multi-objective user constraints (power and delay) for
application specific computing. The proposed DSE framework is driven by an intelligent
PSO algorithm which incorporates multiple parameters and conditions to handle efficient
exploration. To the best of the authors’ knowledge, this is the first work in the literature to
address this problem. Moreover, novel schemes for selecting appropriate edges for inserting

cuts in the scheduled DFG, minimizing delay overhead associated with fault security are
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proposed in the chapter. The detailed description of the proposed methodology is given in

subsequent sections.

4.1 Problem Formulation
To explore the design space of a given DFG, and determine an optimal resource set
X, ={N(R)),N(R,), N(Ry)....N(Rp)}
which satisfies conflicting user constraints and minimizes the overall cost.
The problem can be formulated as:
Find: an optimal X;

with minimum hybrid Cost(P.”™? T.""%)

subjected to: R.°"® <P and  T.”™<T_ . and k. fault.

— ~ cons cons

Where, N(Rq) is number of instances of a resource type ‘d’, P,°"is power consumed by a

fault secured DMR system, T."""is the delay of a fault secured DMR, Tcons and Peons are the

user specified execution delay and power constraints while k. is the strength of the fault.

4.2 Proposed Methodology

4.2.1 Motivation

As already discussed in chapter 2, due to escalation in technology trends and density per unit
area, there have been serious concerns related to security and faults in the devices. It can be
said that the increase in density per unit area is negatively impacting the device and overall

systems reliability by making it susceptible to transient fault or the Single Event Upset (SEU)

A [ Xn ][ B [[Xnl |[[Xn2 |[ D |[Yn2 | E |[Ynl

1 X
M1

2. A

3.

4.

5,

Figure 4.1 Scheduled Sequencing Graph with Data Registers
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[48] leading to SET especially in space applications. In terrestrial applications, the SEU can
also be caused by the alpha particles emitted from the impurities during IC packaging.
Transient faults can be single or multi-cycle in nature. So, it is important to consider the
strength of the transient fault (k;) during specification as design objective while designing a
system. This worst case transient pulse duration (k) value is used as a design specification
(or fault constraint) before initiating the exploration of optimal k. transient fault secured
datapath during HLS [49].

Let us take an example to demonstrate the multi-cycle transient faults and its effect.
Given a sample scheduled data flow graph (SDFG) in Figure 4.1. It shows a scheduled data
flow graph of an application which uses two multipliers (M1, M2) and one adder (A1). Under
standard conditions, the circuit undergoes a traditional computation, thereby generating a
feasible error free output. However, if a transient fault occurs at any unit in the circuit due to
particle strike, the corresponding output becomes erroneous, thereby affecting the entire
circuit. For example, let us assume, if a two cycle fault occurs at Multiplier M1, when the
state of the system is in control step 1. Then the error developed affects all the operations
performed by the operator M1 during those two cycles. The span of the error affecting similar
operators depends upon the nature of the transient fault (cycle duration). Thus, M1
incorrectly executes operation 1 at step 1 and also, operation 4 at step 2. But as soon as the
system propagates to step 3, the effect of fault generated on M1 normalizes and the fault
disappears. Hence, M1 operates correctly for the operation 7 at step 3. Such faults which
occur once and then disappear are referred as transient faults. Once this fault occurs on a
logic element of a system, the fault is associated as transient fault of the operator.

Therefore, it is important to consider transient fault (k;) as a design metric while
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designing a datapath during HLS. The framework to obtain a low cost k. cycle transient fault
secured datapath during behavioural level (reliability centric design) is explained in later

sections.

4.2.2 Proposed Framework

This section presents a framework which handles transient faults with k. strength and
generates a low cost k. cycle transient fault secured datapath during behavioural level. The
framework of the proposed multi cycle fault secured PSO-DSE is shown in Figure 4.2. The
input block comprises of module library, behavioral description of DFG, predefined user
parametric constraints for power and delay as well as k-cycle fault constraint (k;). Further, the
input block for control parameters such as acceleration coefficient, inertia weight, swarm size
and terminating criteria are used for regulating the exploration process. The proposed
framework has a subunit for initialization/encoding of the particles. Each encoded particle is

passed through the block for designing fault secured SDFGPMR

, Which is responsible for
converting an untimed DFG into a scheduled kc fault secured DMR system.

During this process appropriate cut (for checkpointing) is inserted based on proposed
scheme (discussed in later sections) to optimize the delay overhead associated with fault

security. Once the optimized SDFGPMR

is built, it is subjected to fitness evaluation and the
new velocity of each particle is determined for obtaining the new design solution (new
location in the design space). The new design solutions obtained are again similarly subjected
to the fault secured SDFGPMR block to convert it into a fault secured SDFG, followed by its
fitness evaluation. Subsequently, the global best and local best solutions in the process are
also updated. This process continues until the terminating criterion is reached yielding an
optimal fault secured datapath architecture (or SDFG°™F) which comprehensively satisfies

the constraints of Peons, Tcons, Kc and minimizes cost.

4.2.2.1 DSE Framework

The DSE framework used for generating a lost cost k. cycle transient fault secured datapath
during HLS is PSO-DSE. To solve the problem mentioned in this chapter, PSO as DSE
framework is used to explore the design space. This is because PSO is considered more
suitable than other Evolutionary Algorithms (EA) such as GA, hybrid GA and BFOA. This is
due to reason that the later approaches do not provide enough flexible options for introducing

stochasticity into the exploration process as well as is computationally more expensive.
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Algorithm: PSO-DSE
Input- DFG, Module library, User Constraints Output- Optimal resource configuration

{
Read Library ()

Read DFG ()
Determine boundary constraints for power and execution time

I ((Prin > Poons > Prax | Tmin > Toons > Tmax )) //Checking validity of user constraints

I1 Show error message and request for valid constraints

Initialization (resource configuration, velocity)
Fori=1toS //S =# of particles)

{

C, (X,) = f (Power, Executiontime) // calculate fitness of all particle

/ffind best resource configuration that is the current global best resource configuration
/I'M = # of iteration

ng = Xi[Min(Cf,Dl (Xl)’ Cf,hl(xz)’ Cf,bl(XS)""Cf,bn (Xn))]
While (2)

Fori=1ltop //p = (# of particle)
Ford=1toD

/ determine new resource configuration and velocity for i particle and d™ dimension
Rdi - f(vdi ! Rdi)

max + max
||:(—Vdi >Vdi>Vdi )

Perform Velocity Clamping ()

/Icheck boundary constraints outreach
IF (minR,) > R; > max(R,))

Adaptive-end-terminal-perturbation ()

} 1/ check for local best resource configuration
IF (C; (X)(t) <Cgp(X;))
{
Cflb(xi) = G (Xi)(t)
Kipi = X (t)

}

// determine new global best resource configuration
ng = xi[Min(Cf,bl(x1)7Cfm(X2)7Cf|b1(XS)""Cf,bn (X, )]
Adaptive-Rotation-Mutation

ng = xi[Min(Cf,bl(xl)icf,m(xz)’Cflm(XS)""Cf,bn (X, )]
t++;

} 1/ end of while loop;

Output optimal resource configuration

Figure 4.3 Pseudo code for PSO-DSE
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Moreover, it has been proved in previous works [53, 54, 55, 56] that PSO is highly adaptable,

provides faster convergence and offers higher chances of reaching optimal solution in less

exploration time.

The pseudo code of the PSO-DSE approach is presented in Figure 4.3. While the proposed

mapping is given as follows:

START —»

Xi, ke, DFG

\ 4

Build SDFGPMR comprising of U°® and U®" based on: X;
Where X; = N(Ry), N(R,)__N(Rq)

b)

! a)

Assign opn: v & v’; where v e U°® and v’ € UP® (v and v’ are same
operations of original and duplicate) to distinct hardwareif available
(this assignment helps in detection for k.> 1& k.= 1)

A 4

Keep same
Not assignment for v’

Available (as v) as long as:

tv’)—tv) >k

k. constraint satisfied

v k. not satisfied

>
<
y

A

Goto checkpointing rules to insert
checkpoints/cuts based on X;

No

A

Push v’
one CS

k. constraint
satisfied

Evaluate cost

Assign v’ to any other available hardware

of SDFGPMR

from X;

k. violation
between
v&y’'?

Change v’ to original assignment and assign
V. to new hardware unit

v

PSO-DSE framework

A

Do not insert
checkpoint/Cut

No

k. violation
still between
v&v’?

A

Figure 4.4 Algorithm for generating a k-cycle Fault Secured SDFGPMR
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Position of particle — Resource configuration

Velocity of particle —> Exploration deviation/drift

Dimension - Number of Resource type
To transform the PSO into multi-objective DSE problem the position of a particle is
represented by a set comprising of resource combination, total number of dimensions is
represented by sum of the number of resource types, while the velocity of the particle in d™
dimension acts as a parameter that provides the drift during DSE.
The later subsection describes the proposed approach (based on particle swarm optimization
[84, 85])

4.2.2.2 Assumptions of Proposed Algorithm

This subsection illustrates the assumptions which have been considered while designing the

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath.

o Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration
of single fault model for transient faults is widely assumed and adopted in all related
works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle
transient fault detectable datapath also uses the same assumption.

o The faults occur only at the hardware units and not at interconnecting wires.

o The system only handles the transient-faults and not permanent faults.

o The pair of unit in the DMR system has a comparator for error detection, whereby the

comparators are considered fault detectable.

4.2.2.3 Proposed Algorithm for Design of k. Fault Secured DMR System

The proposed methodology for designing k. fault secured DMR system is shown in Figure
4.4. The proposed algorithm accepts the following as inputs: X; (particle position denoting
datapath configuration), the DFG, fault security constraint (k) indicating the strength of the
fault and module library indicating the hardware units available for allocation. The output of
the proposed algorithm is a valid k. cycle fault secured scheduled DMR system that is
iteratively feedback to the PSO-DSE framework for exploring the next design solution based
on the fitness evaluation. The DMR system involves a SDFGPMR, consisting of schedules of
original unit (U°®) and duplicate unit (U°"). The pair of units is concurrently scheduled on
the basis of ASAP scheduling using the user supplied resource constraints X; and available

dependency information of the nodes. After obtaining the scheduled DMR system, the
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hardware allocation of both the units (U°® and U") is performed. Operations of the
SDFGPMR system are allocated to hardware on the basis of fault security conditions
(schemes) shown in Figure 4.4 (sub-block (a), (b) & (c)). Allocation of hardware to

duplication unit of SDFGPMR

without obeying the rules proposed in the algorithm may result
in Transient Fault Hazards (TFH) between similar operations (of original and duplicate)
assigned to same hardware unit i.e. TFH between similar operations belonging to a same
hardware exists when:
t(v)- t(v) < k., where v e U%® and v e UP™ (4.1)

These hazards are resolved in the proposed algorithm by pushing the affected operation v’
(and accordingly its successor) of the duplicate unit in later control steps, if assignment
(allocation) rules (a) and (b) fails. The push is done such that the interval between v € U°®
and v'e U™ is greater than (or equals to) k. This resolution of the TFH is done until the TFH
of the whole DMR system is resolved, i.e. SDFGPMR obeys either of the fault security scheme
((a) or (b) or (c)) proposed in Figure 4.4. The blocks after the cut condition block are for
handling the possible assignment violations that could occur in the modified fault secured

SDFGPMR due to insertion of cut.

4.2.2.4 Demonstration of Proposed k. fault secured DMR system

M1 In the figure below: k. violation occurs as fault is active till
11 5 cycles (i.e. from CS 1 to CS 5). The non-fault secured
(uncorrected) SDFGP™® with Xi = (1M. 3A). K¢ = 5:

. G\AéAl @AZ 1QM.2 (M1)

N\
6 ;‘ Al 2/@M-2 (M1)
7 A2 4’®/3/’E>VM1)
8 45’ - ‘ﬁ(m)

10 8 G)KAZ
Figure 4.5 Uncorrected 5-cycle fault secured
SDFGPMR
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Let us consider an example and demonstrate such condition. Consider the example shown in
Figure 4.5. In the Figure 4.5 both the conditions, a) and b) mentioned in Figure. 4.4 are not
satisfied. Therefore, condition c) (from Figure 4.4) is applied which successfully converts the
non-fault secured SDFG®R into a k. fault secured SDFGPMR. Let us analyze the SDFGPMR
shown in Figure 4.5. Assuming the particle position X; as: (1M, 3A) and k. = 5, a fault
secured SDFGPMR has to be designed. Based on the availability of resources (as per X;), only
one multiplier is present for building the entire DMR system during scheduling. However, for
enabling single fault model security feature for k.> 1, distinct hardware assignment is
necessary between similar operations in original and duplicate e.g. opn 1 and opn 1’ cannot
be assigned to same hardware units (according to condition (a)) (Note: in duplicate unit,
hardware M2 is crossed to indicate that it is prohibited to use distinct hardware due to lack of
availability specified in X;). Next, according to the condition (b) of Figure 4.4 stated above,
same hardware assignment may be kept if #(v’) — ¢(v) > k;, however t(1) — ¢(1°) < k.. Similarly,
t(2) — 1(2°) <k, t(3) — t(3°) < k¢ etc. Therefore as per proposed algorithm, condition (c) is
applied which pushes 7’ € U™ into next CS. Automatically, 2’ € U is pushed down into next
CS due to lack of available multiplier. Similarly other operations suffering from k. violation

is also pushed down in lower CS. The resultant corrected 5-cycle fault secured SDFGPVR is

In the figure below: k. violation is removed by pushing v’ (and
GOMR

1@& associated operations) one CS below. The corrected SDF

with X; = (1M, 3A), Kc = 5:
2 \ \}E)
\
3 4 Al 3§>M1
4 \
\
6 Al 7\;>A2
5 \\
6 SG{Al 1’/ M1
2 M1
7 //®
9 ’/ 9
8 A2 4@ 3/@) 1
ol
9 5 M1
SA
10 A2 }‘ 7(DAL
Q 1@
1 8®A2

Figure 4.6 Corrected 5cycle Fault Secured SDF

DMR
G
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shown in Figure 4.6.

4.2.2.5 Proposed Schemes for Insertion of Appropriate Cuts in Corrected k. SDFGPMR
This section proposes schemes for inserting cuts in corrected k. SDFGPMR. Insertion of inapt
cut to optimize delay overhead associated with fault security in most cases may not yield
optimal solutions in the context of user constraints/budgets. In cutting some data edge of the
duplicate unit is broken to remove the data dependency between operations thereby moving
the dependent operation in upper CS (which then obtains its dependent output from similar
operation in original unit). According to our algorithm (Figure 4.4) explained in previous

GPMR s obtained.

section, insertion of appropriate cut is performed after the corrected k. SDF
However, insertion of appropriate cut (i.e. selecting the correct location/edge in the scheduled
DMR) is not a trivial task. This is due to the fact that inapt cutting does not facilitate in
optimizing delay occurring due to fault security, thereby resulting in resulting in longer delay
increasing chances of possible violation of user delay constraint. Further, hit and trial process
of inserting cut is highly time consuming thereby may increase exploration runtime beyond
an acceptable range.

Motivating from these bottlenecks, schemes for insertion of appropriate cuts in
corrected k. SDFGPMR are discussed later in this section. The schemes guarantee reduction of
delay overhead due to fault security, if any possibility exists. The cuts (checkpoints) are
inserted by traversing each node of corrected DMR schedule bottom to top searching for
existence of any condition 3 (C3)/condition 4 (C4) illustrated later. This is because as

described each of C3 or C4 is able to reduce delay overhead in fault secured DMR system.

8 -—->v
6--->v’
M1 M2 M3 7> v
1 1 2 3 Cut between 6 &8’ or 7°& 8 does not reduce
delay as 8’ cannot shift up to CS 5
‘ K \ 5 ’
.G ek Qe o
¥ R
3 G\‘Qﬁl/@y\z 4’\ OIS OL.

