

LOW COST FAULT RELIABILITY AND

TROJAN SECURITY AWARE HIGH LEVEL

SYNTHESIS FOR APPLICATION SPECIFIC

DATAPATH PROCESSORS

Ph.D. Thesis

By

SAUMYA BHADAURIA

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2016

LOW COST FAULT RELIABILITY AND

TROJAN SECURITY AWARE HIGH LEVEL

SYNTHESIS FOR APPLICATION SPECIFIC

DATAPATH PROCESSORS

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

SAUMYA BHADAURIA

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2016

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled LOW COST FAULT

RELIABILITY AND TROJAN SECURITY AWARE HIGH LEVEL SYNTHESIS FOR

APPLICATION SPECIFIC DATAPATH PROCESSORS in the partial fulfillment of the requirements

for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF

COMPUTER SCIENCE & ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY INDORE, is

an authentic record of my own work carried out during the time period from July 2013 to January 2016 under

the supervision of Dr. Anirban Sengupta, Assistant Professor, Indian Institute of Technology Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.

 Signature of the student with date

SAUMYA BHADAURIA

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date

(Dr. Anirban Sengupta)

--

 SAUMYA BHADAURIA has successfully given his/her Ph.D. Oral Examination held on

Signature(s) of Thesis Supervisor(s) Convener, DPGC

Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #1 Signature of External Examiner

Date: Date: Date:

ACKNOWLEDGEMENTS

First of all, I would like to thank my parents and my brother, Ishan, for their strong belief in

me and for always being a constant source of motivation and guidance. This thesis would not

have been possible without them.

 I would like to express my gratitude to my supervisor Dr. Anirban Sengupta for

providing me the opportunity to do work under his supervision, without his guidance and

directions to solve the challenging tasks this research work could not be completed. I have

learned a lot from him.

 Besides my advisor, I also owe a mention to Dr. Abhishek Srivastava, Dr. Surya

Prakash and Dr. Shanmugam Dhinakaran for their valuable feedbacks on my research work

throughout these years. I am grateful to Dr. Kapil Ahuja, Head, CSE Discipline for all the

help and cooperation.

 Special thanks to Navneet, Rajendra and Vipul for their moral support and valuable

opinions at times. It has been a great pleasure to work with many talented colleagues during

my years of work at IIT Indore. I would like to thank all my past and present colleagues and

all my friends for their help and support.

At last, I would like to thank IIT Indore, DST, CSIR to help me financially and providing me

an opportunity to showcase my research at international grounds.

DEDICATED TO MY FAMILY

VI

ABSTRACT

With changing trends in technology and to effectively compete in the market, designers are

focussing on attempts to optimize Very Large Scale Integration (VLSI) digital systems.

Attempts to devise design systems with higher performance, accuracy and efficiency along

with lower overall cost are being made. In order to achieve this, High Level Synthesis (HLS)

/ architectural synthesis has come into force. However, there is a paradigm shift in the area of

HLS as more and more designs are suffering from reliability and hardware security issues.

These are expected to become the key focus due to massive scaling in nanometre technology

and globalization involved in the VLSI design process. This thesis proposes methodologies

for generating low cost security solutions for both transient fault and hardware Trojan with

respect to data intensive and control intensive applications during design of application

specific datapath processor at behavioural level. This thesis solves five different types of

problems in generating reliable//hardware secured designs: a) Problem of design Space

Exploration (DSE) during power-performance trade-off for data intensive applications that

produces high quality design solutions. In addition, a novel Bacterial Foraging Optimization

(BFO) driven DSE methodology is proposed which explores the design points in the design

space. A novel chemotaxis, replication and elimination-dispersal algorithm is proposed which

generates the design points. b) Problem of exploration of low cost optimal k-cycle transient

fault secured datapath during power-performance trade-off for data intensive applications. A

novel fault security algorithm for handling single and multi-cycle transient faults is proposed.

A novel multi-cycle Single Event Transient (SET) fault security aware multi objective DSE

methodology that explores an optimal combination of transient fault secured (Double

Modular Redundant) DMR datapath configuration has been proposed. Moreover, a novel

scheme for selecting appropriate edges for inserting cuts in the scheduled Data Flow Graphs

(DFG) minimizing delay overhead associated with transient fault security, a novel execution

time model for estimating the execution time of a transient fault secured/Trojan secured

design during DSE process, a novel fitness function, used for design quality assessment in

DSE process has been proposed. c) Problem of exploration of low cost optimal k-cycle

transient fault secured datapath during area-delay trade-off for control intensive applications.

a novel multi-cycle SET fault security aware multi objective DSE methodology that explores

VII

an optimal combination of transient fault secured DMR datapath configuration and loop

Unrolling Factor (UF) for Control Data Flow Graphs (CDFG) has been proposed. Moreover,

a novel estimation model for computation of execution delay of a loop unrolled CDFG (based

on a resource configuration explored) without tediously unrolling the entire CDFG for the

specified loop value has been proposed. d) Problem of exploration of low cost optimal k-

cycle transient fault tolerant datapath based on power-performance tradeoff for data intensive

applications. In relation to this, a novel multi-cycle transient fault tolerant algorithm that has

capability to isolate original and duplicate units in a DMR with respect to the transient fault

has been proposed. Moreover, a novel equivalent circuit that works with DMR systems

performs the function of extracting the correct output from the DMR design has been

proposed. e) Problem of exploration of low cost optimal Trojan secured datapath during

behavioural synthesis for data intensive applications has been tackled. A novel encoding

scheme for representing bacterium in the design space (comprising of candidate datapath

resource configuration and vendor allocation information for hardware Trojan secured

datapath) has been proposed. Moreover, a novel exploration process of an efficient vendor

allocation procedure that assists in yielding a low cost hardware Trojan secured datapath

within user constraints has been proposed.

VIII

LIST OF PUBLICATIONS

International Journals (5)

1. Saumya Bhadauria, Anirban Sengupta “Adaptive bacterial foraging optimization

driven Design Space Exploration: Exploring area-performance tradeoff during

HLS”, Elsevier Journal on Applied Mathematics and Computations, Volume 269,

pp. 265–278, Oct 2015. (5 yr Impact Factor ~1.686)

2. Anirban Sengupta, Saumya Bhadauria, “Automated Design Space Exploration of

Multi-Cycle Transient Fault Detectable Datapath based on Multi-Objective User

Constraints for Application Specific Computing”, Elsevier Journal on Advances in

Engineering Software, Volume 82, pp. 14- 24, April 2015. (5 yr Impact Factor ~1.5)

3. Anirban Sengupta, Saumya Bhadauria, “Bacterial Foraging Driven Exploration of

Multi Cycle Fault Tolerant Datapath based on Power-Performance Tradeoff in High

Level Synthesis”, Elsevier Journal on Expert Systems With Applications, Volume

42, pp. 4719 - 4732, Jan 2015. (5yr Impact Factor = 2.339).

4. Saumya Bhadauria, Anirban Sengupta, “Multi-Cycle Single Event Transient Fault

Security Aware MO-DSE for Single loop CDFGs in HLS”, IEEE VLSI Circuits &

Systems Letters, Volume 1, Issue 2, Oct 2015.

5. Anirban Sengupta, Saumya Bhadauria, “Exploration of Multi-Objective Tradeoff

During High Level Synthesis Using Bacterial Chemotaxis and Dispersal”, Elsevier

Journal on Procedia Computer Science, Volume 35, Issue C, pp. 63 -72, Sep 2014.

Peer Reviewed Conferences (7)

6. Anirban Sengupta, Saumya Bhadauria, “Untrusted Third Party Digital IP cores:

Power-Delay Trade-off Driven Exploration of Hardware Trojan Secured Datapath

during High Level Synthesis”, Proceedings of 25th IEEE/ACM Great Lake

Symposium on VLSI (GLSVLSI), Pennsylvania, pp. 167-172, May 2015. (DOUBLE

BLIND REVIEW).

IX

7. Anirban Sengupta, Saumya Bhadauria, “Automated Design Space Exploration of

Transient Fault Detectable Datapath Based on User Specified Power and Delay

Constraints”, Proceedings of 33rd VLSI - Design Automation & Test (VLSI -

DAT), Taiwan, pp. 1-4, April 2015. (DOUBLE BLIND REVIEW) Note- Amongst top

10 EDA/VLSI conferences

8. Anirban Sengupta, Saumya Bhadauria, “User Power-Delay Budget Driven PSO Based

Design Space Exploration of Optimal k-cycle Transient Fault Secured Datapath

during High Level Synthesis”, Proceedings of 16th IEEE International Symposium

on Quality Electronic Design (ISQED 2015), California, USA, pp. 289 - 292, March

2015. (DOUBLE BLIND REVIEW) Note- Amongst top 10 EDA/VLSI conferences

9. Saumya Bhadauria, Anirban Sengupta, “A High Level Synthesis Approach for

Exploring Low Cost k-cycle Transient Fault Secured Solution”, 21st Asia South

Pacific-Design Automation Conference (ASP-DAC), Jan 2016, Accepted.

10. Anirban Sengupta, Saumya Bhadauria, “Automated Exploration of Datapath in High

Level Synthesis using Temperature Dependent Bacterial Foraging Optimization

Algorithm”, Proceedings of 27th IEEE Canadian Conference on Electrical and

Computer Engineering, Toronto, pp. 68 -73, May 2014.

11. Anirban Sengupta, Saumya Bhadauria, “Error Masking of Transient Faults:

Exploration of a Fault Tolerant Datapath Based on User Specified Power and Delay

Budget”, Proceedings of 13th IEEE International Conference on Information

Technology, pp. 345 – 350, Dec 2014. (DOUBLE BLIND REVIEW)

12. Saumya Bhadauria, Anirban Sengupta, “Secure Information Processing during

System level: Exploration of an Optimized Trojan Secured Datapath for CDFGs

during HLS based on User Constraints”, Proceedings of 1
st
 IEEE iNIS 2015 Special

Session, Accepted, 2015.

X

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATIONS VIII

 LIST OF FIGURES XIV

 LIST OF TABLES XVI

 NOMENCLATURE XVIII

 ACRONYMS XXI

1. Chapter 1

 Introduction 1

 1.1 Preamble 1

 1.2 Circuit Design and Synthesis 1

 1.3 High Level Synthesis (HLS) Details 2

 1.4 Theoretical Background on HLS 3

 1.5 Phases of HLS 4

 1.6 Why HLS? 6

 1.7 Thesis Organization 7

2. Chapter 2

 Previous Work and Thesis Contribution 8

 2.1 Related Work 8

 2.2 Objective 13

 2.3 Summary of Contribution 13

3. Chapter 3

 Adaptive Bacterial Foraging Driven Datapath Optimization: Exploring

Power-performance Trade-off in HLS

16

 3.1 Description of Proposed Methodology 16

 3.1.1 Problem Formulation 16

 3.1.2 Motivation of using BFOA in Context of Proposed

Problem

17

 3.1.3 Proposed BFOA Driven DSE Methodology 17

 3.1.4 Models for Evaluation of Design Points During BFOA 19

XI

 3.2 Description of Proposed Methodology with Demonstration 21

 3.2.1 Module Library Information and Operating Constraints 21

 3.2.2 Maximum Threshold 22

 3.2.3 Boundary Constraints Check Module 22

 3.2.4 Initialization of Bacterium 22

 3.2.5 Calculation of Fitness of a Bacterium 23

 3.2.6 Determination of New Configuration of the Particle 25

 3.2.7 Termination Criteria 30

 3.3 Summary 30

4. Chapter 4

 Automated Design Space Exploration of Multi-Cycle Transient Fault

Detectable Datapath based on Multi-Objective User Constraints for

Application Specific Computing

31

 4.1 Problem Formulation 32

 4.2 Proposed Methodology 32

 4.2.1 Motivation 32

 4.2.2 Proposed Framework 34

 4.3 Proposed Evaluation Models 43

 4.4 Demonstration of PSO-DSE Methodology 45

 4.5 Stopping Criteria (Z) 47

 4.6 Summary 48

5. Chapter 5

 Multi-Cycle Single Event Transient Fault Security Aware MO-DSE for

Single loop CDFGs in HLS

49

 5.1 Problem Formulation 49

 5.2 The Proposed Framework and Mapping Process 50

 5.3 Proposed Evaluation Models and Formulation 50

 5.4 Proposed Methodology 53

 5.5 Stopping Condition 58

 5.6 Summary 58

6. Chapter 6

 Bacterial Foraging Driven Exploration of Multi Cycle Fault Tolerant

Datapath based on Power-Performance Tradeoff in High Level

59

XII

Synthesis

 6.1 Problem Formulation 59

 6.2 Proposed Framework 60

 6.3 Proposed Evaluation Models 69

 6.4 Termination Criteria 71

 6.5 Summary 71

7. Chapter 7

 Untrusted Third Party Digital IP cores: Power-Delay Trade-off Driven

Exploration of Hardware Trojan Secured Datapath during High Level

Synthesis

72

 7.1 Problem Formulation 73

 7.2 Proposed Methodology 74

 7.3 Termination criteria 79

 7.4 Summary 80

8. Chapter 8

 Results and Analysis 81

 8.1 Experimental Results: Adaptive Bacterial foraging driven

Datapath Optimization: Exploring Power-performance

Trade-off in High level synthesis

81

 8.2 Experimental Results: Automated Design Space Exploration

of Multi-Cycle Transient Fault Detectable Datapath based on

Multi-Objective User Constraints for Application Specific

Computing

91

 8.3 Experimental Results: Multi-Cycle Single Event Transient

Fault Security Aware MO-DSE for Single loop CDFGs in

HLS

93

 8.4 Experimental Results: Bacterial Foraging Driven Exploration

of Multi Cycle Fault Tolerant Datapath based on Power-

Performance Tradeoff in High Level Synthesis

97

 8.5 Experimental Results: Untrusted Third Party Digital IP cores:

Power-Delay Trade-off Driven Exploration of Hardware

Trojan Secured Datapath during High Level Synthesis

104

XIII

9. Chapter 9

 Conclusion and Future work 110

 9.1 Conclusion 110

 9.2 Future work 111

 References 112

XIV

LIST OF FIGURES

Figure 1.1 Sample Behavioural description 3

Figure 1.2 Sample Data Flow Graph 3

Figure 3.1 Proposed BFOA –DSE Methodology 18

Figure 3.2 DFG of HAL Benchmark 21

Figure 3.3 Pseudo code for Proposed Chemotaxis Algorithm 24

Figure 3.4 Pseudo code for Proposed Replication Algorithm 27

Figure 3.5 Pseudo code for Proposed Elimination-Dispersal Algorithm 28

Figure 4.1 Scheduled Sequencing Graph with Data Registers 32

Figure 4.2 Block Diagram of Proposed Approach 33

Figure 4.3 Pseudo code for PSO-DSE 35

Figure 4.4 Algorithm for generating a kc Fault Secured SDFG
DMR

36

Figure 4.5 Uncorrected 5-cycle fault secured SDFG
DMR

 38

Figure 4.6 Corrected 5-cycle Fault Secured SDFG
DMR

 39

Figure 4.7 Example for C1 40

Figure 4.8 Example for C2 41

Figure 4.9 Example for C3 Before Cut 42

Figure 4.10 Example for C4 Before Cut 43

Figure 4.11 Example for Condition 4 After Cut 43

Figure 4.12 Adaptive End Terminal Perturbation Algorithm 45

Figure 4.13 Adaptive Rotation Mutation Algorithm 46

Figure 5.1 Proposed Multi-cycle Transient Fault Security Aware DSE During

Behavioural Synthesis

50

Figure 5.2(a) FFT Loop 51

Figure 5.2(b) FFT Loop Unrolled Twice 51

Figure 5.3 kc Fault Secured SCDFG
DMR

of FFT Loop body for Resource 52

XV

configuration (4(+), 2(*), 1(-), 1(<), UF=2) at I=4 and kc =2

Figure 5.4 Pre-processing of UF 54

Figure 5.5 Algorithm for Inclusion of Some Special UFs 54

Figure 5.6 Algorithm for Generating a kc Fault Secured SCDFG
DMR

56

Figure 6.1 Proposed Multi Objective Multi Cycle Fault Tolerant BFOA-DSE

Approach

60

Figure 6.2 Pseudo code for Multi Cycle Fault Tolerant Algorithm 62

Figure 6.3 : SDFG
DMR

 of ARF with Xi = 1(+), 2(*) 63

Figure 6.4: Intermediate Fault Tolerant SDFG
DMR

 of ARF for kc = 2 64

Figure 6.5 Fault Tolerant SDFG
DMR

 of ARF for kc = 2 65

Figure 6.6. Circuit Diagram for Voting Scheme 66

Figure 6.7. Datapath Circuit Corresponding ARF with Xi = 1(+), 2(*) 68

Figure. 6.8 SDFG
TMR

 for [32] Corresponding ARF with Xi = 5(+), 6(*) for kc = 2 70

Figure 7.1 An Infected 1- bit Adder IP Present in Module Library of a HLS Tool 73

Figure 7.2 Proposed Methodology for Trojan Secured Datapath 74

Figure 7.3 IIR Filter for Av = 0; nR = 2(+), 5(*) indicating Alternate Assignment

Procedure of Two Vendor Types

76

Figure 7.4 IIR Filter for Av = 1; nR = 2(+), 5(*) indicating Each Entire Unit

Strictly Assigned to Same Vendor Type (U
OG

 to ‘V1’ and U
DP

to ‘V2’)

76

Figure 8.1 Comparison of Convergence Time with respect to Step Size C(i) 83

Figure 8.2 Comparison of Exploration Time with respect to Step Size C(i) 85

Figure 8.3 Comparison of QoR between BFOA-DSE and [20] Approach 87

Figure 8.4 Comparison of QoR between BFOA-DSE and [21] Approach 88

Figure 8.5 Graphical Representation of Variation of Exploration Time (in ms)

with respect to Change in Bacterium size (p)

106

Figure 8.6 Graphical Representation of Variation of Exploration Time (in ms)

with respect to Change in Bacterium size (p)

107

Figure 8.7 Comparison of QoR (cost units) of Proposed and [35] Approach 109

XVI

LIST OF TABLES

Table 3.1 Module Library Used 21

Table 8.1 Comparison of QoR and Exploration Time with respect to Bacterium

size (p) for the Proposed Approach

82

Table 8.2 Impact in the Variation of Step Size (C(i)) on the Performance of

Proposed DSE

83

Table 8.3 Results of Estimated Power and Execution Time using Proposed

Approach for DFGs

86

Table 8.4 Comparison Of Proposed Approach With [20] in Terms of Exploration

Time and Cost

86

Table 8.5 Comparison Of Proposed Approach With [21] in Terms of Exploration

Time and Cost

87

Table 8.6 Comparison Of Proposed DSE Approach With [20] and [21] in Terms

of Quality Metrics and QoR

89

Table 8.7 Results of Proposed Fault Secure DSE approach for kc = 10 92

Table 8.8 Comparison of Proposed Approach with Approach [28] and [30] for

kc=1

92

Table 8.9 Variation of Exploration Time with Swarm Size (p) in ms 94

Table 8.10 Exploration Time vs. Inertia Weight (at p =3) 94

Table 8.11 Experimental Results of the Proposed Approach for kc = 1 95

Table 8.12 Experimental Results of the Proposed Approach for kc = 4 95

Table 8.13 Variation of Proposed Approach with [28] 96

Table 8.14 Results of Proposed Fault Tolerant DSE Approach for kc = 1 98

Table 8.15 Comparison of Proposed Approach with [32] in Terms of Resource

(Hardware) Utilized for Fault Tolerant Datapath for (kc = 1)