5’ M2

v A
6’ GiAZ 7’ /G)Al
5
?\®/
6 8 A2

Figure 4.7 Example for C1
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Note: Only single cuts (single additional checkpoint besides the regular checkpoint at
the final output) are allowed in all cases in order to avoid excess hardware overhead
(comparator/voter).

The Conditions are as follows:
o Cl:Ifv’ & v’ are the inputs to v, such that CS (v’’)) — CS (v’)) =0 (i.e. v & v’ are
allocated in same CS),

then:

No cut is allowed between v’ & vorv’’ & v.

o Demonstration of C1
For example, consider a SDFGPMR with X; = (3M, 3A) shown in Figure 4.7. If a fault of k.>1
(multi cycle) effects the system, then, a cut between 6° & 8’ or 7°& 8’does not reduce delay

as 8’ cannot shift up to CS 5. Therefore, no cut is allowed between any nodes.

® C2:[fv’& v’ of same operator type are the outputs of v, such that CS (v’’) — CS (v’)
=0 (i.e.v’ & v’ are allocated in same CS),
then:
No cut is allowed between v’ & vorv’’ & v.
o Demonstration of C2
For example, consider a SDFGPMR with X;= (3M, 3A) shown in Figure 4.8. If a fault of k.>1
(multi cycle) effects the system, then, cut between 5> &6’ (or 5° & 7’) does not reduce delay
as shifting 6’ (or 7”) to CS5 does not benefit. Therefore, no cut is allowed between any nodes.

5 >V
6’--->v’
M1 M2 M3 Jee>y o
1 3 Cut between 5° &6’ (or 5° & 7°) does not reduce

delay as shifting 6’ (or 7°) to CS5 does not benefit
1~ T
) QAl QKA 1 @MZ 2’ (*)M3

3 6@1\{7@2 NG \4’ SIENOLE

\
5’M2 2 6’
A1 7
® Figure 4.8 Example for C2 ¥ Gﬁ
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57>y

6>’

7>y

Cut between 5° &6 'reduces delay in nanosecs as
M1 M2 M3 6’ is a multiplication. So after shifting 6°, CS 5

2 3 @ only contains 7’ (addition).
RO \5‘9'“1 1 GOM2 2’}<>M3
N
;‘Qk{7bxx2 4’\ @Ae N OLL
5" M2
y Y
6 Gjmz 7 /G)Al
5
\ v
6 8 A

Figure 4.9 Example for C3 Before Cut

[N
[y

N

w

o C3:Ifv’ & v’ ofdifferent operator type (tv’’ < tv’i.e. delay of v’'< delay of v’) are
the outputs of v, such that CS (v’’) — CS (v’) =0 (i.e. v’ & v’ are allocated in same
CS),
then:
Cut is allowed between v’ & v.
o Demonstration of C3
For example, consider a SDFGPMR with X;= (3M, 3A) shown in Figure 4.9. If a fault of k.>1
(multi cycle) effects the system in Figure 4.9 then, a cut between 5’ & 6’reduces delay in
nanosecs as 6’ is a multiplication. So after shifting 6°, CS 5 only contains 7’ (addition).
o CA4:Ifv’ & v’ are the inputs to v, such that v is a single operation in a CS in
duplicate and CS (v') — CS (v’) > I (i.e. v & v’ are greater than one CS apart),
then,

Cut is allowed between v & v’.
o Demonstration of C4

For example, consider a SDFGPMR with X;= (3M, 3A) shown in Figure 4.10. If a fault of k. =
1 effects the system in Figure 4.10, then, as seen in Figure 4.11, an additional checkpoint is
inserted at the output of 3°. Now, if a fault occurs at M3 affecting opn 3, then this faulty
output affect opn 5°. The checkpoint at final output (comparing 8 and 8’) is not able to detect
the fault. However opn 3’ remains fault secured. Therefore, the additional checkpoint inserted

at output of opn 3’ (comparing 3 and 3’) detects the transient fault.
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5 --->v
3>y
1--->v

M1 M2 M3
1 1 2 3 Cut between 3’ &5’ is applied
A~ T ) )
) RO Q‘K/u YO EOLE
\4 ﬁ/ : \\ ' 3(x)M1
3 1 7(A2 4’@ A3 p
o (% TG N
5’ M2
4 8 Al

Fiaure 4.10 Example for (§4 Before Cut
P>y

3>y’

[’--->y”
1 1 M1 2 M2 3 M3 Cut between 3’ &5 'reduce delay in nanosecs as 5’

@\\ shifts to CS3 without violation
2 4‘QX1 \S‘Q 1 RN 1GoM2 () M3
~
\ v S N »
) 3 M1 M2
R o ok ROl &
r'd

4 8 Al 6 A2 7 GS/As
—
5 g’ A2

Figure 4.11 Example for Condition 4 After Cut

Note: While deciding for inserting cuts in duplicate, only C3 andC4 is checked. If
either of the conditions (C3/C4) yield benefit, further checking is not carried out for that
SDFGPMRj.e. if C3 is found to yield benefit, then C4 is not checked further.

4.3 Proposed Evaluation Models
For evaluation of a particle (or design point), the following models have been proposed.

4.3.1 Proposed Power Model

DMR DMR
Pt

of a resource set is represented in terms of Static Power (Ps~ ) and Dynamic Power

(Pp"MRy. <P{PMR- is represented as:
pOMR _ pOVR 4 p DMR (4.2)

is a function of area of resources and leakage power per transistor. It can be
formulated as:-

PSDMR

p,PMR :ZD:(N(RO,).K(R(,).pC (4.3)
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Where ‘N(Rq)’ represents the number of instances of resource Rq. ‘K(Ry)’ represents the area
occupied by resource Ry, ‘D’ is the number of resources (FU’s) and ‘p.” denotes the power
dissipated per area unit (e.g. transistors).
While, the average dynamic power consumed by a resource configuration is a function of
dynamic activity of the resources and can be given as:
EDMR
PDDMR — T;ﬁ (4.4)

Where, ER)® is the total energy consumption of the resources in fault secured DMR system

and T."™® is the total execution time of DMR system.

4.3.2 Proposed Execution Time (Delay) Model

For given ‘D’ functional resources the execution time is:

T.OVR = i Max(D(op,),....D(op,), D(0p,),......D(op.,)) (4.5)

c.s=1

Where, 1<i<n and ‘1< ‘i <*n. (Here, operations in original and duplicate are labelled as
i and i’ respectively; n and »” are maximum value of node); D(opn) is the delay of operation

‘n’ while c.s is the control step.

4.3.3 Proposed fitness function
To assess the quality of explored configuration, the proposed fitness function motivated from

the existing fitness function discussed in equation (3.8) is defined as:

P MR Pcons T PR _Tcons
Cf(Xi):¢1 TP DMR +¢2 ET DMR (46)

Where, C, (X;) is the cost of particle with resource set X;, ¢ and ¢,are the user defined
weights for power and execution time parameters, T__ °"®is the maximum execution time of

a fault secured DMR system in design space while P, °"®is the maximum power of a fault

secured DMR system in design space. The above function is a normalized penalty function
where the cost value obtained, considers the power and execution time of DMR design. The
normalization is achieved by dividing the value obtained by placing the maximum value in

the denominator of the function.
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4.4 Demonstration of PSO-DSE Methodology
4.4.1 User Specification

The goal of exploration problem is to simultaneously meet the user provided constraints for
power and execution time and generate a low cost optimal k. transient fault secured datapath.
Therefore, the exploration process requires constraint inputs of power and execution time i.e.
P..and T

cons cons !

before initiation.

4.4.2 Boundary Constraints Check Module

This module checks whether the specified user constraint falls in the valid range of boundary

limits. The following condition is checked for each parametric constraint specified:

. DMR DMR DMR DMR
1. Check: P~ > Pcons >Po T >Tcons >Tox

2. If the above condition is true then stop and correct the constraints.
Else the above condition fails and goes to step 3.

3. Execute the initialization process of Module.

4.4.3 Particle Encoding/Initialization

The particles are initialized to uniformly cover the design space. The initialization is done on
the basis of proposed scheme discussed in previous chapter. For example, in Figure 4.1 used
for demonstration, as evident there are three types of resources (i.e. D= 3) viz. multiplier,

adder and subtractor. Therefore with respect to the example, a particle position is given by: X;

Adaptive end terminal perturbation
Input- Resource configuration which crosses the design space
Output- New value of resource configuration with in design space
//When R;jq crosses the design space boundary
While (Rid< L)
Rig=Rig+Y
}
While(Rid> U)
Rig=Riga-Y

/* where ‘Y’ is a random value between minimum resource constraints and
maximum resource constraints.

‘L’ is lower boundary which means minimum resource value single instance.
‘U’ is the upper boundary which means maximum # of resources*/

Figure 4.12 Adaptive End Terminal Perturbation Algorithm
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= (N(mul), N(add), N(sub)). Hence, using initialization as done in chapter 3, X; = (1, 1, 1); X;
=(4, 2, 2); X3= (2, 1, 1) can be obtained assuming maximum available multiplier resources:

4, and adder resources: 2 and subtractor resources: 2.

4.4.4 Initialization of Velocity, Acceleration Coefficient

Velocities of all particles are initialized to zero. Further, in order for the PSO-DSE to achieve
convergence, it has been theoretically established before in [56] that the cognitive learning
factor (b;) and the social learning factor (b,) can be initialized to any value between [1-2].
(Note: It is mathematically proved by authors in [51] that, when the value of ‘b’ is pre-tuned
between [1-2] and value of ‘@’ between [0.9 to 0.1], the algorithm will converge for any
given initial value of position and velocity). Therefore, the value of b=2 and w linearly

decreasing from 0.9 to 0.1has been used during experimentation.

4.45 Determination of Fitness and Update Local and Global Best Position
Based on the initialization of particles performed in section 4.4.3, the initial fitness of the

individual values of power and execution time for all particles needs to be calculated.

Adaptive rotation mutation
Input — Local best resource configuration R"
OIIBItpUt — New mutated local best resource configuration
R
Fori=1top // where p = Swarm size(#of particles)
{
if (1%2==0) // Left Rotation
{
For j=1to D
{
Temp = R;
Rj = Rj +1
Rj+1 = temp
JHt
¥
b
if(1%2==1)
Forj=1to D
{
RJ' = RJ' + X
/I X is a random number between [1,3]
j++
¥
¥
i++;:
¥

Figure 4.13 Adaptive Rotation Mutation Algorithm
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4.4.6 Determination of Local and Global Best Position
Since in iteration 1, there is no previous local best position for an i particle (Xy») therefore
the current position (X;) assumes the value of Xy. The global best position (Xg,) of the

population so far is determined using equation (15) as follows [31, 32]:

X = X [MIn(C; (X)),C; (X,),Cy (X,)...Cq (X))] (4.7)

Where, C, (X;)is the local best fitness of particle ‘X and “Xgo* indicates the global best

fIbl fIbl fIbn

particle position with minimum cost among all particle positions (X; .....Xp).

The PSO-DSE [31, 32] also comprises of mutation performed on the local best with
probability P, = 1.0 and adaptive algorithms to handle boundary overreach (shown in Figure
4.12) and mutation (shown in Figure 4.13) during exploration.

4.4.7 Determination of new position of each particle
Iteration process initiates at this step. According to PSO-DSE, each individual iteration

computes new resource value of a particle X; in d™ dimension through: R, = f(v,,R,)Which
can be expanded as specified in equation 4.8 [54, 55, 57]:

R, = Ry +Vy (4.8)
Where, R, is the new resource value of particle X; in d™ dimension and Ry, s the previous

resource value of particle X; in d™ dimension; Vdj is the new velocity of particle X; in d™
dimension (i.e. step length taken per unit time in d™ dimension) which is updated by equation
(4.9) [54, 55, 57]:

Vy = Vg, +bin [Ry,. -Ry, J+bory [ Ry, <Ry, | (4.9)
Where, ‘Ry .’ is the resource value of Xjp; in d™ dimension and ¢ Ryg 18 the resource value of

Xqp in d™ dimension.

Note- X,; ={R, R, ..Rp }and Xy, ={R, ,R, ..R; }

gb

4.5 Stopping Criteria (2)

The proposed algorithm terminates when one of following condition holds true:

e When the maximum number of iteration have been exceeded (M = 100) or,

e S' When no improvement is seen in Ry Over ‘£” number of iteration. (£<10) or,

e S% If the population reaches to equilibrium state i.e. all particles velocity become zero
(V' =0).
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Note: Results of the proposed method are given in chapter 8 section 8.2.

4.6 Summary

Over the years the DSE process has evolved where the requirements specified by the user
have also convoluted, ranging from simple area-delay tradeoff in initial years to complex
power-delay tradeoff in recent years. The approaches developed so far aimed at exploring the
design space along with balancing some multi-conflicting issues during generation of the best
possible solution. Solving the DSE problems with such objectives has no longer been
sufficient now. There is demand for designs, which require ability to detect errors occurring
due to transient faults. To achieve this, high reliable designs that have ability to detect errors
are generated. This chapter presented an automated DSE approach to detect transient faults
and generate an optimal fault secured datapath for data intensive applications based on user

specified power-delay budget during HLS.
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Chapter 5
Multi-Cycle Single Event Transient Fault Security Aware
MO-DSE for Single loop CDFGs in HLS

The availability of faster devices is a feature of future technologies that induces major
concerns to the fault detection community. For those technologies, even particles with modest
Linear Energy Transfer (LET) values will produce transients lasting longer than the predicted
cycle time of circuits. Therefore the technology evolution and LET of particle impact both
plays a major role in inducing multi-cycle (k-cycle) transient fault (longer duration transient)
in a device [58. 59]. Therefore, fault security should be considered early in the design cycle
as design objective, besides traditional design objectives such as area and delay during DSE.
Multi-cycle SET fault security aware Multi Objective Design Space Exploration (MO-DSE)
for single loop CDFGs during behavioural synthesis has not received much attention in the
literature. Solving the aforesaid problem in the context of CDFG is non-trivial. This is
because it involves simultaneous generation of an optimal combination of multi-cycle fault
secured datapath and loop unrolling factor satisfying conflicting user constraints (such as

hardware area and delay).

This chapter solves the aforementioned problems and proposes a multi-cycle SET
fault security aware MO-DSE methodology that explores an optimal combination of transient
fault secured DMR datapath configuration and loop UF for CDFG. The proposed approach
maintains a trade-off between hardware area and delay as user constraints during exploration
process. The detail description of the proposed approach is given in subsequent sections in

this chapter.

5.1 Problem Formulation

The problem can be formulated as:
Find: Optimal (X;) = (Rx, UFy)

with minimum hybrid Cost (A "8, T.°"F)

Subjected to: AP <A and T.°Y <T__and k. transient fault constraint;

cons

where, ‘X;’ is a set comprising of resource combination and UF formally represented as :
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Module Library PSO-DSE Process
User Constraints e e . iani
(Initialization, velocity Bloc_:k for de5|gn|_ng
Pre-processing algorithm calculation/clamping multi-cycle Transient
Single loop CDFG ™= Global best position and [* 7] Fault secured scheduled
F : DMR CDFG
Transient fault strength fltness_evaluatn_)n of
candidate design
INPUT BLOCK )

g

Optimal multi-cycle transient
fault secured solution

Figure 5.1 Proposed Multi-cycle Transient Fault Security Aware DSE During
Behavioural Synthesis

Xi=(Ryx, UFy) ={N(R)),N(R,),N(Ry)....N(Rp),UFR}
where, ‘N(Ry)’ is the number of instances of resource type ‘Rq’; ‘D’ is the total number of
resource types; UFy is the N™ unrolling factor; ‘R, is a candidate resource combination for
optimal solution; UFy is a candidate UF; ‘A°™*’ and Te°™®” are the areas used by a fault

secured DMR system and execution delay of a fault secured DMR system respectively;

‘Acons’ and ‘Teons’ is area and execution time constraints specified by the user.