98

Table 8.16 Results of Proposed Fault Tolerant DSE Approach for kc = 2 99

Table 8.17 Results of Proposed Fault Tolerant DSE Approach For kc = 3 99

Table 8.18 Comparison of Proposed Approach with [32] in Terms of Resource

(Hardware) Utilized for Fault Tolerant Datapath for (kc = 2 and 3)

100

XVII

Table 8.19 Results of Proposed Approach (for kc = 1) in Terms of Optimality 100

Table 8.20 Results of Proposed Approach (for kc = 3) in Terms of Optimality 101

Table 8.21 Comparison of Proposed Approach with [32] Fault Tolerant Approach 101

Table 8.22 Comparison of Proposed Approach with [32] Fault Tolerant Approach 102

Table 8.23 Comparison of Proposed Approach with [28] Fault Secured Approach 103

Table 8.24 Comparison of Exploration Time with respect to Bacterium size ‘p’ for

Proposed Approach

105

Table 8.25 Results of Proposed Trojan Secured Approach 108

Table 8.26 Comparison of Proposed Approach with [35] 108

XVIII

NOMENCLATURE

p Population Size

D Total number of resource types

Rx Candidate resource combination for optimal solution

 Xi Resource combination

 Last resource set of i
th
 bacterium solution

New

iX New configuration of the particle/bacterium

PT Power consumed by a resource configuration

PS Static power consumed by a resource configuration

PD Dynamic power consumed by a resource configuration

Pcons Power constraints specified by the user

maxP Maximum power consumed by a resource configuration in design space

Pmin Minimum power consumed by a resource configuration in design space

 Power consumed by a fault secured DMR system

PS
DMR

 Static power consumed by a fault secured DMR system

PD
DMR

 Dynamic power consumed by a fault secured DMR system

max

DMRP Maximum power consumed by a fault secured DMR system

min

DMR
P Minimum power consumed by a fault secured DMR system

pc Power dissipated per area unit (e.g. transistors)

Acons Area constraints specified by the user

DMR

TA Area consumed by a fault secured DMR system

max

DMRA Maximum area consumed by a fault secured DMR system

L Latency of a resource configuration

Tc Initiation interval or cycle time of a resource configuration

TE Execution time consumed by a resource configuration

Tcons Execution time constraints specified by the user

maxT Maximum execution time consumed by a resource configuration in design space

Tmin Minimum execution time consumed by a resource configuration in design space

 Execution time consumed by a fault secured DMR system

Last

iX

DMR

TP

DMR

ET

XIX

max

DMRT Maximum execution time consumed by a fault secured DMR system

min

DMR
T Minimum execution time consumed by a fault secured DMR system

K(Rd) Represents the area occupied by resource Rd

N(Rd) number of instances of resource type Rd

()New

dN R New value of the d
th
 resource type

max()dN R Maximum value of d
th
 resource type

min()dN R Minimum value of d
th
 resource type

tmin Minimum temperature

tmax Maximum temperature

Temp Initial temperature of exploration process

∆t Tw / Nc

Tw
 Temperature window

j Current iteration step/chemotactic step

k Replication steps counter

l Elimination dispersal step counter

Nc Maximum number of chemotactic steps

Nre Maximum number of replication steps

Ned Maximum number of elimination dispersal steps

Δ(i) Tumble Vector

C(i) Step size

()NewC i New step size generated

()LastC i Last step size used

Rep [j–]) Array to check whether replication performed or not

Ed [j–])) Array to check whether elimination dispersal performed or not

x Step # at which replication has to be performed

y Step # at which elimination dispersal has to be performed

 Cost of bacterium with resource set Xi fitness of particle/bacterium

()
lbif iC X Local best fitness of particle ‘Xi’

EFU Energy consumed by the major FU’s

Emux and Edemux Energy consumed by the multiplexers and de-multiplexers

1 and 2 User defined weights

kc strength of the fault

)(if XC

XX

Z Termination criteria

U
OG

 Original unit

U
DP

 Duplicate unit

c.s Control steps

Xgb Global best position

Xlbi Local best position for an i
th
 particle

Pm Mutation Probability

di
R


 New resource value of particle Xi in d

th
 dimension

idR
Previous resource value of particle Xi in d

th
 dimension

lbidR Resource value of Xlbi in d
th
 dimension

gbdR Resource value of Xgb in d
th
 dimension

di
V 

 New velocity of particle Xi in d
th
 dimension

UF Unrolling factor

UFN N
th
 unrolling factor

DMR

bodyC Number of CS required to execute loop body of CDFG
DMR

DMR

firstC Number of CS required to execute first iteration of the CDFG
DMR

I Maximum number of iteration (loop count)

Δ Delay of one CS in nanoseconds

£ Number of iteration

Dc Dependency information

D(opn) Delay of operation ‘n’

Av Vendor allocation procedure type

XXI

ACRONYMS

IC Integrated Circuits

VLSI Very Large Scale Integration

HLS High Level Synthesis

HDL Hardware Description Languages

DFG Data Flow Graph

RTL Register Transfer Level

CDFG Control Data Flow Graph

DSE Design Space Exploration

ASAP As Soon As Possible

ALAP As Late As Possible

FU Functional Units

GA Genetic Algorithm

WSPSO Weighted Sum Particle Swarm Optimization

CED Concurrent Error Detection

TMR Triple Modular Redundant

SET Single Event Transient

SoC System-On-Chip

IP Intellectual Property

3PIP Third Party Intellectual Property

DMR Double Modular Redundant

BFOA Bacterial Foraging Optimization Algorithm

QoR Quality Of Result

ED Elimination-Dispersal

PSO Particle Swarm Optimization

SEU Single Event Upset

SDFG Scheduled Data Flow Graph

EA Evolutionary Algorithm

XXII

TFH Transient Fault Hazards

LET Linear Energy Transfer

MCFT Multi Cycle Fault Tolerance

VHDL VHSIC Hardware Description Language

FPGA Field Programmable Gate Array

ARF Auto Regressive Filter

BPF Band Pass Filter

DCT Discrete Cosine Transformation

IDCT Inverse Discrete Cosine Transformation

DWT Discrete Wavelet Transform

FIR Finite Impulse Response

WDF Wave Digital Filter

EWF Elliptic Wave Filter

FFT Fast Fourier Transformation

MO-DSE Multi Objective Design Space Exploration

1

Chapter 1

Introduction

1.1 Preamble

With the explosion of technology, the 20
th

 century era witnessed a drastic change in the

lifestyle. The key inventions on Integrated Circuits (ICs) have led to high speed

microprocessors and memories. With the advent of such breakthroughs, there have been

equally important developments which have brought steady growth in digital systems. In

early 60s, Moore, predicted the exponential growth of the number of transistors on an

integrated circuit. This in turn provided higher functionalities within a single unit at low cost,

leading to higher complexity while designing and verification.

As the complexity of systems increases, there arises need for automation at higher

abstraction levels where functionalities and tradeoffs are easier to understand. Automation

assures a shorter design cycle. Also, there is a greater possibility of quickly exploring

different and better designs. Raising the design abstraction to behavioural level or

architectural level boosts the design productivity [1, 60, 61, 62]. An architectural level

specification describes the algorithm to be implemented, without the details of the structure

of the circuit.

1.2 Circuit Design and Synthesis

The Very Large Scale Integration (VLSI) design flow consists of a number of design and test

levels to match the design specifications. The design engineer accepts the user requirements,

and translates them into specifications. Once the specifications are determined, the designing

is performed. The process includes system level, high level, gate or logic level, transistor or

circuit level and physical or layout level. The levels can be described as [1]:

 System level: This is the highest level of abstraction, where the system is represented

as processes, tasks, hardware and software. This level deals with the overall system

and the information flow within the system.

2

 Behavioural or Algorithmic or High level: This level controls the computation by

individual processors within the system. It monitors the mapping sequences of inputs

to the outputs.

 Register Transfer Level (RTL): At this level, the system is specified as a set of

storage elements and functional units.

 Logic or Gate level: At the logic level system is viewed as a network of gates and

flip-flops. The behaviour of the system is specified in terms of logic equations.

 Circuit or Transistor level: this level describes the circuits as a netlist of transistors.

The issues related to the nature and numbers of transistors to be used are dealt at the

circuit level.

 Physical or Layout level: This is the lowest level of circuit abstraction in which the

system is specified in terms of individual transistors.

The design process proceeds from higher to lower abstraction levels. The automated process

of designing the VLSI circuits is referred as synthesis. Specifying the design at a higher

abstraction level has been an effective way to deal with the complexity.

1.3 High Level Synthesis (HLS) Details

With the increasing design complexity of ICs the idea of automatically generating circuit

implementations from high-level behavioural specifications has gained interest. Initially,

multiple prototype tools were developed to call attention to the methodology and to

experiment with various algorithms. In late 80s and early 90s, a number of similar HLS tools

were built, mostly for research and prototyping. MIMOLA [2], ADAM [3, 4], HAL [5],

Hercules/Hebe [7, 8], and Hyper/Hyper-LP [6, 9] were some academic efforts. These tools

decompose the synthesis task into following steps:

a) Code transformation,

b) Module selection,

c) Operation scheduling,

d) Datapath allocation, and

e) Controller generation.

These problems were individually addressed later using algorithms like list scheduling

algorithm, force-directed scheduling algorithm and many others. This provided a base for

HLS. However, these efforts were not enough for wide acceptance of HLS among designers

due to low quality solutions generated.

3

In 1995 several tools like Behavioural Compiler [11] from Synopsis, Monet from Mentor

Graphics [10] and Visual Architect from Cadence [12] were introduced which received a

wide attention. However, the tools were not widely accepted since these tools used Hardware

Description Languages (HDL) such as Very High Speed Integrated Circuit Hardware

Description Language (VHDL) or Verilog for behavioural description as input. Since then a

wide range of tools are developed which are commercially accepted and use C/C++ or C-

based languages to capture the design.

1.4 Theoretical Background on HLS

HLS is a process of transforming a software behavioural description into a hardware circuit

description with equivalent functionality [60-63]. It is sometimes referred as behavioural or

architectural or C-to-gates synthesis. The behavioural description describes the input and

output behaviour of the algorithm in terms of operations and data transfers. It consists of

algorithmic statements containing the different operations viz. additions, multiplications,

logical operations and control operations like loops, conditional statements and function calls.

The behavioural description is represented in the form of a Data Flow graph (DFG). The

DFG comprises of operations in the algorithmic description and the data dependencies

between them are represented by the vertices and edges, respectively. Figure 1.2 gives an

example of a sample DFG for the behavioural description shown in Figure 1.1. The hardware

circuit description is divided into segments, datapath unit and control unit. The datapath

includes the functional units such as multipliers, arithmetic logical units, and the storage units

while the control unit coordinates the data flow between the datapath elements. Traditionally

HLS is divided into datapath synthesis and controller synthesis. Datapath synthesis can be

modelled as the process of searching a complex multidimensional space represented by the

t

v

t

v

s

u

*

+

* *

+

a b c d e f

Figure 1.2 Sample Data Flow

Graph

r = a+b;

s =c*d;

t = e*f;

u = r+s;

v = u +t

Figure 1.1 Sample Behavioural description

4

set of possible schedules, allocations, and bindings that can realize a given behavioural

specification.

1.5 Phases of HLS

The various phases or tasks of HLS include compilation, transformation, scheduling,

allocation, binding and RTL generation. During compilation the behavior of the system

specified in the form of an algorithmic description or HDL (VHDL or Verilog) is compiled

into internal representations. These internal representations are generally in the form of a

DFG or a Control Data Flow Graphs (CDFG). Further in the transformation phase, the

generated DFG is transformed into an optimized DFG or a suitable DFG for scheduling and

allocation purpose. Dead-code elimination, common subexpression elimination, loop

unrolling, constant propagation and code motion are some possible transformations which

can be done on an application. Once the transformations are done, the Design Space

Exploration (DSE) process is performed. During DSE several choices have to be evaluated

for executing any decision. Therefore, it is important to perform DSE at early design stage or

higher abstraction level (behavioural level) in order to investigate tradeoffs between all

possible design goals, and to select the most appropriate solution. Finally, to realize a RTL

design, HLS performs scheduling, allocation and binding. Scheduling divides the algorithmic

behaviour/DFG into control steps. Each step contains a small section of code that can be

executed in a single clock cycle. This process optimizes the number of execution steps based

on constraints of hardware resource and cycle time. Allocation decides how much resources

are needed in hardware while binding map the instructions and variables to hardware

components, such as adders, multipliers, and registers [64]. The scheduling, allocation and

binding phases are described in detail in next sections.

 Scheduling

The scheduling is a process which maps operations belonging to the algorithmic description

onto a set of discrete time steps, in a way such that all data dependencies/precedence

constraints specified in the algorithmic description are met. The mapping of operations to

time steps is done such that the total number of time steps required to implement the specified

behaviour meets the given timing constraints and minimizes implementation area. Scheduling

can either be constructive or iterative [1, 66, 67, 69].

In constructive scheduling the solutions are constructed by adding operations/nodes one at a

time until all the operations have been scheduled. As Soon As Possible (ASAP), As Late As

5

Possible (ALAP), List scheduling [13], Force direct scheduling [14], and Integer linear

programming based scheduling [15, 16] fall under constructive category. ASAP is the

simplest type of scheduling. It assumes that the number of Functional Units (FU’s) required

are already specified. Further, process arranges the operations topologically according to their

data or control flow. Once the operations are sorted, they are selected one by one from the list

in order and scheduled into earliest control step possible, preserving its dependency and the

resource availability. However, another constructive scheduling approach, ALAP, places the

operations in the latest possible control step. ALAP uses the number of steps resulting from

the ASAP schedule as a latency constraint [1]. ASAP, ALAP are also referred as the

unconstrained scheduling algorithms. List scheduling is primarily resource-constrained

scheduling algorithm. The list-based algorithm takes a sequencing DFG and resource

constraints as inputs and generates a scheduled sequencing DFG as output. The operations

available for scheduling are kept in a list for each control step. This list is further ordered by

some priority function, either mobility of the vertex or the length of path from the operation

to the sink while ranking the vertices in decreasing order. An operation on the list is

scheduled one by one if the resource needed by the operation is free; otherwise, it is deferred

to the next clock cycle. Further, a Force-directed scheduling is a heuristic algorithm that can

consider both resource and time constraints. The basic idea of this algorithm is to balance the

concurrency of operations without increasing the total execution time to maximize the

utilization of resources such that the number of required resources is minimal [1].

However, in iterative scheduling the designer starts with an initial (random) solution and

iteratively updates the solution. Finally a scheduling solution is generated which is optimal

and satisfies the user constraints of power/area and latency. In iterative scheduling the

designer possesses multiple designing solutions which are generated in intermediate steps.

Genetic Algorithm (GA) based scheduling, ant colony based scheduling, simulated annealing

based scheduling are some examples of iterative approaches [65, 68, 70].

 Allocation and Binding

Allocation involves mapping operations onto functional units, assigning values to registers,

and providing interconnections between operators and registers using buses and multiplexers.

While binding is the task to assign operation to particular resource such as computation to

functional unit, storage to register and data transfer to interconnect. Binding can be solved by

using various graph theoretic techniques like clique partitioning [1, 13, 71], circular-arc graph

colouring [1, 13, 71] or left edge algorithm [1, 13]. In clique partitioning, an undirected graph

6

reffered as “compatibility graph” is constructed to analyze the compatibility between the

operations of the graph. Two operations are compatible and can use same resources if they

need resources of same type and are scheduled in different clock cycles.

However, in graph colouring a respurce conflict graph is constructed to analyze the conflicts

of the operations, wherein, the graph is an undirected graph whose vertex set is in one-to-one

correspondence with the operations and whose edge set denotes the conflicting vertex pairs.

In such a resource conflict graph, two operations have a conflict if they are not compatible.

The conflict graph and compatibility graph are complementary to each other. The choice

between them is driven by the type of circuit.

Furthermore, in the left edge algorithm [1, 13], the birth time of a variable is mapped to the

left edge, and the death time of a variable is mapped to the right edge. The variables are

sorted in increasing order of their birth time. The first variable is then assigned to the first

register. Then, the current register receives the next variable whose birth time is larger or

equal to the death time of the previous variable.

1.6 Why HLS?

There has been an increase in trend towards automating synthesis at higher levels of

designing in the recent years. Also, there has been substantial interest shown in RTL design

obtained from higher levels of abstraction (algorithmic) using HLS. There are a number of

reasons for this [1, 63, 65]:

 Shorter design cycle: Automation has reduced the designing time and manpower

involvement metrics. Hence there is a reduction in the overall cost of the chip.

 Continuous and reliable design flow: HLS facilitates a continuous and reliable

automatic translation of high level specification into RTL description of the circuit in

the form of VHDL or Verilog.

 Fewer errors: Correct design decisions at the higher levels of circuit abstraction can

ensure that the errors are not propagated to the lower levels.

 The ability to search the design space: Automating the design process helps in

producing several designs for same specification in a reasonable amount of time. This

benefit helps the designer in exploring different trade-offs between cost, speed,

power and other factors to take an existing design and produce a functionally

equivalent one that is efficient.

7

 Easy availability of IC technology: As more design expertise is moved into the

synthesis system, it becomes easier for a non-expert to produce a chip that meets a

given set of specifications.

1.7 Thesis Organization

The rest of the thesis is organized as follows: chapter 3 describes the proposed framework to

solve the problem of DSE during power-performance trade-off for data intensive

applications. Chapter 4 describes a framework to solve the problem of exploration of low cost

optimal k-cycle transient fault secured datapath during power-performance trade-off for data

intensive applications. Chapter 5 solves the problem of exploration of low cost optimal k-

cycle transient fault secured datapath during area-delay trade-off for control intensive

applications. In chapter 6, a framework to solve the problem of exploration of low cost

optimal k-cycle transient fault tolerant datapath based on power-performance tradeoff for data

intensive applications is presented. Moreover, chapter 7 solves the problem of exploration of

low cost optimal Trojan secured datapath during behavioural synthesis for data intensive

applications. Further, the results of the proposed approaches in context to the problems, for

various well known HLS benchmarks indicating exploration time and quality improvements

obtained, compared to the current existing approaches are provided in chapter 8. Chapter 9

concludes the research work presented in the thesis and provides future scope of work in this

area.