5.2 The Proposed Framework and Mapping Process
The framework for exploration of an optimal multi-cycle transient fault secured solution is
presented in Figure 5.1. To transform the PSO into multi-objective DSE problem the position
of a particle is represented by a set comprising of resource combination and UF; total number
of dimensions is represented by sum of the number of resource types and UF. Finally, the
velocity of the particle in dth dimension acts as a parameter that provides the drift during
DSE.

During exploration process the design points are evaluated. To evaluate the design
points, model for execution time, model for area evaluation and model for cost (fitness) have

been presented in the upcoming section.

5.3 Proposed Evaluation Models and Formulation

In the proposed PSO-DSE, each particle position represents a resource set (Ry) in the design

space.

5.3.1 Proposed Model for Execution Time
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Figure 5.2(a) FFT Loop Figure 5.2(b) FFT Loop Unrolled Twice

In order to describe the formulation of proposed execution time (T2 ) (function of loop

unrolling factor) for a CDFG, an example of loop unrolling is used shown in Figure 5.2.
Figure 5.2(a) shows the original loop part of CDFG for FFT and Figure 5.2(b) shows the
same loop part unrolled twice. Figure 5.3 shows ASAP scheduled CDFGP™® for FFT
unrolled twice with resource constraint of 4(+), 2(*), 1(-) and 1(<); UF=2 and iteration

count=4. It also shows the trailing loop part of the unrolled CDFG is not available for this

case.

The generic execution delay model for a loop unrolled CDFGPMR is shown as follows:
| floor

Co = [C&Z@R *[U—F} ]+(| mod U F)*C2'®, (5.1)
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floor
Where, [CQ?VR*{ULF} jare total CS for unrolled loop, (I mod U F)*Cgi are total CS

for sequential loop. C™"®is total CS required to execute the loop of CDFGPMR completely,

Couy is the number of CS required to execute loop body of CDFG”™® once, ‘T’ is the

maximum number of iteration (loop count), C2¥*is number of CS required to execute first

first
iteration of the CDFGPMR. However, if the system design supports enough hardware

instances such that sequential loops are possible to be fed to multiple hardware instances in
parallel, then the total CSs for sequential loops from above equation (5.1) is, C%" . Finally,

first

execution time for the system calculated as:
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TEDMR — A*CTDMR (52)

where, ‘A’ is the delay of one CS in nanoseconds.

5.3.2 Proposed area model

DMR

Total area consumed (Ar~") by a resource set is given by:

AP =3 (N(R)*K(R)) (5.3)
i=1
where, A" is the total area of a DMR design, ‘N(Ry)’ is the number of instances of

resource type ‘Ri’.Note: The area component includes area due to functional resources,
interconnect units (mux and demux), comparator (for error detection) as well as overhead
incurred from internal buffering (during temporary storage of operation output in DMR

scheduling).

5.3.3 Proposed Fitness Function
A fitness function which is a normalized penalty function where the cost value obtained
considers the constraints for area and execution time of DMR design is proposed as follows:

Cf (XI) =¢l Ar _Azons +¢2 TE _Tcons (54)

DMR DMR
Avex Tonax

The above equation is motivated from the existing fitness function discussed in equation

3.8). Where, C. (X.)is the cost of particle with resource set X.: T PR is the maximum
( f i p I max

DMR

execution time of a fault secured DMR system in design space while A~ is the maximum

area of a fault secured DMR system in design space.

5.4 Proposed Methodology
As seen from Figure 5.1 the input blocks comprise of module library, behavioural description
of CDFG, predefined user parametric constraints for area and delay as well as pre-processing
of unrolling factors. The pre-processing of UFs is explained in later sections. Wherein, the
iteration count is provided as an input for pre-processing. Furthermore, the input block for
control parameters comprises of acceleration coefficient, inertia weight, swarm size and
terminating criteria which are used for regulating the PSO driven exploration process. PSO
exploration process used has been explained in chapter 4.

The inputs required are further fed to the PSO-DSE block where, initialization and
encoding of the particles, velocity and position up-gradation, velocity clamping and end-

terminal perturbation, mutation and finally the updating of local best and global best positions
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Pre-processing of unrolling factor

Input — value of ‘I’ (Total no. of loop iteration)

Output — screened set of unrolling factor (UF)

1 Begin
/I Screening of UF//
2For UF=2to| Do

Algorithm

1 Begin

2 For UF =2to Il do

/IAIl U F are added into the accepted list until (I

mod UF) <X/
2

2.1 IF ((1 mod UF)< UF ) Then
2

2.1 IF (| mod UF <UF ) && 22 Terminate addi-ng process jump to the
2 end of the function
(UF <=1/2)) Then 23 EndIF
/IAdd UF into the accepted UF list// 2.4 Accepted UF[K] =UF
2.2 Accepted UF[K] = UF 25 kt++
2.3 k++ 2.6 End For
24 EndIF 3 End
2.5 End For
3 End

Figure 5.4 Pre-processing of UF Figure 5.5 Algorithm for Inclusion of Some

Special UFs
are done. To evaluate the fitness of a particle, each encoded particle is passed through

transient fault security block for designing a fault secured DMR Scheduled Control Data
Flow Graph (SCDFGP™R) which is responsible for converting an untimed CDFG into a
scheduled k. fault secured DMR Control Data Flow Graph (CDFGPMR). After this process,
appropriate cut for additional checkpointing is inserted based on proposed scheme to
optimize delay overhead associated with fault security, followed by its fitness evaluation.
Every such new design solutions (particle) obtained are again similarly convert it into a fault
secured SCDFGPMR. Subsequently, the global best and local best solutions in the PSO
process are also updated. This process continues until the terminating criterion is reached
yielding an optimal fault secured datapath architecture (or SCDFGP“F) which

comprehensively satisfies the constraints of Acons, Tcons, Kc and minimizes cost.

5.4.1 Pre-processing of Unrolling Factors

A pre-processing of the unrolling factors is done to prune the design space. The pre-
processing algorithm, shown in Figure 5.4, filters unfit UFs to create a list of viable solutions.
The algorithm filters UFs with higher value since UFs with higher value offer minor
improvement in the execution time and consume more power thereby increasing the overall

cost of the solution. UFs which produce higher sequential loops are also removed from the
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set. However, some special UFs are added which might be initially screened out in pre-
processing to include good solutions. This is accomplished using the algorithm shown in

Figure 5.5.

5.4.2 Proposed Initialization Process of Particles
After preprocessing step initialization of the particle take place. During initialization process
particles position, are initialized as follows:

Xi = (N(R1), (N(Rz2),..(N(Rq).. (N(Rp-1),UF)

the initialization of particles is such that it uniformly covers the entire design space

X1= (Min(Ry), min(Ry),.. min(Rp.1),min(UF)) (5.5)
X, = (max(Ry), max(Ry),.. max(Rp.1),max(UF) (5.6)
X3=(((min(Ry)+max(Ry1))/2..,((min(Rp-1)+max(Rp.1))/2,max(UF)/2) (5.7)

Rest of the particle positions(Xs...X,) are initialized with random values between minimum
and maximum values of resources and UF. Since, an optimal design solution to a multi-
objective exploration problem will always lies between the maximum parallel and serial
implementation of the application. Therefore, keeping in mind the above, X; is represented by
the serial implementation, X, by parallel implementation, X3 with the mid value between
serial and parallel implementation and X;-X, scattered anywhere between serial and parallel

implementation.

5.4.3 |Initialization of Velocity, Acceleration Coefficient and Inertia Weight
The details about velocity, acceleration coefficient and inertias weight initialization have
already been discussed in section 4.4.4 of chapter 4.

5.4.4 Assumptions of Proposed Algorithm

This subsection illustrates the assumptions which have been considered while designing the

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath.

o Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration
of single fault model for transient faults is widely assumed and adopted in all related
works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle
transient fault detectable datapath also uses the same assumption.

o The faults occur only at the hardware units and not at interconnecting wires.

o The system only handles the transient-faults and not permanent faults.

o The pair of unit in the DMR system has a comparator for error detection, whereby the
comparators are considered fault detectable.
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Figure 5.6 Algorithm for Generating a k. Fault Secured SCDFGPMR
5.4.5 Proposed Algorithm for Design of k. Fault Secured DMR system

The proposed methodology for designing k. fault secured DMR system is shown in Figure

5.6. The proposed algorithm accepts the following as inputs: X; (particle position denoting

datapath configuration), the CDFG, fault security constraint (k) indicating the strength of the

fault and module library indicating the hardware units available for allocation. The output of
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the proposed algorithm is a valid k. cycle fault secured scheduled DMR system that is
iteratively feedback to the PSO-DSE framework for exploring the next design solution based

on the fitness evaluation. The DMR system involves a SCDFGPVR

, consisting of schedules of
U°C and UP. The pair of units is concurrently scheduled on the basis of ASAP scheduling
using the user supplied resource constraints X; and available dependency information of the
nodes. After obtaining the scheduled DMR system, the hardware allocation of both the units
(U°® and UPP) is performed. Operations of the SCDFGPMR system are allocated to hardware
on the basis of fault security conditions (schemes) shown in Figure 5.6 (sub-block (a), (b) &
(c)). Allocation of hardware to duplication unit of SCDFGPMR without obeying the rules
proposed in the algorithm may result in TFH between similar operations (of original and
duplicate) assigned to same hardware unit i.e. TFH between similar operations belonging to a
same hardware exists when:

t(v)- t(v) < ke, where v e U°® and v e UP™ (5.8)
These hazards are resolved in the proposed algorithm by pushing the affected operation v’
(and accordingly its successor) of the duplicate unit in later control steps, if assignment
(allocation) rules (a) and (b) fails. The push is done such that the interval between ve U°®
and ve U is greater than (or equals to) k. This resolution of the TFH is done until the TFH

of the whole DMR system is resolved, i.e. SDFGPMR

obeys either of the fault security scheme
((@) or (b) or (c)) proposed in Figure 5.6. The blocks after the cut condition block are for
handling the possible assignment violations that could occur in the modified fault secured

SCDFGPMR due to insertion of cut.

The cut conditions employed in order to reduce the additional execution time delay incurred
due to shifting of operations in later control steps have been discussed in section 4.2.2.5 of

chapter 4.

5.4.6 Determine Global Best Position
The global best position of the population is determined as follows:

Xgp =X [MIn(C, (X,),C; (X,),C; (X;)..C, (X )]  (5.9)

The global best particle position has minimum cost among all particle positions (X; .....Xp).

flbl fIbl fIbn

5.4.7 Determination of New Position of Each Particle

Iteration process initiates at this step. According to PSO-DSE, each individual iteration

computes new resource value of a particle X; in d dimension through: R, = f(v,,R,)Which

can be expanded as specified in equation 4.8 [54, 55, 57]:
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R, = Ry +Vy (5.10)

Where, R; is the new resource value of particle Xi in d™ dimension and Ry, s the previous
resource value of particle X; in d" dimension; Vdj is the new velocity of particle X; in d™

dimension (i.e. step length taken per unit time in d" dimension) which is updated by equation
(5.11) [54, 55, 57]:

Vdi = a)VdI + blri [Rd|bi - Rdl ]+ b2r2 I:Rdgb - Rdl ] (5.11)
Where, ¢ Rep; > is the resource value of Xy in d" dimension and Rdgb ’is the resource value of

Xgp in d™ dimension.

Note- X,; ={R, ,R,_ ..Rp }and Xy, ={R, ,R, ..R; }

gb

5.4.8 Adaptive end Terminal Perturbation and Adaptive Rotation Mutation
To handle boundary outreach problem during exploration process we propose adaptive end

terminal perturbation, described in chapter 4.

In order to increase variation and diversity, mutation is performed on all the local best
position of each particles with probability M, =1.0 using Adaptive rotation mutation

described in chapter 4.

5.5 Stopping Condition (2)
The proposed algorithm terminates when the maximum number of iterations exceeds 100, or
when no improvement is visible in Xy, over ‘£’ number of iteration. (£=10). Details on

stopping criteria have already been discussed in chapter 4.
Note: Results of the proposed solution are explained in chapter 8 section 8.3.
5.6 Summary

This chapter presented a novel multi-cycle SET fault security aware MO-DSE approach
which explores an optimal transient fault secured datapath configuration and loop UF for
control intensive applications. The datapath generated abides by the user specified area-delay

constraints during exploration process.
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Chapter 6
Bacterial Foraging Driven Exploration of Multi Cycle
Fault Tolerant Datapath based on Power-Performance

Tradeoff in High Level Synthesis

Due to recent advancements in technology, the idea of packing millions of transistors on a
single chip has become more feasible. Technology evolution and impact of particle both plays
a major role in inducing multi-cycle transient fault (longer duration transient) in a device.
However, designing an optimized multi-cycle fault tolerant system is non-trivial. A multi-
cycle fault tolerant system is a design that is, resilient against transient fault eminating due to
SETs. For the current and future technology transient faults can span more than one clock
cycle resulting in its multi cycle nature. Therefore, a multi-cycle fault tolerant system not
only has capability to detct a transient fault but also to recover from it.

This chapter presents a novel multi-cycle fault tolerant DSE approach based on
power-performance tradeoff during HLS. To the best of the authors’ belief, this is the first
effort to solve this problem in the literature so far. The proposed methodology is based on an
adaptive BFOA that allows reaching the true Pareto optimal curve. The chapter also discusses
about a novel DMR with equivalent circuit scheme that performs the equivalent function of

extracting the correct output.

6.1 Problem Formulation
To explore the design space of a given DFG, and determine an optimal resource set
X; ={N(R)), N(R;), N(Ry)....N(Rp)}
which satisfies conflicting user constraints and minimizes the overall cost.
The problem can be formulated as:
Find: an optimal X;

with minimum hybrid Cost(P.°"R, T_""%)

subjected to: R.°® <P and  T.°™<T__andk fault.

cons cons

59



Where, N(Ry) is number of instances of a resource type ‘d’, F’TD'VIR IS power consumed by a

fault tolerant DMR system, T.""is the delay of a fault tolerant DMR, Teons and Peons are the

user specified execution delay and power constraints while k. is the strength of the fault.

6.2 Proposed Framework

The framework of a fault tolerant DSE scheme has been shown in Figure 6.1. A BFOA
driven DSE framework is used for exploration of designs. The input block comprises of:
module library, behavioral description of DFG, predefined user parametric constraints for
power and time execution as well as k.. Further, the control parameters such as N¢, Ned, p
explained in chapter 3 are used for regulating the BFOA driven exploration process. The

proposed framework has a subunit for initialization/ encoding of bacteria. The encoded

Module
Library

Control Parameters
Nc, Ned y tmin; tmax

/ / Fault Tolerant Block \ Y

! Bacteria '
i Encoding Build DMR

' o = Scheduling

i i ~ f Fitness Bock \
b ( ] 2\ . ¢

Lo Chemo_taX|s for R Allocation of Power

o exploring new ; hardware units Evaluation

Vi configurations i

Cod : ! ¢ \_, Cost

[ \ J o .

0! i oot Function

o : Identlflcatlgn k. ,—>

v ; and Resolution €= .

v Dispersal to N of TFH Te
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E i diversity in i l > /
Do configurations ;

- ; Fault Tolerant

[ N

Pt ! DMR schedule

. Datapath : |

b Exploration ./ /

N T Fault Tolerant - BFOA driven DSE

Optimal Configuration

Figure 6.1 Proposed Multi Objective Multi Cycle Fault Tolerant BFOA-DSE
Approach
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bacteria are then subjected to chemotaxis and dispersal algorithms during the DSE process to
explore new and diverse resource configurations. The solutions generated through the
algorithms are fed into the fault tolerant block for converting into a k. error-correctable
design (masking the fault) by evaluating the DMR schedule on the basis of k. fault behavior.
A DMR design is obtained corresponding to each bacterium solution during DSE where the
TFH due to k. fault are identified and resolved subsequently to obtain a fault tolerant DMR
schedule through the proposed algorithm. The obtained fault tolerant DMR schedule is
passed into the fitness block to determine the cost of the fault-tolerant solutions generated.
This process continues through the proposed BFOA-DSE framework to generate an optimal
fault tolerant DMR system that comprehensively satisfies Pcons, Tcons, Ke @s well as minimizes
the hybrid cost.

6.2.1 Framework for DSE

BFOA DSE framework generates intermediate solutions during exploration that are fed into
the proposed multi cycle fault tolerant algorithm. The multi cycle fault tolerant algorithm
uses these explored solutions to convert them into a fault tolerant DMR schedule considering
the user specified power budget and performance requirement. This process continues until
an optimal solution i.e. a fault tolerant DMR system that comprehensively minimizes and
satisfies the multi objective power and execution time constraint. The proposed multi cycle

fault tolerant algorithm is described in next section.

6.2.2 Proposed DMR System for k. Fault Tolerance

6.2.2.1 Assumptions of Proposed Algorithm

In the proposed work, following assumptions have been considered while designing the
proposed BFOA driven multi objective DSE for multi-cycle fault tolerant datapath.

o Single fault model i.e. fault occurring at a single site in the circuit.
o Faults occurring only in the original unit of the DMR design.
o The pair of unit in the DMR system has a comparator for error detection, whereby the

comparators are considered fault tolerant.
o The system only handles the transient-faults and not permanent faults.

o The faults occur only at the hardware units and not at interconnecting wires.

6.2.2.2 Proposed Multi Cycle Fault Tolerance (MCFT) Algorithm
An explored fault tolerant DMR system for dealing with k. faults, based on user specified

power budget and execution time constraint has been proposed in Figure 6.2. The DMR
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IS

© ®

1.

wmn

10.

Inputs: DFG, X, k., D¢
Output: Fault tolerant SDFGPMR

Build a DMR scheduling graph (SDFG®M) comprising of U°® + UP";
SDFGDMR — UOG + UDP
Subjected to: a. Constraint X;; where X; = (Ry, Ry,....R4.1, Rp)
b. Constraint D,
Identify the critical path (p;) from both U°® and U".
Allocate opn (0;) of peri € U%® and peri e UP” to distinct operators (hardware units).
Allocate opn (0;) of non-critical paths by keeping assigned operations to similar operators
in both U°® and U®" if available.
Loop 1:
do
{
Identify the transient fault hazards (TFH), if any, and prepare a list L[k] which
indicates the transient fault hazards (TFH) between v and v of similar operators
in the current scheduling (SDFGPMF) such that:
veU®
v e UP?
Loop 2:
do
{
Select TFH to be resolved from L[k].
Push v’ and its successor’s ¢ U" in lower CS such that:
a) t(v)- t(v) => k. (i.e. interval between v and v is greater than k)
b) Constraints X; and D, satisfies.
k++;
Goto: Step 6
Ywhile (L(K)!=¢);
Goto: Step 5
Ywhile(all t(v)- t(v) => k. in SDFGP™® (i.e. no TFH exists in the SDFG°VR))
Are similar operators of U™ used in U°® in subsequent control steps within range of k.
cycle? If reused then, adjust the conflicting operations of UP”

Loop 1: Prepares a list L[K] containing TFH in intermediate schedules of DMR.

Loop 2: Iterates to resolve the successive TFH from L[K].

system involves a SDF

Figure 6.2 Pseudo code for Multi Cycle Fault Tolerant Algorithm
GPMR consisting of schedules of U°® and UP®. The pair of units is

concurrently scheduled on the basis of ASAP scheduling using the user supplied resource

constraints X; and available dependency information (D.) of the nodes. After obtaining the
scheduled DMR system, the critical paths (peri) from the units (both U°C and U?) are

identified. Operations of the SDFGM? system are allocated to operators on the basis of

following scheme:-

If opn(0j) €

Allocate opn (0;) of peri € U°C and peri ¢ UPF to distinct operators (hardware units).
Allocate the remaining operations by:

U®®, then assign operator on the basis of availability
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Figure 6.3 SDFG®® of ARF with X; = 1(+), 2(*)
e If opn(0j) € UPP, then assign operations to similar operators as in U°®, if available to

enable resource sharing and reduction of usage of extra operators.
NOTE: This is because during designing fault tolerant datapath (for multi cycle faults)
assigning to distinct hardware operator sin duplicate unit does not assist in masking the fault

in duplicate. This is owing to the reason that faults anyways affects some other operation
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assigned to the same operator in duplicate. Assigning to distinct hardware only assists in
fault security (i.e. detection).

Once the assignment of operators is done, the behavior of the system due to k-cycle fault is
observed by identifying the TFH between any operations belonging to an operator. The TFH

between any operations belonging to an operator exists when :
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EQUIVALENT CIRCUIT

Figure 6.5 Fault Tolerant SDFG®™F of ARF for k.= 2
t(v)- t(v) < ke, where v e U% and v e UP™ (6.1)
These hazards are then resolved by pushing the affected operation of the duplicate unit in
later control steps, thereby shifting its successors accordingly. The push is done such that the

interval between v ¢ U%C and v'¢ UP” is greater than (or equals to) k¢, This identification and
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Figure 6.6 Circuit Diagram for VVoting Scheme

resolution of the TFH is done until all the TFH of the whole DMR system are resolved, i.e. in
SDFG"MR all:

t(v)- t(v)> ke (6.2)
Figure 6.2 illustrates the pseudo code of the proposed MCFT algorithm.

6.2.2.3 Demonstration of MCFT using DMR

The proposed approach is explained with the demonstration of Auto Regression filter (ARF)
DFG. Figure 6.3 and Figure 6.4 shows the non fault tolerant SDFG®? and Figure 6.5 shows
the fault tolerant SDFGPMR of ARF respectively based on the final explored solution of 1(+),
2(*) obtained through the proposed DSE framework. In other words, this indicates while
designing DMR schedule of ARF the operations of both the units have to simultaneously
obey the resource configurations explored by BFOA DSE. The DMR system has operations
labeled as 1, 2, ... n for the original unit while the duplicate unit operations are represented as
‘1, ‘2, ... ‘n, where n and ‘» are the values of maximum number of node in the particular
application. In the SDFGPM® shown in Figure 6.3, the value of n is 28 for the original unit
while that of ‘n is ‘28 for the duplicate unit. Suppose if a 2-cycle fault occurs in the system,

then, the TFHs occurring in the system are first identified. TFH occur between operations
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Table 6.1 Output Unit Selection

F | F | F Output

1] 1|1 T
1100 T

0| 11]0 NOT VALID
0| 00 T

belonging to a particular operator in U°® and operations performed by similar operator in
UPP, if the operations are not k-cycle apart. Corresponding to the Figure 6.3, list L[K]
contains hazards between 18(M2) and ‘1(M2), 17(M1) and ‘2(M1), 8(A1l) and ‘5(Al) and so
on. For example, if a 2 cycle fault occurs at M1 at control step 4, whose effect continues until
step 5. Accordingly multiplier M1 may incorrectly execute operation ‘2 at step 5 in UP”,
thereby producing a faulty output. Therefore, in order to make the system fault tolerant (i.e.
mask the fault occurring in original) and to generate an error free output, operation ‘2
assigned to M1 of U™", is pushed below into step 6 (where equation 6.2 is satisfied and
explored resource configuration is met (in this case: 1(+), 2(*))) to avoid the propagation of
2-cycle fault in the UP” as well as propagation of fault from UDP to UOG (using step 10 of
algorithm in Figure 6.2). Similarly as per step 7 and 10 of the algorithm (Figure 6.2), opn 3
and ‘4 is scheduled in step 14 as in the prior steps either resource constraint (X;) was being
violated or k. fault was being propagated. Figure 6.5 shows 2-cycle fault isolated SDFGPM?
obtained through this process. This arrangement ensures that similar operators in both units

are isolated by more than 2-cycles to prevent propagation of faults from one unit to other.

6.2.2.4 Proposed equivalent circuit for a voter

Figure 6.6 shows the equivalent circuit diagram for a voter to compare the outputs of the
respective units in DMR system. The outputs are compared, in order to find whether a fault
has occurred in the system or not. If a fault has occurred in the system, the duplicate
scheduling unit obtained through the proposed algorithm always remains fault free. This
indicates the outputs of the original and duplicate scheduling unit will always have a
difference (original producing faulty output, while duplicate producing non faulty).
Therefore, the comparator units are used to perform this comparison of outputs. In case of
multiple outputs from original and duplicate the outputs of comparators are OR’ed (oring the
outputs of comparison from multiple comparators helps the system in indicating fault if
atleast one of the output is faulty i.e atleast one comparator produces a difference) and fed
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Figure 6.7 Datapath Circuit Corresponding ARF with X; = 1(+), 2(*) q
into the select line ‘F’ of the multiplexers. As seen in Table 6.1, if F = 1 (indicating fault
because of difference produced by comparators), then the output is taken from duplicate unit
else for a fault free system (F=0 indicating no difference in outputs of both units), the output

is taken from the original. This scheme described above assists in extracting the outputs from
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respective units without extra redundancy (such as TMR) and saves unnecessary clock
cycles.

Figure 6.7 shows the datapath circuit of the demonstrated fault tolerant ARF application
(Figure 6.5). The data path circuit incorporates multiplexers and demultiplexers into the
system. These multiplexing and demultiplexing units are used for representing the systems
resources with their respective inputs, outputs, the operations performed by them and the
necessary storage units along with the necessary interconnections. The empty boxes in Figure
6.7 represent the register units, required to store the inputs or the intermediate results of an
operation. The equivalent circuit of voter is represented with a dashed block. The block
contains multiplexers and comparators units to compare the outputs ((27 or *27) and (28 or
’28)) based on the value of select line ‘F’ (either O or 1). Further, generating the error free

output from the system.

6.3 Proposed Evaluation Models
For evaluation of a particle (or design point), the following models have been proposed.

6.3.1 Proposed Power Model

DMR DMR
Py

of a resource set is represented in terms of Static Power (Ps~") and Dynamic Power

(Po°MR). PrPMR> s represented as:
DMR DMR DMR
ROVF =RoVR 4B, (6.3)
Ps°MR is a function of area of resources and leakage power per transistor. It can be

formulated as:-
D
SR Z(N(Rd).K(Rd).pc (6.4)
d=1

Where ‘N(Ry)’ represents the number of instances of resource Ry. ‘K(Ry)’ represents the area
occupied by resource Ry, ‘D’ is the number of resources (FU’s) and ‘p.” denotes the power
dissipated per area unit (e.g. transistors).
While, the average dynamic power consumed by a resource configuration is a function of
dynamic activity of the resources and can be given as:

£

POV = (6.5)

- DMR
TE

Where, EX)"is the total energy consumption of the resources in fault secured DMR system

and T.""" is the total execution time of DMR system.
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Note: The operation numbers above correspond to the nodes of ARF benchmark shown previously
in Figure 6.3

Figure. 6.8 SDFG ™R for [32] Corresponding ARF with X; = 5(+), 6(*) for k. = 2

6.3.2 Proposed Execution Time (Delay) Model

For given ‘D’ functional resources the execution time is:

T.”"% = > Max(D(op,),....D(0p,), D(0p,),......D(0p,,)) (6.6)
c.s=1
Where, 1<i<n and ‘1< ‘i <‘n. (Here, operations in original and duplicate are labelled as
i and i’ respectively; n and »” are maximum value of node); D(opn) is the delay of operation

‘n” while c.s is the control step.

6.3.3 Proposed fitness function

The proposed fitness function is defined as:

P DMR P " T DMR _T "
Cf (Xi) - ¢1 ! P DMRCO +¢2 E-I- DMRCO (6.7)
max max
Where, C, (X;) is the cost of particle with resource set X;, T ”"*is the maximum execution

time of a fault tolerant DMR system in design space while P, °"®is the maximum power of

a fault tolerant DMR system in design space.

6.3.4 Advantages of proposed scheme over existing scheme
The proposed MCFT scheme offers several novelties/ advantages over the fault tolerant
approach [32].
e The existing approach [32] employs triple modular redundancy (TMR) scheme to
make the entire schedule fault tolerant. While the proposed scheme generates a fault
tolerant schedule using double redundancy. The respective TMR obtained for ARF

benchmark through [32] is shown in Figure 6.8. However, in contrast, the proposed
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algorithm obtains a fault tolerant schedule for ARF using DMR as shown in Figure
6.5 before. As observed from Figure 6.8, the structure obtained consumes 5(+), 6(*)
and control steps = 15 (Latency = 121.5 us); while the final fault tolerant DMR for
ARF (Figure 6.5) obtained through proposed BFOA-DSE approach occupies 1(+),
2(*) and control steps = 30 (Latency = 179.5 us). The corresponding cost of the fault
tolerant solutions calculated using equation (6.7) for proposed and [32] is -0.217 and
0.0443 respectively. This indicates a substantial improvement in final cost (quality).

e The final solutions obtained through the proposed and [32] have a significant
difference in quality (optimality). This is because the solution obtained through [32]
does not satisfy the power budget and execution time constraint specified by user.
However, the proposed approach explores (by iteratively refining through BFOA) a
solution which not only satisfies the power budget and execution time constraint
specified by user but also comprehensively minimizes the total cost of the solution.

e The proposed approach produces a fault tolerant structure using DMR (without using
conventional voter scheme) in contrast to previous fault tolerant approach [32] using
TMR.

6.4 Termination criteria

The BFOA driven exploration process has following terminating criteria:

e Terminates when a designer specified ‘N;’ is reached.

e When no improvement is seen in global best among bacteria population over last 10

iterations (chemotactic steps).

Details on termination criteria have already been discussed in chapter 3.
Note: Results of proposed approach are explained in chapter 8 section 8.4.
6.5 Summary
The availability of faster devices is a feature of future technologies that induces major
concerns to the fault detection community for longer duration transient faults. The technology
evolution and LET of particle both play a major role in inducing multi-cycle (k-cycle)
transient fault (longer duration transient) in a device. Hence, optimizing power and delay
remains no longer sufficient now, specifically for current generation of systems which
demand designs (especially for space applications where radiation induced faults are highly
possible) that requires ability to detect errors occurring due to transient faults (such as single
event upsets). Therefore, an adaptive/intelligent system for solving the DSE problem of
multi-cycle transient fault tolerant datapath during HLS has been proposed in this chapter.
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Chapter 7

Untrusted Third Party Digital IP cores: Power-Delay
Trade-off Driven Exploration of Hardware Trojan

Secured Datapath during High Level Synthesis

Complexity of the SoC has increased tremendously over the years. This allows us to have
more complex systems. However, the design productivity has not increased with the same
pace. Therefore, to address this issue reuse based methodology has come into context, which
will benefit in producing complex designs at a higher productivity. To design complex
systems IPs are used which increase the productivity of design. This process requires
globalization of IPs through third party vendors. That is, globalization incurs importing IPs
from various 3P vendors. But there are serious security concerns for SoC integrators, due to
involvement of untrustworthy 3P vendors supplying IP cores. During the design stage of a
3PIP, an adversary (possibly an untrustworthy vendor) can deliberately infuse a Trojan logic
resulting in malfunctioning of the digital circuit. Typically, the Register Transfer Level
(RTL) files of the modules/IPs of the library are provided by the HLS Company which it may
have imported from third party vendors as RTL files. Therefore, to have a trustworthy design
it should be ensured during HLS that any possible infection of 3PIP is detectable. Detection
process of the Trojan during design of hardware Trojan secured schedule in HLS inevitably
requires multiple redundant hardware instances from different vendors, which if not
accounted for its power and delay during fitness evaluation, may result in a secured circuit

violating user constraint.