8

Chapter 2

Previous Work and Thesis Contribution

2.1 Related Work

The problem of DSE in HLS is a NP-complete problem [72, 73, 74]. In the literature, many

attempts have been made to solve the DSE problem in HLS [79-83]. The approaches

developed; aim at exploring the design space along with balancing multi-conflicting issues

during generation of the optimal/near-optimal design alternative (or Pareto front). For solving

various NP complete problems, GAs is the most popular evolutionary algorithms in terms of

diversity of their applications. In order to solve DSE problem, GA is used by many

researchers in [18, 20, 21, 65, 66]. For example, researchers in [18] used a time constrained

scheduling based on GA. In [18], authors combined the constructive scheduling methods with

GA and later used for searching a suitable order to perform scheduling. The work presented

an encoding scheme where allocation of supplementary resources was done during

scheduling, to deal with the lower bound estimations. Authors in [20, 21, 65, 66] used GA to

solve integrated scheduling and datapath exploration problem. In these approaches, the

chromosome contains the scheduling information and the datapath information. In [20], the

scheduling information is encoded with ‘node priority’. However, authors in [21], used the

scheduling information in chromosome encoded by ‘load factor’ and used a heuristic to

decode the scheduling information from encoded chromosome. Authors in [65, 66] encoded

scheduling information in chromosomes as ‘work remaining’. However, the second part of

the chromosome in [20, 21, 65, 66] is encoded with maximum number of functional units

available during scheduling. Furthermore, in [20] the cost function is evaluated on the basis

on area-latency tradeoff. But, there is no concept of total execution time, data pipelining and

power during exploration. Further, the chance of yielding an optimum result is not

guaranteed. Researchers in [21] did not consider dynamic power while calculating total

power. In the work, a multi-structure chromosome representation for the datapath nodes was

used for scheduling. The approach also had a drawback of huge computation time besides

9

generating non-optimal solutions in some cases. Authors in [65, 66] used binary encoding of

the chromosomes for DSE in architectural synthesis for area-latency trade-off. Moreover,

authors in [65, 66], optimized area and latency, but failed to consider power and execution

time (function of latency as well as cycle time for pipelined dataset), which are critical issues

for modern handheld, battery operated high speed devices. In order to explore new solutions

the approaches [18, 20, 21, 65, 66] perform genetic operator (such as crossover and mutation)

between two chromosomes. In [19] a discrete Particle Swarm Optimization (PSO) based

exploration method is proposed to solve the DSE problem in HLS. In the approach every

swarm explores the design space by considering all conflicting objective simultaneously. The

approach suffers from several drawbacks. The authors divided the swarm into sub-swarms

and each objective was accomplished by one sub-swarm only. Hence, the technique required

a large swarm size which may lead to heavy computation time per iteration. In the work, the

authors have not considered the concept of local best while exploration. While updating

velocity, the authors updated only the direction keeping the step length constant. Another

drawback of the approach is that, there is no concept of mutation and clamping in case of

boundary overreach problem.

Further in [17], authors described an approach based on integration of GA with PSO referred

as Weighted Sum Particle Swarm Optimization (WSPSO). In [17] authors adopted the

encoding scheme from [20], which is a combination of scheduling information and maximum

available FUs. In their work, the concept of global and local best solution/position is used. To

find new solutions, crossover is performed between current position with global best position

and local best position. Thus, to incorporate GA, crossover is performed, which is the basic

operator of GA and to incorporate PSO, the crossover is performed between current position

and global and local best position. The shortcoming of this approach is that mathematically

no velocity parameter is used while updating the particle position. Moreover, authors used a

weighted combination of latency, area and power during fitness evaluation. But, the metrics

such as execution time and actual power are not taken into account in cost function

determination.

Besides these approaches, certain tools are introduced which deal with the DSE problem in

HLS. In [22] a tool called SystemCoDesigner has been introduced which deals with tradeoff

between area-delay. The tool offers automated and fast DSE with prototyping of behavioral

systemC models. Some other commercial tools like GAUT [23], LegUp [24], ROCCC [25]

and CatapultC [26] are also available in the market for electronic design automation. GAUT

10

takes a C/C++ behavioral description as input for automatically generating equivalent RTL

implementation based on constraints of throughput and clock period. LegUp is an open

source HLS tool available for FPGA-based processor/accelerator systems. Further, another

tool called AutoPilot is introduced in [27] which address the problem of exploration in HLS.

It performs C/C++/systemC-to-RTL synthesis. The tool was targeted for FPGAs.

The approaches mentioned so far suffered from multiple drawbacks and were not useful.

Therefore, one of the objectives of this thesis is to develop an efficient DSE methodology in

HLS which addresses the above drawbacks.

Over the years the process of DSE has evolved where the requirements specified by the user

have also become more convoluted, ranging from simple area-delay tradeoff in initial years to

complex power-delay-reliability tradeoff in recent years. To resolve this, some HLS

approaches were proposed which included the consideration of fault security aspect with

hardware redundancy, but without focusing on low cost solution of an optimized fault

detectable design based on user power-delay constraint. The literature includes works that

only deal with the fault detection issue of the designs without ability to explore a low cost

optimized fault detectable datapath based on user specified power-delay. For example, HLS

approaches such as [28, 29, 30, 31, 87] just included the aspect of single cycle fault security

with hardware redundancy, but without any focus on evolving/exploring an optimal multi-

cycle fault secured design based on user power-delay constraints. In [28] authors use

duplication of the CDFG and map the second onto the same hardware as the first, adding FUs

as needed. The technique uses the algebraic properties of associativity, distributivity, and

commutativity to aid mobility in scheduling the duplicate CDFG and thus take better

advantage of idle resources. The approach in [29] involves partitioning of the CDFG into

regions or sub graphs. The authors presented a hardware redundancy based Concurrent Error

Detection (CED) approach which breaks the data dependences between the nodes. This is

done to improve the sharing between normal and duplicate computations. The original and

the duplicate computations which are represented by a region are performed on distinct

hardware. This is done so that, every regions output can be compared to identify the faults

within the regions. For this, voting on the results of the regions is done. In [30], a CED

scheme is employed to detect and isolate the faults within a system while it is in use. In [31]

authors investigated a method for exploring the tradeoff between the area and latency of the

CED design in HLS. The approach sometimes used hardware redundancy or time redundancy

or a combination of both to produce fault secure designs. Designs were made secure on the

11

basis of check pointing introduced in the system. Instead of adding extra FUs for fault

detection, they use re-computation on the same hardware using different allocations.

Therefore approaches [28, 29, 30, 31] are all fault detectable approaches (using hardware

redundancy) with no provision of producing an optimized fault detectable datapath system

based on conflicting power and delay constraint of user.

Additionally, there have been no approaches developed which concurrently propose a multi-

objective DSE process of a multi-cycle (or single cycle) fault tolerant design during HLS. A

complete fault tolerant system should possess different capabilities. Depending upon the fault

tolerance level required it should be capable of identifying the fault, detecting it, followed by

its isolation, masking and then recovering from it. Efforts have only been made for the error

detection issue of the designs without ability to isolate the faults as well as explore the

optimized fault tolerant datapath based on power-performance objective. The fault detection

technique involves the redundancy factor to identify the faults prevailing in the system. It

either uses the hardware redundancy or the time redundancy or a combination of both to

determine the presence of fault within a system. Therefore, exploration of a multi-cycle fault

tolerant datapath for conflicting user constraints becomes non-trivial. In the literature so far,

only one approach has been proposed by authors in [32] who discussed a HLS approach for

multi-cycle transient fault tolerant datapath. However, there was no algorithm for exploration

of an optimal fault tolerant datapath based on power-performance constraint. Also, the work

did not include any concept of multi-cycle transient fault during DSE. Moreover, a Triple

Modular Redundant (TMR) system for k-cycle faults tolerance for Single Event Transient

(SET) was presented. Wherein, the outputs of the units were voted upon by the help of voter,

to mask the errors. Additionally, comparators were used to detect the difference in the outputs

of the units. Therefore, [32] involved higher redundancy which sometimes involved TMR

system with tripled resource usage.

The approaches in the literature so far were not capable to address transient fault

security/tolerance and generate low cost optimal fault secured/tolerant datapath

simultaneously and therefore were not much useful. However, some of the approaches which

could handle the transient faults involved higher redundancy leading to generation of a non-

optimal design solution. Therefore, one of the objectives of this thesis is to develop a

methodology which generates a low cost optimal transient fault secured/tolerant datapath

during HLS.

12

With the emergent globalization of System-on-Chip (SoC) designs, penetration of hardware

Trojan in Intellectual Property (IP) cores resulting from untrustworthy Third Party (3P)

vendors has become a matter of grave security concern amongst the SoC integrators.

Hardware Trojan’s are malicious hardware components embedded by adversaries in order to

induce malfunctioning of ICs [95, 96, 97]. During the design process an adversary may

corrupt the IP by inserting hardware Trojan into it. This matter gets further intricate as

hardware Trojans can be of multiple types [33, 34]. To have a trustworthy design it should be

ensured during HLS that any possible infection of 3PIP is detectable. In case of HLS, the

hardware Trojan mostly considered is the one which is capable of maliciously altering the

digital output of a 3PIP. The detection procedure as suggested by [35] is accomplished by

having IP cores of same functionality from different vendors. This is because different

vendors will have different implementations and it is less likely that both are Trojan infected.

Even if they are, the chances of different vendor IPs generating same output behavior is

considered extremely uncommon. However, detection process of the Trojan during design of

hardware Trojan secured schedule in HLS inevitably requires multiple redundant hardware

instances from different vendors, which if not accounted for its power and delay during

fitness evaluation, may result in a secured circuit violating user constraint. The focus on

hardware Trojan detection during HLS has been very little with absolutely zero effort so far

in DSE of a user multi-objective constraint optimized hardware Trojan secured schedule.

However a number of approaches have been proposed for Trojan detection at lower levels of

chip design [89, 90, 91, 93, 94]. This problem mandates attention as producing a Trojan

secured schedule is not inconsequential. Merely the detection process of Trojan is not as

straightforward as CED of transient faults as it involves the concept of multiple 3PIP vendors

to facilitate detection [92], let aside the exploration process of a user optimized Trojan

secured schedule based on Multiobjective (MO) constraints. Efficient vendor allocation

procedure needs to be devised for Trojan detection during HLS, besides robust and adaptive

exploration scheme for low cost optimal hardware Trojan secured scheduling. A low cost

optimal Trojan secured schedule indicates an optimized robust Double Modular Redundant

(DMR) scheduling obtained through a heuristic comprising of intelligent hardware

assignment to operations such that any possible Trojan infection in the underlying hardware

is detectable.

13

2.2 Objective

The objective of this thesis is to develop highly reliable/hardware secured designs for data

intensive and control intensive applications during design of application specific datapath

processor at behavioural level. In order to realize this, the following objectives have been set:

 Develop a methodology to solve the problem of DSE during power-performance

trade-off for data intensive applications that produces high quality design solutions.

 Develop an approach to solve the problem of exploration of low cost optimal k-cycle

transient fault secured datapath during power-performance trade-off for data intensive

applications.

 Develop an automated approach to solve the problem of simultaneous exploration of

low cost optimal k-cycle transient fault secured datapath and unrolling factor for

control intensive applications during area-delay trade-off.

 Develop a execution time prediction model for faster exploration process in case of

single loop based CDFGs without tediously unrolling CDFG loop completely.

 Develop an approach to solve the problem of exploration of low cost optimal k-cycle

transient fault tolerant datapath based on power-performance tradeoff for data

intensive applications.

 Develop an approach that solves the problem of exploration of low cost optimal

Trojan secured datapath during behavioural synthesis for data intensive applications.

2.3 Summary of Contribution

The focus of this thesis is to provide a number of low cost solutions to the aforesaid problem

in the field of security (against hardware Trojan) and reliability (against transient fault) aware

HLS for both data and control intensive applications.

In order to resolve the issues present in the state-of-the-art approaches, the following

contributions have been made through this research.

 Solve the problem of DSE during power-performance trade-off for data intensive

applications.

 [Publications: J1, J5, C10]

a) Proposed a novel temperature dependent bacterial foraging optimization

methodology for automated exploration of datapath in HLS, capable of

yielding optimal results.

14

b) Introduced a novel chemotaxis algorithm for exploration drift, replication

algorithm for inducing efficient exploration ability and elimination-dispersal

algorithms for sudden diversity introduction.

 Solve the problem of exploration of low cost optimal k-cycle transient fault secured

datapath during power-performance trade-off for data intensive applications.

 [Publications: J2, C7, C8, C9]

a) Proposed a novel fault security algorithm for handling single and multi-cycle

transient faults.

b) Proposed a low cost approach for generating a high quality fault secured

structure based on user provided requirements of power-delay, which is

capable of transient error detection in the datapath.

c) Introduced a novel scheme for selecting appropriate edges for inserting cuts in

the scheduled DFG minimizing delay overhead associated with transient fault

security.

d) Proposed a novel execution time model for estimating the execution time of a

transient fault secured/Trojan secured design during DSE process.

e) Proposed a novel fitness function, used for design quality assessment in DSE

process.

f) Proposed a novel multi-cycle SET fault security aware multi objective DSE

methodology that explores an optimal combination of transient fault secured

DMR datapath configuration.

 Solve the problem of exploration of low cost optimal k-cycle transient fault secured

datapath during area-delay trade-off for control intensive applications

 [Publications: J4]

a) Proposed a novel multi-cycle SET fault security aware multi objective DSE

methodology that explores an optimal combination of transient fault secured

DMR datapath configuration and loop Unrolling Factor (UF) for CDFG.

b) Proposed an estimation model for computation of execution delay of a loop

unrolled CDFG (based on a resource configuration explored) without

tediously unrolling the entire CDFG for the specified loop value.

15

 Solve the problem of exploration of low cost optimal k-cycle transient fault tolerant

datapath based on power-performance tradeoff for data intensive applications.

 [Publications: J3, C11]

a) Proposed a novel multi-cycle transient fault tolerant algorithm that has

capability to isolate original and duplicate units in a DMR with respect to the

transient fault.

b) Proposed a novel equivalent circuit that works with DMR systems performs

the function of extracting the correct output from the DMR design.

 Solve the problem of exploration of low cost optimal Trojan secured datapath during

behavioural synthesis for data intensive applications.

 [Publications: C6, C12]

a) Proposed a novel encoding scheme for representing bacterium in the design

space (comprising of candidate datapath resource configuration and vendor

allocation information for hardware Trojan secured datapath).

b) Proposed a novel exploration process of an efficient vendor allocation

procedure that assists in yielding a low cost hardware Trojan secured datapath

within user constraints.

16

Chapter 3

Adaptive Bacterial Foraging Driven Datapath

Optimization: Exploring Power-performance Trade-off in

HLS

This chapter presents a novel application of Bacterial Foraging Optimization Algorithm

(BFOA) in the area of DSE of datapath in HLS for data intensive applications. For the DSE

process, the BFOA has been transformed into an adaptive automated DSE framework that is

capable to handle tradeoffs between power and execution time during HLS. The BFOA-DSE

is capable to resolve orthogonal issues such as enhancing Quality of Result (QoR) as well as

exploration speed, thereby being able to produce higher-quality results in lesser exploration

time than existing approaches [20, 36]. This is the first work which directly maps the BFO

process for multi-objective DSE during power-performance trade-off for data intensive

applications in HLS. The work proposes a novel chemotaxis driven exploration drift

algorithm, a novel replication algorithm for manipulating the position of the bacterium by

keeping the resource information constant (useful for inducing exploitative ability in the

algorithm). Moreover, a novel Elimination-Dispersal (ED) algorithm is proposed to introduce

diversity during the exploration process. The detailed explanation of the proposed

methodology along with the demonstration of the proposed framework has been given in

subsequent sections.

3.1. Description of Proposed Methodology

3.1.1. Problem Formulation

Given a DFG, explore the design space and determine an optimal resource configuration,

1 2{ (), (), ().... ()}i d DX N R N R N R N R satisfying conflicting user constraints and minimizing the

overall cost. The formal formulation of the problem is:

For a given DFG find a resource combination (Xi):

1 2{ (), (), ().... ()}i d DX N R N R N R N R ;

with minimum hybrid cost: (PT, TE);

17

 subjected to: PT ≤ Pcons and TE ≤ Tcons.

Where, N(Rd) is the number of instances of resource type ‘Rd’; ‘D’ is the total number of

resource types; ‘Xi’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’

are the power and execution time consumed by a candidate resource combination; ‘Pcons’ and

‘Tcons’ are power and execution time constraints specified by the user.

3.1.2. Motivation of using BFOA in Context of Proposed Problem

The DSE process for Application Specific Integrated Circuits (ASICs) is an intricate process

which involves identifying the best solution from a set of given design alternatives of

assorted nature. The DSE algorithms proposed so far using the evolutionary approach such as

PSO, GA and hybrid GA do not provide flexible options for guided/adaptive searching such

as change in directions when a certain search path is found unproductive. Moreover, PSO is

known to be a highly sensitive algorithm, therefore failing to clinically pre-tune the

parameters often would result in convergence to local optima. However, bacterial foraging

uses a simplified framework and is less sensitive than other evolutionary techniques. BFOA

comprises of primarily of two major steps: chemotaxis and dispersal for locomotion of

bacterium. Using locomotion mechanisms (such as flagella) bacteria can move around in

their environment, sometimes moving chaotically (tumbling and spinning), and other times

moving in a directed manner that may be referred to as swimming. Therefore, the intuition or

science behind adopting Bacterial foraging is the simplified nature of its heuristic framework

and features that provide directed based searching compared to typical evolutionary

algorithms such as GA and PSO.

3.1.3. Proposed BFOA Driven DSE Methodology

Social foraging behaviour of the E. coli inspired BFOA is aimed in optimizing the real world

problems in several application domains. The real bacterial system involves four basic

mechanisms viz. chemotaxis, swarming, replication and elimination dispersal [37] The

proposed BFOA-DSE process imitates these basic mechanisms in order to solve the DSE

problem in HLS.

The proposed mapping of BFO for DSE is as follows:

Position of bacterium  Resource configuration

 Dimension  Number of Resource types

18

The flowchart of proposed BFOA driven DSE algorithm is shown in Figure 3.1 Based on the

flowchart provided in Figure 3.1, the description is as follows:

The inputs to the proposed framework are behavioral description of application in the form of

DFG that describes datapath, user specified design constraints for power and execution time

(with user specified weight factor), and module library. Module library comprises

information of viz. energy consumed by each resource in Picojoule (pJ), latency of each

resource in nanoseconds (ns), hardware area of each resource (#of transistor) and user

specified maximum availability of resources. In the proposed approach, the initial population

has multiple bacteria. Therefore, the initialization of bacterium positions corresponding to the

resource configurations is done. Imitating the biological phenomenon of an E. coli bacterium,

the proposed DSE methodology iterates within the valid temperature range [tmin, tmax] at

which an E. coli can survive (Note: Investigations from previous literature [38–41] have

revealed the motility range of E. coli between, tmin = 25° C and tmax = 45° C; while

elimination of bacterium can occur at high temperature such as 40° C). Within this motility

(valid) temperature range through chemotactic movement in every step (j) of each bacterium,

the proposed DSE explores new feasible solutions.