This chapter solves the aforementioned problem and proposes an approach which
generates a low cost Trojan secured schedule during HLS. The focus on hardware Trojan
secured schedule generation during HLS has been very little with absolutely zero effort so far
in DSE of a user MO constraint optimized hardware Trojan secured schedule. The design

process of hardware Trojan secured schedule should hence administer the usage of intelligent

72



An infected 1- bit adder IP present in
the module library ofa HLS ~ a B
tool

I
|

04_;

C (Carry)/

T

B

v F v

~
Note: Only when select (S) = 1 is triggered by an adversary (controlled externally), then, Trojan blocks
get activated and the adder IP starts performing subtraction resulting in functional failure. Until
triggered, it remains dormant in the system and behaves like a normal adder IP.

Figure 7.1 An Infected 1- bit Adder IP Present in Module Library of a HLS Tool

DSE strategy that is driven through user power-performance constraints for exploring an
optimized hardware Trojan secured schedule. The detail description of the proposed approach
is given in subsequent sections of this chapter.

7.1 Problem Formulation

To explore the design space of a given DFG, and determine an optimal solution
X =(R..A)
R, =(N(R),N(R,),N(R,)-.N(R,))
X; ={N(R)),N(R;),N(R;)....N(Rp), A/ }

which satisfies conflicting user constraints and minimizes the overall cost.

The problem can be formulated as:
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Where, N(Rq) is number of instances of a resource type ‘d’, P.°"® is power consumed by a

fault secured double modular redundant (DMR) system, T."%is the delay of a DMR design,

Teons and Peons are the user specified execution delay and power constraints while A, is the

vendor allocation procedure type (where A, = ‘1’ or 0’).

7.2 Proposed Methodology

7.2.1 Motivation

Let us consider a scenario to explain the problem of hardware Trojan in 3PIP and hardware
security during HLS. During HLS, an untrusted IP vendor may malevolently insert Trojan
logic into the module/IP that is used in the module library of a HLS tool. This Trojan logic
remains hidden until triggered externally by the adversary and is therefore not possible to
detect during normal RTL simulation. This is because during normal situations (when not
triggered), it behaves like a functionally correct IP. Figure 7.1 shows an example of Trojan in
a third party IP/module present in the module library of a HLS tool. Here a 1 bit adder IP
that is used in the module library of a HLS tool may behave as a subtractor IP on triggering
(through external activation by setting S = 1). The detection process of such Trojans during
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HLS becomes impossible with the Trojan detection techniques applied at lower levels of
abstraction such as side channel analysis and RTL simulation.
Note: The work presented in this chapter targets Trojans in 3PIPs that affect notmal

functional output.

The detection procedure suggested in the recent literature is accomplished by having IP cores
of same functionality from different vendors. This is because different vendors will have
different implementations and it is less likely that both are Trojan infected. Even if they are,
the chances of different vendor IPs generating same output behavior is considered extremely
uncommon. However, detection process of the Trojan during design of hardware Trojan
secured schedule in HLS inevitably requires multiple redundant hardware instances from
different vendors, which if not accounted for its power and delay during fitness evaluation,
may result in a secured circuit violating user constraint. Therefore, the design process of
hardware Trojan secured schedule should govern the usage of adaptive intelligent DSE based
on user power-delay constraint as well as effective vendor allocation procedure during
scheduling. The framework to obtain Trojan secured schedule is explained in the subsequent

sections of this chapter.

7.2.2 Proposed Framework

This section presents a framework which generates a low cost optimal hardware Trojan
secured schedule based on user power-delay constraint during HLS. The framework has been
shown in Figure 7.2 Module library, behavioral description of DFG and predefined user
parametric constraints for power and time executions (or delay) are provided as inputs to the
exploration process. A set of control parameters such as ‘N¢’ (maximum number of
chemotaxis steps allowed which is the stopping criterion that indicates the maximum limit of
the iterations that the proposed approach is allowed to execute) and ‘p’ (population size) are
used for regulating the BFOA driven exploration process where ‘p’ indicates the number of
individuals/bacterium (initial design solutions) participating in the evolutionary process of

exploration.

7.2.3 DSE Framework

The DSE framework employed for generating a lost cost Trojan secured schedule during
HLS is BFOA-DSE. To solve the problem mentioned in this chapter, BFOA as DSE
framework is used to explore the design space. The framework of this algorithm provides the

flexibility to be configured in a proficient way for eliciting efficient search behavior for this
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Figure 7.4 lIR Filter for A, = 1; R =2(+), 5(*) indicating Each Entire Unit Strictly
Assigned to Same Vendor Type (U%® to ‘V1’ and U" to <V2)

problem. BFOA comprises of primarily of two major steps: chemotaxis and dispersal for
locomotion of bacterium. Using locomotive mechanisms (such as flagella) bacteria can move
around in their environment, sometimes moving chaotically, and other times moving in a
directed manner, referred to as swimming. The details about BFOA-DSE have already been

explained in chapter 3.

7.2.4 Proposed Encoding

A bacterium position (candidate design solution) is labeled as X;:

Xi= ( ﬁé , AV) (71)

Where, RTindicates the resource array (resource configuration e.g. number of adders,

multipliers etc) and ‘A, is the vendor allocation procedure type adopted. The reason behind
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incorporating the last dimension with vendor allocation procedure type ‘A,’ is discussed in

later sections.

7.2.5 Motivation of using Vendor Allocation Procedure ‘A,” in Problem Encoding
During Exploration
In order to detect hardware Trojans a minimum of two vendors are always needed to provide
distinctness. However, technique of usage of the two vendors during allocation inside the
DMR scheduling (i.e. assignment process) of each vendor IPs inside the system during
allocation) dictates the final latency and power of entire system. This is because same
resource type/IP from two different vendors has different area, power and delay. Hence,
merely using distinctive vendor assignment for detection without probing into the procedure
of allocation (assignment) of vendor type in DMR system may lead to skipping of an
alternate better solution in context of DSE of a low cost optimal Trojan secured schedule,
exploration of an additional dimension, ‘A, (indicating allocation procedure of IP’s from
different vendor type) which can either be ‘0’ or ‘1’ is incorporated in the bacterium

encoding along with resource array. The value of ‘A’ as ‘0’ or ‘1’ is interpreted as follows:

7.2.5.1 Vendor Allocation Procedure (Type 1): A, =1
e All operations of a specific unit being strictly assigned to resources of same vendor
type (say: all operations of original unit strictly assigned to same vendor ‘V;’ and all
operations of duplication to same vendor ‘V5").
e Similar operations of both original unit U°® and duplicate unit UP” being assigned to

different vendors.

7.2.5.2 Vendor Allocation Procedure (Type 2): A, =0
e Alternate vendor assignment to operations in control step of a unit. (Example, in
Figure 7.3, operation 3 & 6 assigned alternatively to ‘V;’ and ‘V,’. Next multiplication
if any would have been assigned to ‘V;’ alternately).
e Similar operations of both U°® and U" being assigned to different vendors.
In both above cases, whenever there is a conflict of operation during scheduling between

UOG

operation of U°® and UPP, preference is given to the operation of during scheduling.

7.2.6 Library Assumed
It is assumed that multiplier and adder provided by vendor V; has area = ‘2468au’ &
2034au’, latency = ‘10000ns’ & ‘265ns’, and energy = ‘10.0pJ” & ‘0.80pJ° while multiplier
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and adder provided by vendor V; has area = ‘2464au’ & 2032au’, latency = ‘11000ns’ &
‘270ns’ and energy = ‘9.8pJ’ & ‘0.739pJ’ respectively.

7.2.7 Proposed Evaluation Models
For evaluation of a particle (or design point), the following models have been proposed.

7.2.7.1 Proposed power model

Total power consumption (Pr°MR

( DMR

) by a resource set is represented in terms of Static Power

DMR 4PTDMR,

) and Dynamic Power (Pp is represented:

Pl—DMR — PSDMR + PDDMR (72)

DMR

Static power (Ps~"") is a function of area of resources and leakage power per transistor. It

can be formulated as:-

2 n

RO =3 Y (AR)*RM)*p, (7.3)

=1 =l

where, Ri") is the number of instances utilized from vendor V; for a resource type R;, and ‘n’ is
the maximum number of instances of resource type R; for vendor V; while AR is the area
of a resource type (R;) corresponding to vendor (Vj). On the other hand, the average dynamic
power consumed by a resource configuration is a function of dynamic activity of the
resources and can be given as:

P,PMR = Eey (7.4)

L DMR

Where, Egy is the total energy consumed by the resources. Note: The power component
includes power due to functional resources, interconnect units (mux and demux), comparator
(for error detection) as well as overhead incurred from internal buffering (during temporary

storage of operation output in DMR scheduling).

7.2.7.2 Proposed Delay (Latency) model

For given ‘D’ functional resources the delay is:

c.s(max) 2

L DMR _ Z Z MaX(D(Oinj),----D(Oanj)vD(Op'ivj)’ ...... D(Op.an)) (7.5)

cs=1l j=1

Where, 1<i<n and ‘1< ‘i < “n. (Here, operations in original and duplicate is labeled as i and

‘7 respectively; n and ‘n = maximum number of operations in original and duplicate unit).
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Here, D(opi") is the delay of operation i, assigned to vendor Vi, c.s represents control steps,

while c.s(max) is the maximum number of control steps in a schedule.

7.2.7.3 Proposed Cost model
The proposed fitness function (considering total delay and power consumption of a solution)

is defined as:
P oMk — I:>cons L MR — Lcons
Cf (X|) :Wl T P DMR +W2 . DMR (76)

Where, C¢(X;) is the cost of bacterium with resource set Xi, Pnac " and Lpac " are the
maximum power and delay of the DMR system and W; and W, are the user defined weights

both kept at ¥z during exploration to provide equal preference.

7.2.8 Demonstration
For a resource set RT = 2(+), 5(*), there are two possible DMR schedules generated for 1IR

filter benchmark on the basis of A, =0 and 1, as seen in Figure 7.3 and 7.4. More specifically,
for Rx = (2(+), 5(*), 0), the latency is: 23,080ns and power is: 0.58mW; while, for Ry = (2(+),
5(*), 1), the latency is: 22,080ns and power is: 0.88mW. Clearly, a difference is observed in
the delay and power of the two generated scheduling solutions both abiding by distinct
vendor type assignment to similar operations for detect ability. The schedules generated in
Figure 7.3 and 7.4 are both hardware Trojan fault secured (with two vendor needed),
however, one is better than the other in different parameter. Only using distinct vendor
assignment without probing into the procedure of allocation of vendor type in DMR system
may lead to missing of better alternative (or optimal) solution in context of DSE. Therefore,
in context of DSE, it is worth to explore the additional dimension ‘A,’ incorporated in the

proposed bacterial encoding.

7.3 Termination Criteria
The BFOA driven exploration process has following terminating criteria:
e Terminates when reached designer specified ‘N;’ (maximum chemotactic steps).
¢ \When no improvement is seen in global best among bacteria population over last 10
iterations (chemotactic steps).

Details on termination criteria have already been discussed in chapter 3.
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Note: Results of the proposed method are given in chapter 8 section 8.5.
7.4 Summary

Due to globalization, there have been serious concerns on the security and trustworthiness of
3PIPs , rendering the IP susceptible to possible hardware threats. To provide secure
information processing through digital 1Cs within user constraints and to ensure
trustworthiness while designing a low cost optimized DMR, Trojan secured HLS
methodology is crucial. This chapter presented a novel low cost Trojan security aware HLS
methodology. The approach explores efficient vendor allocation procedure within the
proposed DSE framework. It also provides a significant reduction in the cost of security

aware HLS solution in comparison to similar prior work.
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Chapter 8

Results and Analysis

This chapter describes the complete experimental results of the proposed methodologies for
DSE described in previous chapters. This chapter divided into five sections where each

section present results of the respective methodology. The sections are as follows:

8.1 Experimental Results: Adaptive Bacterial foraging driven Datapath
Optimization: Exploring Power-performance Trade-off in High level

synthesis

This section describes the experimental results of the proposed approach explained in Chapter
3 and the improvements obtained compared to recent approach [20, 21]. The proposed
approach has been implemented in java and run on Intel Core-i5-3210M CPU with 3MB L3
cache memory and 4GB DDR3 primary memory. The processor has frequency of 2.5 GHz.
Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1,
45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1,
98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle
problems of any size. Many large size benchmarks have also been tested through our
approach. The library is given in chapter 3 Table 3.1.
Experimentation is carried out considering two aspects:
e Analysis of variation of multiple BFOA parameters and their impact on the BFOA
driven DSE performance.
e Comparison of BFOA-DSE with previous DSE approaches in terms of Quality of
Results (for cost) and exploration time of the process.

The QoR is calculated as:

QoR =%[PPT +TT—E] (8.1)

8.1.1 Analysis of Proposed BFOA-DSE with variation of multiple BFOA parameters
In this section multiple internal BFOA parameters are varied and their impact on the

results of proposed approach for selected benchmarks is noted. The bacterium size ‘p’ and the
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Table 8.1 Comparison of QoR and Exploration Time with respect to Bacterium size (p) for the

Proposed Approach
Benchmark [45, 86, Il;g?]télr?rr:asriliz |0r]: Bacterium Cost Convergence | Exploration
%8, 99, 100] terms of Nodes Size (p) Time time
3 -0.281 203 624
BOWh e 1oL B 33 5 0.281 510 1220
7 -0.281 700 1505
3 -0.372 34100 71510
JPEG IDCT?2 112 5 -0.372 73475 126595
7 -0.371 182720 252425
3 -0.301 1635 4310
IDCT 42 5 -0.301 2915 6725
7 -0.301 4295 8695
3 -0.340 4134 12714
FEPEO?EI'.?.\S K 41 5 -0.340 8545 13420
7 -0.340 9235 15200
3 -0.239 540 2500
ARF 28 5 -0.239 2800 5035
7 -0.239 5035 8725
3 -0.296 475 1140
BPF 29 5 -0.296 835 1330
7 -0.296 1165 2085
3 -0.268 155 565
FIR 23 5 -0.268 330 1145
7 -0.268 675 1675
3 -0.342 26675 51375
M“SE%,M@E%N 84 5 0.342 92424 126532
7 -0.342 118605 160453

step size (C(i)) parameters are varied and results are analyzed on the basis of quality of
results, convergence time and exploration time of the proposed DSE. The quality of solution
found and its comparison with other DSE approaches will be discussed in the next

subsection.

82



Table 8.2 Impact in the Variation of Step Size (C(i)) on the Performance of Proposed DSE

C(i)=C(i)+1 C(i)=C(i)+2
Benchmarks [45, Configuration
86, 98, 99, 100] Convergence | Exploration | Convergence | Exploration g
Time(ms) Time(ms) Time(ms) Time(ms)
JPEG 312 (p=3) | 687 (p=3) | 203(p=3) | 624(p=3) | 3(*), 1(+)
DOWNSAMPLE p= p= p= P= ’
JPEG IDCT?2 85929 (p =5) 195;1;1 (P | 73475 (p =5) 12633; (P 7(*), 1(+)
IDCT 1605 (p=3) | 4320 (p=3) | 1635(p=3) | 4310 (p=3) | 3(*), 1(+)
FEEDBACK _ 11520 (p _ 12714 (p
SOINTS 7845 (p =3) Z3) 4134 (p =3) Z3) 6(*), 1(+)
ARF 2106 (p=3) | 4602 (p=3) | 540 (p=3) | 2500 (p=3) | 3(*), 1(+)
BPF 780 (p=3) | 3120(p=3) | 475(p=3) | 1140 (p=3) | 4(*), 1(+)
FIR 421 (p=3) | 1934 (p=3) | 155(p=3) | 565 (p =3) 3(%), 1(+)
MESA MATRIX _ 80392 (p _ 51375 (p N
MULTIPLICATION | 20115 (P =3) =3) 26675 (p =3) =3) 6(*). 1(+)

Comparison of Convergence Time (mS)
100000 -
. = C(i)=C(i)+1
S ~ 80000 -
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Figure 8.1 Comparison of Convergence Time with respect to
Step Size C(i)

8.1.1.1 Bacterium size, p
In the proposed approach (BFOA-DSE), the bacterium size and configuration chosen is able

to comprehensively cover a design space. Generally, larger the bacterium size ‘p’, larger will

be the coverage of exploration of the design space in each iteration. However, during

experimentation of different benchmarks it was found that best size of bacterium for
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proposed BFOA-DSE is p= 3 for most of the benchmarks. Had the design space been even
larger (or a very large size application), the advantage of having a large size ‘p’ would had
been visible. During the experiment, the results have been evaluated for three different
bacterium size, i.e forp=3,5and 7.