No

No
 Ed[j - -]==T

Update x

l > 0

No

No
Rep[j - -]==T

No

k > 0

j ++

l - -

Elimination

Update y

Chemotaxis

No tmin ≤ Temp≤ tmax

Replication

Stop

k - -

j == x

j ≤ Nc

j ++

j == y

Input

 Note:

x = n. (Nc / Nre) 1≤n≤Nre

y = n. (Nc / Ned) 1≤n≤Ned

Stop

Begin

Figure 3.1 Proposed BFOA-DSE

Methodology

19

Movement of a bacterium from one position to the other is characterized as a chemotactic

movement. The bacterium moves to a new unexplored position based on step length (C(i)),

past position(
Last

iX)and random number (Δ(i)). However, after a designer specified periodic

intervals (‘x
th

’ and ‘y
th

’ iteration step respectively), the process of replication and elimination

dispersal occurs. The replication and ED algorithm is repeated (based on its corresponding

periodic intervals) for ‘Nre’ and ‘Ned’ times, where, ‘Nre’ is the maximum number of

replication steps and ‘Ned’ is the maximum number of elimination dispersal steps to be

undertaken throughout the exploration process. Further, corresponding arrays ((Rep [j–]) and

(Ed [j–])) are created for replication and ED process each to store the outcome, checking

whether replication and ED has been performed in last iterative step. These storage structures

are necessary to determine whether variables ‘x’ and ‘y’ need up-gradation. If Rep [j–] =

TRUE then it indicates that in the last iterative step (j–), replication has taken place,

therefore, ‘x’ needs to be updated. Else, the up-gradation is bypassed. Similar logic holds for

Ed[j–] in terms of operation functionality. In case of DSE, the bacterium positions are

dispersed, with an aim of exploring the new positions with better cost. The least fit bacteria

eventually die while the healthier bacteria positions yielding better fitness value are retained.

The iteration process continues until the stopping criterion is reached (the stopping criterions

are described in later section). Hence, on completion the process yields an optimal solution

which is the global best resource configuration for the given application and user constraints.

3.1.4 Models for Evaluation of Design Points During BFOA-DSE

The bacterium positions are determined based on power consumed, execution time, and the

cost function illustrating the fitness of the bacteria.

3.1.4.1 Power Model

Power consumption (PT) by a resource set is represented in terms of static power (PS) and

dynamic power (PD). ‘PT ’ is represented as [21, 36]:

 T S DP P P  (3.1)

Static power is a function of area of resources and leakage power per transistor. Accordingly,

static power is:

1

((). ().
D

S d d c

d

P N R K R p


 (3.2)

 1 1 2 2(() () () () .. () ()).S D D cP N R K R N R K R N R K R p       (3.3)

20

Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power

dissipated per area unit (e.g. transistors).

However, the average dynamic power consumed by a resource configuration is a function of

dynamic activity of the resources and can be formulated as [21, 36, 42]:

.

(1).

FU
D

C

N E
P

L N T


 
 (3.4)

Where, ‘EFU’ is the total energy consumed by the resources obtained [43], ‘N’ is the c, ‘L’ is

the latency of a scheduling solution and ‘Tc’ is the initiation interval or cycle time of a

scheduling solution. Equation (3.4) can be further written as:

c

demuxmuxs

D
TNL

EEEN
P






)1(

)(Re (3.5)

Where, ‘ERes’ is the energy consumed by the major FU’s such as adders, subtractors, multipliers

and comparators. ‘Emux’ and ‘Edemux’ are the energy consumed by the multiplexers and de-

multiplexers used.

Substituting equation (3.5) and (3.2) in equation (3.1):

 Re

1

()
(() ())

(1)

D
s mux demux

T d d c

dc

N E E E
P N R K R p

L N T 

  
   

  
 (3.6)

3.1.4.2 Execution Time Model

For a given system with ‘D’ functional resources the time of execution can be represented as:

 TE = [L + (N − 1).Tc] (3.7)

The equation (3.7) has been adopted from [21, 36, 42], which denotes the total execution time

considering data pipelining of N data sets where the mathematical quantity (N-1).Tc indicates

the delay consumed by the data (except the first element) during pipelining. The variables L,

N and Tc have already been defined in section 3.1.4.1.

3.1.4.3 Model for Fitness Function

The fitness function (considering execution time and power consumption of a solution) is

defined as [36]:

1 2

max max

() T cons E cons
f i

P P T T
C X

P T
 

 
  (3.8)

Where,)(if XC is the fitness of bacterium Xi, 1 and 2 are the user defined weights for

power and execution time parameters and
maxT is the maximum execution time of a solution in

21

design space while
maxP is the maximum power of a solution in design space, while the

functions to calculate PT and TE are stated in equations (3.6) and (3.7) respectively.

3.2 Description of the Proposed Methodology with Demonstration

3.2.1 Module Library Information and Operating Constraints

The module library information used is shown in Table 3.1. The values of EFU, area and

latency assumed have been adopted from [43, 101, 102, 103].

For the purpose of explanation, a DFG for Differential Solver benchmark shown in Figure 3.2

is used for demonstration of the proposed algorithm. Figure 3.2 has four types of resources

(i.e. D = 4). The assumed values for the sake of demonstration are: maximum available

multiplier FUs: 4, adder FUs: 2, subtractor FUs: 2, and comparator FUs: 1; Number of data

sets, N = 1000; while power dissipated per transistor (pc) is assumed to be 29.33 mW;

additionally, number/type of mux/demux is directly extracted from the scheduling solution.

Note: the proposed approach is capable to handle evolving technology by altering the

component values in the module library. With change in technology, the supply voltage is

scaled resulting in different ‘pc’ value. Further, due to technology scaling the number of

transistors for each component specified in the library can be changed. Therefore, the

proposed theory is capable to adapt to evolving technology. Since, Figure 3.2 has four types

of resources (i.e. D = 4), therefore, a bacterium position can be given by: Xi = (N(mul),

Table 3.1 Module Library Used

Major FU`s Add16 Mul16 Sub16

Energy (pJ) 0.739 9.8 0.739

Area(#transistor) 2032 2464 2032

Latency (ns)

270 11000 270

X X X X X

X X

+

-

< +

1 2 4
8

10

6
3

5

7

9 11

Figure 3.2 DFG of Differential Solver Benchmark [5]

22

N(add), N(sub), N(comp)). Additionally, we will assume some constraint values for Power

(Pcons) and Execution time (Tcons) as well as user defined specifications.

The goal of exploration problem is to generate and evaluate design points or configurations

by simultaneously meeting the user provided constraints for power and execution time.

3.2.2 Maximum Threshold

Before evaluation of the fitness of a design, a minimum and maximum value of power and

execution time has to be determined. The maximum values of the power and execution time

are identified corresponding to the provided boundary constraint values of the resources.

Typically, an application consumes maximum execution time when a single instance of a

resource type is available at a particular timestamp (i.e. when using minimum resources).

Such execution corresponds to a serial implementation of the target application. However, a

maximum power is consumed by utilizing maximum available resources to execute the

operations. This indicates maximum parallelization of the target application.

3.2.3 Boundary Constraints Check Module

To check whether the provided user constraints values are within the acceptable limits a

boundary constraint check is performed. The following conditions are checked for each

parametric constraint specified:

1. If Pmin > Pcons > Pmax or Tmin > Tcons > Tmax

2. If above condition is true then stop and correct the constraints.

3. Else proceed to next step of the process.

3.2.4 Initialization of Bacterium

The bacteria are initialized to uniformly cover the design space. For a DFG, the bacterium

position ‘Xi’ of an ‘i
th

’ bacterium is given as:

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD))

The efficiency of an exploration algorithm depends upon how well is the initial population

distributed over the design space. Therefore, to have a better exploration the algorithm

initializes the bacteria as follows:

 The first bacterium is initialized by minimum resources (serial implementation):

X1= (min(R1), min(R2),.. min(RD))

X1= (1, 1, 1, 1)

 The second bacterium is initialized by maximum resources (maximum parallel

implementation):

X2 = (max(R1), max(R2),.. max(RD))

23

Therefore based on the user defined resources assumed in section 3.2.1, X2 can be

customized as follows:

X2= (4, 2, 2, 1)

 The third bacterium is initialized by average of maximum and minimum values:

 X3= ((min(R1)+max(R1))/2,......,((min(RD)+max(RD))/2

Therefore, X3 can be customized as:

X3 = (2, 1, 1, 1)

 The rest of the bacteria (X4....Xn) are initialized by following equation:

() (min() max()) / 2d d dN R R R    (3.9)

This function has been proposed to introduce an element of stochasticity (as well as diversity)

into the initialization process. Where, ‘min(Rd)’ is minimum resource of d
th

 type, ‘max(Rd)’ is

maximum resource of d
th

 type (obtained from module library) and ‘α’ is a random value

between max(Rd) and min(Rd).

3.2.5 Calculation of Fitness of a Bacterium

After the initialization of bacteria is performed (as shown in section 3.2.4), the fitness of

initial bacteria is identified. The fitness is evaluated using equation (3.8). For determining the

initial cost of the solution/bacterium, PT and TE are evaluated from equation (3.6) and (3.7).