The results are shown in the Table 8.1. As evident from the results for most benchmarks, the
best balance between achieving the fast exploration speed and having an optimal solution is
obtained at the bacterium size ‘p’ = 3. The primary selection criteria was low cost (or high
quality) solution. However, if the results found for different bacterium size ‘p” were found to
be same, then the bacterium size for which the fastest convergence (and exploration) was
obtained was selected. However, there are some cases, for the larger size benchmarks like
JPEG IDCT?2, better solutions are obtained at the bacterium size p = 5. This behavior for the
particular benchmark is due to the ability of attaining an optimal solution with more bacteria

initialized (p=5) over the design space.

As evident from the Table 8.1, it can be stated that a faster convergence is achieved for
smaller bacterium size as compared to the larger ones. Also, as the bacterium size increases
the exploration time also increases, since the number of bacteria per iteration increases,
thereby, increasing the computation complexity per iteration. The underlined bacterium size
‘p’ indicates the selected size which yields the most efficient results in terms of quality
(followed by small exploration time if the quality remains same). Therefore, after analyzing
the results it can be observed that for the tested benchmarks, the quality of results obtained
after varying the bacterium size indicates that in most of the cases faster convergence and

exploration of an optimal solution is achieved at smaller bacterium size.

8.1.1.2 Step size, (C(i))

During experimentation, the impact in the variation of step size on the performance of
proposed DSE has been investigated. The first variation is a step size C(i) = C(i) + 1 while
the other is a step size C(i) = C(i) + 2. The effect of these variations is evaluated on the basis
of convergence time exploration time and resource combination found. Table 8.2 shows the
results obtained after varying the step size for the tested benchmarks. the variations in C(i) do
not have any impact on the quality of result found(which is evident from the fact that
resultant resource configuration found is same for both C(i) = C(i) +1 and C(i) = C(i)
+2)).However, the convergence time and exploration time for step size C(i) = C(i) +1 is
higher compared to the step size of C(i)= C(i) +2. This behavior is due to the fact when the

step size is small (i.e. varied with a change of one unit), the exploration process consumes
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Figure 8.2 Comparison of Exploration Time with respect
to Step Size C(i)
more time to achieve an optimal solution as the chances of occurrence of repetitive
configurations is higher (when C(i) = C(i) +1 is substituted in equation (3.9) during
chemotaxis). On the contrary, with a bigger step size (i.e. C(i) = C(i) +2), the exploration

ability of the algorithm is better resulting in new (changed) configurations during chemotaxis.

The difference in step size only impacts the time to converge and not the quality (i.e. final
configuration found). However, there is some exception to this observation as obtained for
IDCT benchmark, where the convergence time for step size C(i) = C(i) +1 is found lesser
than the convergence time of step size C(i) = C(i) +2. This is a special case, where at C(i) =
C(i) + 1), the most optimal solution (1(+), 3(*)) was explored at a very early stage (at
chemotactic step j= 2) from a bacterium position (1(+),1(*)). While at C(i) = C(i) +2, due to
higher step jump, the chemotaxis function(egn. (11)) from a bacterium position (1(+),1(*))
skips the optimal solution lying in between to reach a new bacterium position (2(+),3(*)).
Therefore, the optimal solution (1(+), 3(*)) was attained after few more evaluations at j =5.
This is an example where the exploitation ability of the algorithm (using small step size) has
better productivity than the exploration ability (using bigger step size). Figure 8.1 and 8.2
shows the graphical representation of the variation of convergence time and exploration with

the change in step size.

8.1.2 Comparison of BFOA-DSE with Previous DSE Approaches
This subsection describes the comparison of proposed BFOA-DSE with various previous

approaches [20] and [21]. Based on these parameter selections, the detailed results for power
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Table 8.3 Results of Estimated Power and Execution Time using Proposed Approach for DFGs

Note: For proposed approached baseline parameters : ¢; = ¢, = 0.5, the value of population size,p
:3 or 5 NC = 120, Nre = 5, Ned = 4
Benchmark [45, 86, 98, 99, Resources ExecutlonPTlme . Powir 5
100 found . ropose . ropose
] Constraint solution Constraint solution
JPEG 3(%), 1(+) 21ms 10ms 0.45mwW 0.28mw
DOWNSAMPLE ’ ' '
JPEG IDCT2 7(), 1(+) 207ms 43ms 1.655mwW 0.57mwW
IDCT 3(%), 1(+) 86ms 32ms 0.45mwW 0.28mwW
FEEDBACK *
POINTS 6(*), 1(+) 108ms 21ms 0.9mwW 0.50mwW
ARF 3(%), 1(+) 110ms 54ms 0.4mwW 0.27mwW
BPF 4(%), 1(+) 89ms 11ms 0.3mwW 0.35mwW
FIR 3(%), 1(+) 48ms 31ms 0.59mwW 0.27mW
MESA MATRIX
MULTIPLICATION 6(*), 1(+) 240ms 65ms 1.125mW 0.49mW

Table 8.4 Comparison Of Proposed Approach With [20] in Terms of Exploration Time and

Cost
Resource Configuration Exploration Time QoR (cost)
Benchmark [45, 86, BFoA [20] BFOA [20] BFOA | [20]
98, 99, 100]
JPEG 3(%), 1(+) 1(*),1(+) | 0.624sec | 13.65sec | 0.31 0.51
DOWNSAMPLE ’ ’ ' ' ' '
JPEG IDCT2 7(*), 1(+) 4(*),3(+) | 126.5sec | 110.6sec | 0.22 0.30
IDCT 3(%), 1(+) 2(*), 2(+) | 4.31sec 12.6sec 0.21 0.37
FEEDBACK
POINTS 6(*), 1(+) 3(*), 1(+) | 12.71sec | 25.6sec 0.20 0.29
ARF 3(%), 1(+) 4(%), 1(+) 2.5sec 14.3sec 0.32 0.35
BPF 4(*), 1(+) 2(%), 1(+) 1.14sec | 10.54sec | 0.27 0.43
FIR 3(%), 1(+) 4(*),4(+) | 0.565sec 8.2sec 0.30 0.38
MESA MATRIX
MULTIPLICATION 6(*), 1(+) 3(*),2(+) | 51.3sec | 11.65sec | 0.18 0.51
Average reduction in Run Time Average reduction in cost
w.r.t [20] =4 % w.r.t [20] = 35.98%

and execution time for the proposed approach are reported in Table 8.3. As evident from

Table 8.3, the proposed approach has been comprehensively able to minimize and satisfy the

specified constraints. For example, in case of IDCT, the explored solution, (3(*), 1(+)),

consumes a power of 0.28mW and execution time of 32ms which substantially minimizes
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Table 8.5 Comparison Of Proposed Approach With [21] in Terms of Exploration Time

and Cost
Resource Configuration Exploration Time QOR (cost)
Benchmark BFOA [21] BFOA [21] BFOA | [21]
JPEG
DOWNSAMPLE 3(%), 1(+) 2(*),2(+) | 0.624 sec | 27.8 sec 0.31 0.54
JPEG IDCT2 7(*), 1(+) 9(*),2(+) | 126.5sec | 14.2min | 0.22 0.26
IDCT 3(%), 1(+) 1(*), 8(+) 4.31sec | 5.08min 0.21 0.69
FEEDBACK .
POINTS 6(*), 1(+) 9(*),5(+) | 12.71sec | 1.26min 0.20 0.32
ARF 3(%), 1(+) 1(*), 8(+) 2.5sec 3.50min 0.32 0.85
BPF 4(%), 1(+) 1(*), 3(+) 1.14sec | 2.08min 0.27 0.64
FIR 3(%), 1(+) 8(*), 1(+) | 0.565sec | 43.7sec 0.30 0.36
MESA MATRIX i
MULTIPLICATION 6(*), 1(+) 9(*), 1(+) 51.3sec | 6.57min | 0.18 0.21
Average reduction in Run Time Average reduction in cost
w.r.t [21] =90 % w.r.t [21]= 48 %

power and execution time as well as satisfies the user constraints specified. Similar results
were obtained for other benchmarks. During experimentation, for proposed BFOA driven
DSE, the following settings were maintained based on inferences drawn from the results
obtained in section 8.1.1.1 and 8.1.1.2 : ¢1= ¢2=0.5, p=3 or 5, N¢ = 120, Nye = 5, Neg = 4.

8.1.2.1 Comparison with [20]
The proposed approach when compared with [20] gave substantially better results. As evident
from theTable 8.4, the exploration time of proposed approach is much lesser than the [20]

approach. Also, there is a substantial improvement in the quality of result obtained in case of
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Figure 8.4 Comparison of QoR between BFOA-DSE and [21] Approach

the proposed approach. However, there are some cases where a higher exploration time is
encountered. For JPEG IDCT?2 the proposed approach has higher exploration time compared
to [20]. This behavior is due to the large size of the benchmark. Though the exploration time
for JPEGIDCT2 is slightly higher than the existing approach [20], nevertheless, the QOR cost
of the obtained solution (7(*), 1(+)) obtained through the proposed approach is significantly
better than [20]. This trend of better QoR has been observed for all the tested benchmarks.

Figure 8.3 shows the comparison of QOR (cost units) between the proposed approach
(BFOA-DSE) and the [20] approach. After experimentation, it has been found that there is an
average improvement in QoR of 35% and in exploration time of 4% as shown in Table 8.4.

8.1.2.2 Comparison with [21]

Table 8.5 shows the comparison of [21] with the proposed BFOA driven DSE approach.
From the Table 8.5 it is evident that the exploration time of [21] is multiple times higher than
the proposed approach. Also, proposed approach achieves a better QoR factor in comparison
to [21] for most of the benchmarks. The average improvement in QoR is more than 48% and
an average reduction of 90% is attained in exploration time as shown in Table 8.5.

Figure 8.4 shows the graphical representation of the comparison of QoR (cost units) between

proposed methodologies and [21].

8.1.2.3 Comparison Based on Performance Metrics.
Table 8.6 presents the analysis of the proposed and existing approaches ([20] and [21] driven

DSE) on the performance metrics. To evaluate the effectiveness of multi objective

88



Table 8.6 Comparison Of Proposed DSE Approach With [20] and [21] in Terms of Quality

Metrics and QoR

Approach GD MFE Spacing (S) | Spread (A) Mvgt(?’li?:t}t\?\?m)
JPEG DOWNSAMPLE
Proposed 0.000 0.599 0.052 0.937 0.408
[20] 0.571 1.050 0.000 0.742 0.656
[21] 0.198 0.636 0.000 0.636 0.417
JPEG IDCT2
Proposed 0.000 0.984 0.133 0.869 0.430
[20] 0.031 0.954 0.000 0.710 0.370
[21] 0.004 1.007 0.000 0.830 0.417
IDCT
Proposed 0.000 0.627 0.027 0.830 0.415
[20] 0.097 0.452 0.241 0.869 0.483
[21] 0.689 1.743 0.000 0.866 0.778
FEEDBACK POINTS
Proposed 0.000 0.855 0.110 0.785 0.392
[20] 0.087 0.718 0.000 0.795 0.441
[21] 0.025 0.951 0.041 0.894 0.460
ARF
Proposed 0.000 0.604 0.008 0.585 0.292
[20] 0.021 0.670 0.000 0.916 0.468
[21] 0.510 1.574 0.122 0.918 0.714
BPF
Proposed 0.000 0.47 0.107 0.670 0.335
[20] 0.199 0.722 0.000 0.996 0.598
[21] 0.599 1.448 0.007 0.867 0.733
FIR
Proposed 0.000 0.707 0.072 0.586 0.293
[20] 0.044 0.986 0.000 0.618 0.331
[21] 0.057 0.890 0.000 0.903 0.480
MESA MATRIX MULTIPLICATION
Proposed 0.000 0.887 0.058 0.774 0.387
[20] 0.033 0.959 0.091 0.941 0.487
[21] 0.002 0.931 0.045 0.903 0.452

optimization algorithms, the metrics viz. GD, MFE, S, D and Wm are required to
demonstrate how close the obtained solutions have converged to the true Pareto-optimal front

[88]. It can be stated that a good optimization algorithm generates solutions close to the true
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Pareto-optimal front as well as solutions that span the entire Pareto-optimal region uniformly.
The GD metric is used to measure the convergence of solutions towards the Pareto-optimal
front. Further, metrics which quantify the diversity among obtained non-dominated solutions
are spacing and spreading. Spacing is the measure of relative distance between consecutive
nondominated solutions. On the other hand, spread accounts to the diversity of the non-
dominated solutions with respect to the extremities of the Pareto-solution set. An algorithm,
finding smaller values of both is able to find better diverse set of nondominated solutions. In
addition, Wm provides a combined qualitative measure of both closeness and diversity of the
solutions. An algorithm having an overall small value of Wm is good in both aspects. As
seen, the GD is zero for almost all benchmarks revealing that the proposed approach lies on
the true Pareto front compared to [20] and [21]. In some cases, spacing is either zero, or very
lower indicating that there is a uniform distribution of Pareto point on the curve. Also, the
weighted metrics is lower for the proposed approach compared to [20] and [21] indicating

better results obtained for all benchmarks.
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8.2 Experimental Results: Automated Design Space Exploration of Multi-
Cycle Transient Fault Detectable Datapath based on Multi-Objective

User Constraints for Application Specific Computing

This section describes the experimental results of the proposed approach explained in Chapter
4 and the improvements obtained compared to recent approach [28, 30]. The proposed
MCFD-DSE as well as [28, 30] has been implemented in java and run on Intel Core-i5-
3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and processor
frequency of 2.5 GHz. An average of 10 runs was reported for the proposed DSE with equal
weightage to both user objectives of power and delay (&= @,= %2) during experimentation.
Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1,
45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1,
98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle
problems of any size. The library is given in chapter 3 Table 3.1. This section discusses the

following:

e Results of proposed approach for multi-cycle fault values in terms of delay and power

user constraints.

e Comparative results of the proposed methodology and existing fault detectable
approach [28, 30] in terms of resource solution found and cost of solutions. The user
specified weightage of both metrics viz. power and execution time are both kept at %2

during exploration to provided equal preference.

8.2.1 Results of Proposed Approach for k. = 10

Table 8.7 illustrates the results obtained for our proposed DSE of fault detectable datapath
based on 10-cycle faults i.e. k. = 10. It can be seen from results, the proposed approach
comprehensively meets the user constraints of delay and power (and minimizes cost) for all
benchmarks. This section provides the capability of the proposed approach to reach high
quality solutions for transient fault of high strengths (k. = 10) that satisfy the conflicting
multi-objective user constraints as well as minimizes the hybrid cost function. There have
been no previous works which report the results of exploration of power-execution time
constraint driven fault detectable datapath system for single and multi-cycle fault strength.
Further, the solutions obtained for the tested benchmarks are real optimal solutions which
were verified by comparing with the golden solutions found by exhaustive analysis.
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Table 8.7 Results of Proposed Fault Secure DSE approach for k. = 10

?jgcgfrin g;k Resource Ters Te™ Peons P
99, 100] ot (us) (us) (mW) (MW)
1R 1(+), 2(9) 70 57.1 0.3 0.238
BPF 1(+).2(%) 175 1387 0.3 0.238
MPEG MV 1(+), 4(%) 170 82.67 0.7 0.405
ARF 1(+),2() | 220 1787 | 045 0.23
DCT A+, 2% | 210 14338 05 0.45
FIR 3(+),2(") | 100 78.6 0.6 0.46
WDF 2(+),2() | 172 126.1 0.4 0.3

Table 8.8 Comparison of Proposed Approach with Approach [28] and [30] for k=1

I?%;C%r:og]gk R(%sl?ouprocseegget Re:?cgt] rce Rsisto[u2 r8c]e (prgggged) ([;3005]'[ ([:Zoss]t
IR 1(#), 2(%) 1(+),3(%) | 2(#), 4(® 0.12 -0.092 | -0.010
BPF 1(®),2( 200, 2(%) | 4, 4(») -0.137 -0.084 | 0.0467

MPEG MV | 1(%),4(%) | 3(),7(%) | 6(+), 14(%) -0.238 -0.168 0.056
ARF 1,20 | 4®), 209 | 4(), 40 -0.181 -0.061 | -0.094
DCT 4#), 29 | 40,209 | 7(®), 4( -0.14 0.122 | -0.045
FIR 3#),2(%) | 4, 4() | 6(+), 6( -0.116 -0.115 | -0.051
WDF 24),2(%) | 2,20 | 4(®),3( -0.193 0161 | -0.141

8.2.2 Comparison of Proposed Approach

As seen from Table 8.8, the proposed approach when compared with existing approaches
gave better results. The existing approaches provide fault security however with no provision
of guaranteeing that the solution abides the user budget of power and delay. This is due to the
fact that [28], [30] are not able to generate a fault secured schedule for any number of
resource instance (say single instance of each resource type). They at least need two instances
of a resource type due to the compulsion of distinct hardware allocation. So, for a user which
requires a transient fault secured datapath at the lowest hardware area (say single instance),
approach [28] and [30] both will not be able to design one. Table 8.8 indicates the cost
improvement of the proposed approach over [28] and [30] for various benchmarks for k; = 1
(as multi cycle transient faults are not handled by [28] & [30]). As evident, the cost of final
solution through proposed approach is significantly lower than [28] & [30].
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8.3 Experimental Results: Multi-Cycle Single Event Transient Fault
Security Aware MO-DSE for Single loop CDFGs in HLS

This section describes the experimental results of the proposed approach explained in Chapter
5 and the improvements obtained compared to recent approach [30]. The proposed approach
has been implemented in java language on Intel core i5-2450M processor with 3MB L3 cache
memory and 4GB DDRS3 primary memory. The processor frequency is 2.5 GHz. Various
HLS benchmarks were chosen for experimentation such as FIR [45], FFT [86, 100],
DIFFERENTIAL EQUATION [45, 96, 100], MPEG MV[98, 99] , ARF [45, 86], WDF[45,
86]. The proposed approach can handle problems of any size. This section discusses the
results in four phases:

e Variation of exploration time with change in swarm size

e Variation of exploration time with inertia weight

e Results of the proposed approach in terms of area occupied and execution delay of the
final solution along with its associated final cost

e Comparison of proposed approach with [30] in terms of solution explored and final

cost.

8.3.1 Effect of swarm size (p) Variation on Exploration Time

A larger swarm size covers larger design space during one iteration step (with a chance to get
a better result) but is simultaneously subjected to increase in exploration time because of
larger number of particles as well as greater computational complexity per iteration. On the
contrary, a smaller swarm size needs more iteration to explore a better result for larger
problem size. Therefore, three different swarm sizes have been analyzed and their impacts on
exploration time are reported. (Note:-based on this analysis, the selected swarm sizes for
benchmarks used as our base line parameter are underlined).

Table 8.9, presents the increase in exploration time with the increase in swarm size at
the cost of no improvement in the final explored solution. In other words, final solution
explored is optimal for all different swarm sizes. However, exploration time increases due to
increase in computation complexity per iteration. As evident from Table 8.9, the best tradeoff
between fast exploration and searching optimal solution can be obtained by setting p =3. For
example, in case of MPEG MV, p = 3 gives a minimum exploration time of 16482 ms in

comparison to p =5 and 7.
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Table 8.9 Variation of Exploration Time with Swarm Size (p) in ms

Benchmark [45, 86,

98, 99, 100] p=3 p=5 p =7
FIR 1216 1621 1853
FFT 3999 6370 7496

Differential 1819 1924 2415

MPEG MV 16482 24624 31604
ARF 17666 29993 43515
WDF 10911 17299 24781

Table 8.10 Exploration Time vs. Inertia Weight (at p =3)

Be”‘;gfng"’;klgg’ 86, dtég%ilzg ©=05(ms) | o =10 (ms)
FIR 1216 1259 1514
FFT 3999 4810 4827
Differential 1819 1776 1872
MPEG MV 16482 17194 18484
ARF 17666 19670 18881
WDF 10911 11736 11624

8.3.2 Results of Variation of Exploration Time with Inertia Weight
Inertia weight controls to the exploration drift process of the particle by weighing the
involvement of the previous exploration drift. During the experiment, the following three

variations of ‘@’ have been analysed and its impact on the performance of exploration

process has been reported:

e Linearly decreasing ‘@’ in every iteration between [0.9- 0.1] throughout the
exploration process.
e D) A constant value of o = 1 throughout the exploration process.

e ) A constant value of @ = 0.5 throughout the exploration process.
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Table 8.11 Experimental Results of the Proposed Approach for k. = 1

Benchmark

DMR
[45, 86, 98, Final solution Acons AOVR Teons | Te Cost
99, 100] us) | (us)
FIR 2(1).3(").1(<),.UF=2 23058 | 16506 | 7854 | 46.24 | -0.208
FFT 2(1).2() A 1(<).UF=1 | 53730 | 36638 | 27314 | 1844 | -0.218

Differential | 1(+),2(-),5(*),1(<),UF=1 | 36379 24976 | 308.7 | 137.6 | -0.262

MPEG MV 1(+), 4(%) 24000 13776 170 82.67 | -0.240
ARF 1(+), 2(*) 15500 8092 220 178.7 | -0.179
WDF 2(+), 2(%) 14000 10500 172 125.3 | -0.196

Table 8.12 Experimental Results of the Proposed Approach for k. = 4

Benchmark

H H DMR TCOFIS -I-EDNIR
[45, 86, 98, Final solution Acons Ar Cost
99, 100] us) | (us)
FIR 1(+),4(*),1(<),UF=2 23058 16940 78.54 49.6 | -0.189
FFT 3(+),2(-),3(*),1(<),UF=2 53739 36638 | 278.78 | 186.08 | -0.222

Differential | 1(+).2(),6(*),.1(<),UF=1 | 36379 27440 | 308.7 | 139.84 | -0.238

MPEG MV 1(+), 4(%) 24000 13776 170 | 82.67 | -0.24
ARF 1(+), 2(%) 15500 8092 220 | 178.7 | -0.179
WDF 2(+), 2(%) 14000 10500 172 | 1253 | -0.196

As evident from Table 8.9, for all benchmarks the exploration time of proposed fault
detectable DSE process is generally better with linearly decreasing value of ‘@’. For instance
in Table 8.9, exploration time for FFT in case of linearly decreasing inertia weight (from 0.9
to 0.1) is 3999 ms and is much less as compared to exploration time of 4810mS and 4827 ms
attained in constant inertia weight (@ =0.5 and o =1). Similar trend is observed for other
benchmarks. Further, in case of ARF, the exploration time for finding the optimal solution is
17666 ms when ‘@’ is linearly decreased between [0.9 — 0.1] compared to 19670ms and

18881ms when ‘@’ = 0.5 and ‘@’ = 1 respectively as shown in Table 8.10.

8.3.3 Results of the proposed approach
As evident from Table 8.11 and 8.12 the solution explored by the proposed approach

comprehensively meets the user defined constraints for power and execution time as well as
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Table 8.13 Variation of Proposed Approach with [28]

Note: For proposed approach @1 = @ , = 0.5 in the fitness function

Benchmark . . . . .
e | PO | M |
99, 100]
2(+),3(*), 2(+), 4(%),
FIR 1(<),UF=2 1(<),UF=8 -0.208 -0.121
2(+),2(-), 4(+), 2(-),4(),
FFT 4(*)1(<), UF=1 1(<),UF=3 -0.218 -0.15
: : 1(+).2(-), 2(+), 2(-),4(),
Differential 5(*).1(<), UF=1 1(<),UF=4 -0.262 -0.123
MPEG MV 1(+), 4(*) 3(+), 7(%) -0.24 -0.168
ARF 1(+), 2(*) 4(+), 2(*) -0.179 -0.061
WDF 2(+), 2(%) 2(+), 2(*) -0.196 -0.161

minimizes the hybrid cost. The proposed approach was evaluated both for single cycle faults
and multi cycle faults. (i.e. k. = 1and k. = 4). Further, the solutions obtained for the tested
benchmarks are real optimal solutions which were verified by comparing with the golden
solutions found by exhaustive analysis. For exploration, a swarm size of 3 was used also the

acceleration coefficients were initialized to 2.0.

8.3.4 Comparison of proposed approach

The proposed approach has been compared with fault secured approach [28] in terms of final
solution for faults secured DMR and its associated cost. Table 8.13 indicates the
improvement in final solution cost of the proposed approach obtained over [28] for various
benchmarks at k. = 1 (Note: k. = 1 is only considered during comparison as multi cycle
transient faults are not handled by [28]). As evident, the cost of final solution found through

proposed approach is significantly lower than [28].
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8.4 Experimental Results: Bacterial Foraging Driven Exploration of Multi
Cycle Fault Tolerant Datapath based on Power-Performance Tradeoff

in High Level Synthesis

This section describes the experimental results of the proposed approach explained in Chapter
7 and the improvements obtained compared to recent approaches [28, 32]. The proposed
MCFT BFOA-DSE and the approaches compared with [28, 32 ] all have been implemented
in java and run on Intel Core-i5-3210M CPU with 3 MB L3 cache memory and 4 GB DDR3
primary memory during experimentation. The processor has frequency of 2.5 GHz.
Experimentation was done for various HLS benchmarks such as IR Butterworth filter [86],
BPF[98,86], MPEG MV [45], ARF [45, 100], DCT [99], FIR [45, 100], WDF [86, 45]. The
proposed approach can handle problem of any size. The library is given in chapter 3 Table
3.1.

From the results it has been observed that, the proposed approach has always yielded
optimal results for all tested applications. Also, the results generated are fault tolerant in

nature. This chapter covers the following details:

e Results and comparison of proposed algorithm and existing approach [28, 32],
generated by varying the k. fault value.

e Comparison of MCFT-BFOA-DSE with previous Fault tolerant approaches in terms
of Quality of Results and resource set utilized.

The QoR is calculated as:

1 PDMR T DMR
Qor =3 P+ o 62)
8.4.1 Pre-tuning of Parameters

During experimentation, following settings were made for fault tolerant approach of design

exploration: @1= ©=0.5, p = 3, N¢ = 120, Neg = 5.

8.4.2 Comparison of Proposed Approach with [32]
This section describes the results obtained by comparing the proposed approach with existing
approach [32].

97



Table 8.14 Results of Proposed Fault Tolerant DSE Approach for k. =1

Benchmark
[45, 86, 98, 99, Teons T MR Peons p,PMR Cost
100] (us) (us) (uw) (uw)
IR 66.00 55.00 308.90 |205.96 |-0.151
BPF 173.00 | 149.70 [301.19 |20559 |-0.155

MPEG_MV | 165.00 82.90 727.78 352.25 -0.276

ARF 220.00 179.50 450.97 205.93 -0.217
DCT 207.00 154.54 450.37 384.65 -0.132

FIR 108.00 89.60 596.19 325.20 -0.180
WDF 172.00 137.60 330.00 265.19 -0.145

Table 8.15 Comparison of Proposed Approach with [32] in Terms of Resource
(Hardware) Utilized for Fault Tolerant Datapath for (k. = 1)

k- ke e
IR 3(+), 5(%) 1(+), 2(%) 62.5
BPF 6(+), 5(*) 1(+).2(%) 72.7
MPEG_MV 9(+), 14(%) 1(+), 409 78.2
ARF 5(+), 6(%) 1(+), 2(%) 72.7
DCT 12(+),6(%) 4(+), 2() 66.6
FIR 9(+), 8(*) 3(+), 2(9) 705
WDF 6(+), 4(%) 2(+), 2(%) 60.0

8.4.2.1 Analysis of Results by Varying k. Value

The proposed approach when compared with [32] for different k. values, gave substantially
better results in terms of cost of solutions and the resource solutions obtained. Table 8.14,
illustrates the results obtained by making the design system tolerable to 1-cycle faults i.e., for
ke = 1. As evident from Table 8.15, the applications when tested through the proposed
approach require less hardware usage than the existing approach [32]. In [32], the hardware
usage is almost (sometimes more than) tripled for most of the applications. For instance, in

BPF application, the proposed approach generated 1(+), 2(*) as the final solution, which has
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Table 8.16 Results of Proposed Fault Tolerant DSE Approach for k. = 2

Benchmark

[45,86,98,99, | Tcons TPMR Peons P st

100] (us) (us) (uw) (uw)
IR 66.00 66.00 308.94 |205.65 |-0.101
BPF 179.00 [149.70 |[301.11 [20559 |-0.168
MPEG_MV | 165.00 | 93.60 72778 | 35182 |-0.258
ARF 221.00 [179.70 |450.95 [205.93 |-0.218
DCT 21300 | 16550 |450.26 |38452 |-0.124
FIR 108.00 | 89.80 596.19 |325.20 |-0.180
WDF 172.00 [137.60 [330.00 |[265.19 |[-0.145

Table 8.17 Results of Proposed Fault Tolerant DSE Approach For k; =3

Benchmark

[45,86,98,99, | Teons | Te o' Peons PO et

100] (us) (us) (uw) (uw)
IR 66.00 66.00 | 350.00 | 205.65 | -0.148
BPF 173.00 | 150.00 | 301.18 | 205.58 | -0.152
MPEG_MV | 165.00 | 9360 | 727.78 | 351.82 | -0.258
ARF 221.00 | 180.00 | 450.95 | 205.92 | -0.217
DCT 213.00 | 165.80 | 450.26 | 384.52 | -0.124
FIR 108.00 | 90.10 | 596.19 | 325.20 | -0.177
WDF 172.00 | 137.60 | 330.00 | 265.19 | -0.145

a cost of -0.155. While, [32] yielded a solution set of 6(+), 5(*) which is much higher (more
than triple) compared to proposed. This shows that since the hardware usage is much greater
in [32], therefore, the solutions obtained do not satisfy the power budget or the time budget,
thereby, generating higher cost of the solution (design). On the other hand, the final solutions
of the proposed approach involving DMR are fault tolerant and satisfy the user specified

power and time constraints.
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Table 8.18 Comparison of Proposed Approach With [32] in Terms of Resource (Hardware)
Utilized for Fault Tolerant Datapath for (k. = 2 and 3)

B | ot | e | et | R | T | et
99, 100] ke =2 k,=2 | Minarea k. =3 k =3 in area
IR 3(+),5(*) | 1(+),2(% 62.5 2(+),5(*) | 1(+), 2(» 57.1
BPF 6(+), 4(*) | 1(+).2(") 70.0 6(+), 4(%) | 1(+).2() 70.0
MPEG_MV | 9(+),14(*) | 1(+),4(*) 782 | 8(+), 14(%) | 1(+), 4() 772
ARF 5(+),6(*) | 1(+),2(%) 727 6(+),6(*) | 1(*), 2() 75.0
DCT 12(+),6(*) | 4(+), 2(* 66.6 12(9),6(%) | 4(+), 2(9) 66.6
FIR 8(+),8(*) | 3(+),2(» 68.7 8(+), 8(*) | 3(+), 2(% 68.7
WDF 6(+),5(*) | 2(+),2(%) 63.6 6(+),5(*) | 2(+), 2() 636

Table 8.19 Results of Proposed Approach (for k. = 1) in Terms of Optimality

e Spacing Spread Weighted

[45.86, 98,99, | GD | MFE ) ) Metric (W)
100]
IR 0.00 0.32 0.00 0.60 0.30
BPF 0.00 0.26 0.11 0.84 0.42

MPEG_MV 0.00 0.54 0.18 0.89 0.45
ARF 0.00 0.65 0.07 0.78 0.39
DCT 0.00 0.14 0.00 0.66 0.33
FIR 0.00 0.33 0.01 0.63 0.31
WDF 0.00 0.46 0.00 0.74 0.37

Similar results are observed for the approaches when tested for multi-cycle faults in
the system. Table 8.16 and Table 8.17, shows the results of the proposed for 2-cycle (k. = 2)
and 3-cycle faults (k. = 3). As seen from Table 8.18, the proposed approach generates more
efficient results than the [32] approach against faults with k. = 2 and 3. The solutions
generated through proposed approach have much lower cost, then the [32] approach

employing TMR scheme.
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Table 8.20 Results of Proposed Approach (for k. = 3) in Terms of

Optimality
et | G0 | e | Feons | S | g
100]
IR 0.00 0.17 0.00 0.66 0.33
BPF 0.00 0.27 0.11 0.85 0.42
MPEG_MV 0.00 0.98 0.03 0.82 0.41
ARF 0.00 0.68 0.00 071 0.35
DCT 0.00 0.34 0.10 0.81 0.40
FIR 0.00 0.42 0.00 0.70 0.35
WDF 0.00 0.47 0.04 0.73 0.36

Table 8.21 Comparison of Proposed Approach With [32] Fault Tolerant Approach

Benchmark ke=1 ke=2
[45, 86, 98,
99, 100] QoR QoR | % QoR QoR | %
mprove- mprove-
proposed | [32] rﬁent proposed [32] rﬁent
IR 0.46 0.76 39.4 0.51 0.86 40.5
BPF 0.55 1.01 455 0.55 1.00 44.9
MPEG_MV 0.26 0.66 60.6 0.28 0.69 58.8
ARF 0.38 0.65 41.5 0.38 0.68 42.9
DCT 0.51 0.91 43.9 0.53 0.95 44.1
FIR 0.40 0.65 38.4 0.40 0.68 40.5
WDF 0.58 0.91 36.2 0.58 0.98 40.5

For k. = 1 average improvement in QoR w.r.t [32] =43.4 %
For k. = 2 average improvement in QoR w.r.t [32] =44.3 %

8.4.2.2 Results of Proposed Approach in Terms of Optimality
Table 8.19 and Table 8.20 show the analysis of proposed approach in terms of quality metrics
such as generational distance (GD), maximum pareto-optimal front error (MFE), spacing (S),

spread (A) and weighted sum (W). Table 8.19 illustrates the results of proposed approach in
terms of optimality for k. = 1, while Table 8.20 is for k. = 3.
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Table 8.22 Comparison of Proposed Approach With [32] Fault Tolerant Approach

kc = 3
Benchmark [45,
86, 98, 99, 100] QoR QoR %
proposed [32] Improve-

ment
IR 0.51 0.80 36.2
BPF 0.55 1.05 47.6
MPEG_MV 0.28 0.67 58.2
ARF 0.38 0.73 47.9
DCT 0.53 0.99 46.4
FIR 0.40 0.70 42.8
WDF 0.58 1.03 43.6

For k. = 3 average improvement in QOR w.r.t [32] =45.8 %

As seen from Table 8.19, the GD is zero for all the benchmarks, indicating that the
solutions generated through the proposed approach lie on true pareto front. A spacing of zero
(or a little higher than zero) for an application states that, the proposed approach is able to
have uniform distribution of Pareto points on the curve. Similar pattern of results is evident
from Table 8.20 where optimality of proposed approach for k. = 3 is evaluated. It can also be
seen that, the results obtained by the proposed approach are real optimal solution as
discovered by verifying with the golden solution found through exhaustive analysis.

8.4.3 Comparison of Proposed Approach in Terms of Quality of Results

8.4.3.1 Comparison with [32]

Table 8.21 and 8.22 shows the comparison of [32] with the proposed MCFT-BFOA
driven DSE approach. In approach [32] there was no concept of exploration of a fault tolerant
datapath based on power-performance constraint presented in the paper, unlike the proposed
approach. Further, the authors did not provide any concept of multi-cycle faults. Moreover,
the approach presented a TMR (triple modular redundant) system for k-cycle fault tolerance
for single event transient (SET). The outputs of the units were voted upon by the help of
voter, to mask the errors. Additionally, comparators were used to detect the difference in the
outputs of the units. However, the proposed approach uses Double Modular Redundancy

(DMR) scheme to explore a fault tolerant design without using voters to extract the correct
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Table 8.23 Comparison of Proposed Approach with [28] Fault Secured Approach

Benchmark QoR QOR [28] Resource Set | Resource | % reduction
[45,86,98,99, | proposed (proposed) | Set[28] in area
100]
IR 0.46 049 | 1(+), 2(%) 1), 3( 25.0
BPF 0.55 058 | 1(+).20% 2(4), 2(9) 25.0
MPEG_MV 0.26 033 | 1(+), 4(9 3(4), 709 50.0
ARF 0.38 050 | 1(+), 2% 4, 209 50.0
DCT 0.51 051 | 4(), 2(%) 4, 209 0.0
FIR 0.40 040 | 3(), 2% 40+, 4(%) 375
WDF 0.58 057 | 2(+), 2() 2(), 209 0.0

Average improvement in QoR = 7.10%

output. Therefore, [32] involved higher degree of redundancy in their system which
sometimes involved a TMR system almost tripling the resource usage.

Therefore, from Table 8.21 and 8.22 it is evident that proposed approach achieves a
better QoR in comparison to [32] for all the benchmarks. The average improvement in QoR is
more than 43%. Also, an average reduction of 70% is attained in the hardware usage of

proposed approach as observed in Table 8.21 and 8.22.

8.4.3.2 Comparison with [28]

Table 8.23 shows the comparison of QoOR (cost units) between the proposed approach
(MCFT-BFOA-DSE) and fault secured approach [28]. It should be noted that [28] is just a
fault secured approach and does not have ability to mask the fault. Therefore it has ability to
only detect the fault but not correct it. Moreover, [28], does not have ability to explore a
datapath circuit based on conflicting user constraint. After experimentation, it has been found
that there is an average improvement in QoR of 7% and a reduction of 29.1 % in hardware
usage through proposed approach. For example, in case of DCT and WDF, there is no
reduction in hardware area observed compared to [28], however, the proposed approach with
the same resource achieves fault tolerance as well as minimizes the hybrid cost of power and

execution time which [28] is unable to perform.
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8.5 Experimental Results: Untrusted Third Party Digital IP cores: Power-
Delay Trade-off Driven Exploration of Hardware Trojan Secured

Datapath during High Level Synthesis

The proposed approach as well as [35] both have been implemented in java and run on Intel
Core-i5-3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and
processor frequency of 2.5 GHz. An average of 10 runs was reported for proposed BFOA
DSE with equal weightage to both user objectives of power and delay (W; = W, = %).
Various HLS benchmarks were chosen for experimentation such as JPEG Downsample,
JPEG IDCT2, IDCT, Feedback Points, ARF, BPF, FIR, and MESA Matrix Multiplication.
As found during the experiments, the proposed approach is scalable and is able to handle

problems of any size. The results are divided into three phases.

e  Sensitivity Analysis
e Results of proposed approach

e Comparison of proposed approach with existing approaches.
8.5.1 Sensitivity Analysis

8.5.1.1 Pre-tuning
During experimentation, following settings were kept for proposed approach: p= 3, 5 and 7,
N¢ = 120.

8.5.1.2 Bacterium Size, p

Table 8.24 shows the effect of bacterium size ‘p’ on the exploration time of proposed DSE
method. As evident, it indicates that for all benchmarks with the increase in bacterium size,
the exploration time of the proposed approach to find the final solution increases (with the
cost of the final solution remaining the same for all bacterium size). The exploration time
increase is because of increase in computational complexity per iteration (i.e. the total
number of positions evaluated in a run increases with the increase in ‘p’). Figure 8.5 and 8.6
shows a graphical representation of the variation of exploration time with respect to increase

in the bacterium size ‘p’.
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Table 8.24 Comparison of Exploration Time with respect to

Bacterium size ‘p’ for Proposed Approach

Benchmark . . Cost of final
[45, 86, 98, Bacstfzr;“m Etffr:gr(f:s‘;” solution
99, 100]
3 640 -0.125
IR 5 703 -0.125
7 1250 -0.125
3 7043 -0.251
MPEG MV 5 7657 -0.251
7 11422 -0.251
3 1907 -0.192
ARF 5 2156 -0.192
7 3786 -0.192
3 7156 -0.154
IDCT 5 7998 -0.154
7 8328 -0.154
3 3516 -0.106
DCT 5 3891 -0.106
7 5977 -0.106
3 6500 -0.245
FIR 5 7282 -0.245
7 12532 -0.245

8.5.2 Results of proposed Approach

As shown Table 8.25, the proposed approach comprehensively meets the user constraints of
delay and power (and minimizes the hybrid cost for all benchmarks. For example, in case of
IR benchmark, the proposed approach generates the final optimal solution with power
(P°™R) = 0.58mW and L:°“® = 23080ns, which is with the specified user constraints of

power and delay (Pcons = 0.55mW and Lcons = 38945 ns). Also, the proposed approach is able
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to achieve the real optimal solution for all benchmarks as verified with the golden solution

found through brute force.

8.5.3 Comparison of proposed approach
Metric such as QoR indicating the quality of final solution (lower cost solution explored)
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Figure 8.5 Graphical Representation of Variation of Exploration Time (in ms)
with respect to Change in Bacterium size (p)
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yielded by both approaches (proposed and [35]) is an important tool for comparison. The

QoR for both the approaches (proposed and [35]) is evaluated by the following function:

1 P DMR L DMR
T

QORZE(PT ovR T Lm DMR)

(8.3)
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1 8000 -
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Figure 8.6 Graphical Representation of Variation of Exploration Time (in ms)
with respect to Change in Bacterium size (p)
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Table 8.25 Results of Proposed Trojan Secured Approach
Benchmark [45, Lcons LTDMR Pcons PTDMR Cost
86, 98, 99, 100] (ns) (ns) (mW) (mW)
IR 38945 23080 0.58 058 | -0.125
IDCT 119160 | 77080 1.02 093 | -0.154
ARF 130810 89890 0.63 0.48 | -0.192
MPEG MV 88307 36240 1.48 1.03 -0.251
DCT 175442 153540 0.77 059 | -0.106
FIR 76387 34890 1.22 0.85 -0.245
Note: mW = miliwatt, ns = nanoseconds
Table 8.26 Comparison of Proposed Approach With [35]
. . Final
Final solution .
Benchmark | for Trojan SOIUtIO_n for Cost of final CQSt of QoRin .QOR
Trojan . final . in cost
[45, 86, 98, Secured secured solution solution cost units Units
99, 100] (d?;azzéz) datapath (proposed) [35] (proposed) [35]
prop [35]

IR 2(+),5(*%), 0 2(+), 3(),1 -0.125 -0.016 0.53 0.64
IDCT 6(+), 4(*), 0 5(+),3(%).1 -0.154 -0.027 0.50 0.63
ARF 2(+), 4(*),0 3(+),3(%).1 -0.192 -0.056 0.49 0.63

MPEG MV 2(+),10(*),0 | 3(+),8(%).1 -0.251 -0.226 0.30 0.33
DCT 4(+),4(™), 0 5(+), 3(%).1 -0.106 -0.064 0.50 0.54
FIR 6(+), 6(*), 0 5(+), 5(*),1 -0.245 -0.209 0.33 0.36

The area of the single comparator/error detection block responsible to runtime Trojan
detection at the final output is also considered in the above QoR function when evaluating its
magnitude for both [35] and proposed approach. However, since only a single
comparator/error detection block is used in both approaches, hence it has no impact on the
QoR of both approaches. However, during QoR comparison, power overhead due to internal
buffering (temporary storage of operation output), has been considered for both proposed

approach and [35].

Table 8.26, illustrates the comparative results of the proposed approach and [35] when
evaluated on the standard benchmarks. As seen from the results in Table 8.26, with the

introduction of exploration for vendor allocation procedure type ‘A,” and user constraint
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driven exploration, the proposed approach generates better results in comparison to [35]. For
example, in ARF benchmark, the proposed approach generates 2(+), 4(*), 0 as the solution
(cost of -0.192) which is lesser than the cost of [35] (cost = -0.056). This is because, in

previous approach

there is no provision of exploring an optimal ‘vendor allocation procedure’ during scheduling
in DMR as well as no optimization scheme based on user power- delay constraint for finding
a better alternative solution. Figure 8.7 shows the comparison of the QoR (in cost units) of

the proposed approach with [35].

QOR Comparison

mQoR (Proposed) mQoR [35]
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

QoR (Cost units)

IIR  BPF ARF MPEG DCT FIR

Benchmarks

Figure 8.7 Comparison of QoR (cost units) of proposed
and [35] approach
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Chapter 9

Conclusion and Future work

9.1 Conclusion
This thesis presented novel methodologies for designing reliability aware and hardware

security aware designs at behavioural level for data intensive and control intensive

applications during design of application specific datapath processor. Therefore, the

following objectives were accomplished in this thesis work:

Proposed a methodology to solve the problem of DSE during power-performance
trade-off for data intensive applications that produces high quality design solutions.
The proposed approach provided an average improvement in QoR of > 35% and
reduction in runtime of > 4% compared to recent approaches.

Proposed an approach to solve the problem of exploration of low cost optimal k-cycle
transient fault secured datapath during power-performance trade-off for data intensive
applications. Results of comparison of proposed approach with recent approaches
indicated significant reduction of final cost.

Proposed an automated approach to solve the problem of simultaneous exploration of
low cost optimal k-cycle transient fault secured datapath and unrolling factor for
control intensive applications during area-delay trade-off. Results of proposed
approach when compared to similar approach indicated better quality solution within
acceptable runtime.

Proposed an execution time prediction model for faster exploration process in case of
single loop based CDFGs without tediously unrolling CDFG loop completely.
Proposed an approach to solve the problem of exploration of low cost optimal k-cycle
transient fault tolerant datapath based on power-performance tradeoff for data
intensive applications. The results in chapter 8 showed that the proposed MCFT-
BFOA based DSE provided higher an average reduction of 7% in final cost and 29%
in hardware utilization compared to recent approaches.

Proposed an approach that solves the problem of exploration of low cost optimal

Trojan secured datapath during behavioural synthesis for data intensive applications.
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The proposed approach achieves an improvement of 14.1% in QoR in comparison to
existing approaches.
Therefore, this thesis presented multiple novel methodologies for designing reliability aware
and hardware security aware designs at behavioural level for data intensive and control
intensive applications during design of application specific datapath processor. The proposed
methodologies can be efficiently applied for any exploration problem in HLS based on any

user criteria.

9.2 Future Work
However, generating highly reliable and secured HLS designs for application specific
processors still requires a lot of effort in the future. Some of the important aspects which
require future attention by the researchers area as follows:
e Consideration of multi-checkpointing technique can be considered during transient
fault security in HLS.
e Development of low cost Trojan secured schedule for nested-loop based applications.
e Consideration of other class of Trojans than the one handeled in this thesis, during

development of Trojan security aware HLS methodology.
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