For example, the calculation of total power (PT) of X1= (1, 1, 1, 1) using equation (3.6) is as

follows:

Re

1

()
()

(1) i i

D
s mux demux

T R R c

ic

N E E E
P N K p

L N T 

  
   

  


1000 (7*(9.8) 2*(0.739) 1*(0.739) 1*(0.739) 8*(0.2) 4*(0.2))

66270 (1000 1) 66000
TP

     


  

 (1*2464 1*2032 1*2032 1*2032)*29.33   

 = 0.25 mW

Similarly, the execution time is calculated using equation (3.7) as :

 TE = [L + (N − 1).Tc]

 TE = [66270 + (1000 − 1).66000]

 = 66 ms

Note- the values of L=66270ns and Tc = 66000ns are derived from the scheduled DFG with

resource combination: 1 (*), 1 (+), 1(-), 1(<).Further, Pmax = 0.587mW and Tmax = 66 ms

have been calculated based on worst case analysis of the scheduled DFG. For calculating the

24

cost equal weightage to power and execution time is given (1 = 2 = 0.5). Finally,

Begin

1. 2)()( iCiC // Set the step size; initial C(i) = 0.

 If max(() ())dC i N R

))2)(()(()()( LastNewNew iCiCiCiC

 Else if
min(() ())dC i N R

))2)(()(()()( LastNewNew iCiCiCiC

2. Tumble: Generate a random vector ()i  with each element

() 1,2,......m i m D  a random number in [-1, 1].

3. For i = 1 to p Do

3.1 Compute cost: 1 2((), (),......... ()............ ())f d DC N R N R N R N R

3.2
Last

i iX X

 1 2() ((), (),............ ()............ ())Last

f i f d DC X C N R N R N R N R

3.3 Move: Let

()
()

() ()

New Last

i i
T

i
X X C i

i i


 

 

3.3.1 If (()New

d iX R < 0)

 () () 2 | () |New New New

d i d i d iX R X R X R  // techniques to handle boundary problem

 Else If
max(() ())New

d i dX R X R

() () 1)New New

d i dX R N R 

// techniques to handle boundary problem

 Else If
min(() ())New

d i dX R N R

 () () 1)New New

d i dX R N R  // techniques to handle boundary problem

3.3.2 If
New

iX exists

 Goto: Move in Step 3.3

3.4 Compute cost: 1 2() ((), (),.............. ().......... ())New

f i f d DC X C N R N R N R N R

3.4.1. If
(() ())New Last

f i f iC X C X

 () ()Last New

f i f iC X C X

Last New

i iX X

 Else

 Tumble: Generate a random vector ()i  with each element

() 1,2,......m i m D  a random number in [-1, 1].

 Goto: Move in Step 3.3

3.5. i++

4. Temp = Temp + ∆t

Figure 3.3 Pseudo code for Proposed Chemotaxis Algorithm

25

substituting the values in equation (3.8), the fitness of the bacterium X1 is calculated as :

1

0.25 0.40 66 39
() 0.5* 0.5*

0.58 66
fC X

 
 

 = 0.0676

Similarly, the fitness of rest bacterium’s calculated using equation (3.8) is:

1()fC X = 0.0676 fitness of X1 (1, 1, 1, 1)

 2()fC X = 0.0181 fitness of X2 (4, 2, 2, 1)

 3()fC X = -0.121 fitness of X3(2, 1, 1, 1)

3.2.6 Determination of New Configuration of the Bacterium

Once the initialization and fitness evaluation of initial population is done, the exploration

starts and the bacteria (representing a candidate design solution containing resource

configuration) moves to new unexplored positions (
New

iX). Every bacterium in the population

iterates through a process of chemotaxis, replication and elimination dispersal to explore new

resource configurations in the design space. Therefore, the process of DSE is driven through

BFO containing its biological steps of chemotaxis replication and elimination dispersal.

3.2.6.1 Proposed Chemotaxis Algorithm for Exploration

The chemotactic movement involves two basic steps viz. move and tumble. The bacterium

can either move for a certain period of time in the same direction or it may tumble in the

design space, therefore, may alternate between these two locomotive operations. The

proposed chemotaxis algorithm, motivated from the basic chemotactic movement is shown in

Figure 3.3. It is based on proposed chemotaxis function (equation 3.10) which is a modified

derivative of basic chemotaxis function proposed in [37, 44]. In context of DSE, chemotaxis

helps in exploring new/unexplored resurce configurations within the design space.

The proposed chemotaxis function incorporates the behavior of tumble/swim in order to

explore the new design solutions (resource configurations). The proposed chemotaxis

function is:

 ()
()

() ()

New Last

i i
T

i
X X C i

i i


 

 

 (3.10)

26

Where,
New

iX is the new resource configuration of i
th

 bacterium,
Last

iX is the last resource

configuration of i
th

 bacterium, C(i) is the step size taken in random direction specified by the

tumble and ∆ is a random vector whose elements lie in [-1, 1].

In context of DSE in HLS, a constant (as well as small) step size (C(i)) is not productive

owing to rendering unable to explore the wide design space quickly. Therefore, C(i) is

continually increased by a constant length in every iteration in the proposed chemotaxis

abiding the lower and upper threshold limits specified by the designer. This feature is shown

in step 1 of the algorithm (in Figure 3.3), while step 3 indicates the adaptation ability of the

algorithm when invalid solution for a certain dimension is obtained.

3.2.6.2 Demonstration of Proposed Chemotaxis Algorithm

For the proposed DSE, it is assumed that: Nc = 120, Nre = 5, Ned = 4; tmin= 25deg C and

tmax=45deg C. Now assuming at j (chemotactic step counter) =19 the bacterium’s X1, X 2, X 3

are subjected to chemotactic movement with step size C(i) = 2 (as per Step 1 in Figure 3.3),

tumble vector = [1, 0.1, 0, 0.9].

Then for first bacterium,

X1= (1, 1, 1, 1), a new resource configuration,
New

iX is yielded as:

()
()

() ()

New Last

i i
T

i
X X C i

i i


 

 

2 2 2 2

1,0.1,0,0.9
(1,1,1,1) 2*()

1 0.1 0 0.9

1,0.1,0,0.9
(1,1,1,1) 2*()

1.82

1,0.1,0,0.9
(1,1,1,1) 2*()

1.35

1 0.1 0 0.9
(1,1,1,1) 2*(, , ,)

1.35 1.35 1.35 1.35

(1,1,1,1) 2*(0.74,0.07,0,0.66)

(1,1,1,1) (1.48,0.14,0,1.

 
  

 

 

 

 

  32)

(1,1,1,1) (2,1,0,2)

(3,2,1,3)

 



1

NewX = (3, 2, 1, 3) using step 3.3 (Figure.3.3). Since the value of N(R4)is greater than the

N(R4)
max

, therefore, it is clamped using Step 3.3.1 (Figure 3.3).

This yields 1

NewX = (3, 2, 1, 1).

27

Further as the algorithm, this 1

NewX position has not been explored, so its fitness is evaluated

as:

1() (3,2,1,1 0.014)New

f fC X C   ;

which is accepted as, 1 1() ()New Last

f fC X C X

where 1()Last

fC X = 0.0676.

Similar, calculations is performed for other bacteria. Once the new values are found, the temp

is increased by ∆t.

3.2.6.3 Proposed Replication Algorithm

In the proposed approach a modified replication algorithm has been proposed which has been

customized to the demands of the problem. Regular replication approach where the

information is copied to the replicated bacterium will render the resultant configuration

redundant in context of DSE. The new bacterium position is therefore manipulated by a

random α. However, while replicating from the original, the position ordering) of resource

types (dimension) is preserved in the bacterium configuration.

In the proposed approach, ‘Nre’ is the maximum number of times, replication can occur in the

entire DSE process. As shown in Figure 3.4, a random variable ‘α’ manipulates the given

Begin

For i = 1 to p Do

 For d = 1 to D Do

1. Generate  ; where))()((maxmin

dd RNRN 

2. () ()New

d dN R N R  

 If
max(() ())New

d dN R N R

 () () 1New New

d dN R N R  //techniques to handle boundary problem

 Else if
min(() ())New

d dN R N R

 () () 1New New

d dN R N R  //techniques to handle boundary problem

 //End For of d

3. If
New

iX exists

 Goto: Step 1

 // End For of i

4. Temp = Temp + ∆t

5. j++;

6. Goto: Chemotaxis

Figure 3.4 Pseudo code for Proposed Replication Algorithm

28

configuration with respect to each dimension (N(Rd)). After performing replication, resource

clamping is performed (if necessary) which limits the resource magnitude on the basis of

maximum and minimum available resources of a certain type. Finally, if the new solution

Begin

If (Temp ≥ 40)

For i = 1 to p Do

1. Arr[i] = 1 2((), (),.............. ().......... ())i

f d DC N R N R N R N R

 i++;

End For

2. (i)
(([]))u iX X Least fit Arr i

 (ii) (([]))z iX X Best fit Arr i

3. Eliminate the least fit bacterium and perform dispersal

4. Dispersal:

4.1 Select the least fit bacterium.

4.2 Determine the midpoint configuration between the

two bacteria (best fit and the least fit).

1 2 3((), (), ()............ ())u DX N R N R N R N R and

1 2 3((), (), ()............ ())z DX N R N R N R N R

M =
(()) (())

2

u d z dX N R X N R

4.3 Select any configuration randomly which lies beyond the mid

of the configurations.

 1 2 3((), (), ()............ ())v DX N R N R N R N R

 (())New

v dX N R M omega 

1 (())z domega X N R 

4.4 If vX exists

Goto: Step 4.3 in Dispersal

4.5 Calculate cost of this new configuration of the bacterium:

 1 2 3() (((), (), ()............ ()))f v f v DC X C X N R N R N R N R

4.6 If
() ()f v f uC X C X

1 2 3((), (), ()............ ())u DX N R N R N R N R = 1 2 3((), (), ()............ ())v DX N R N R N R N R

Else

Goto: Step 4.2 in Dispersal

5. Temp = Temp + ∆t
6. j++;

7. Goto: Chemotaxis

Figure 3.5 Pseudo code for Proposed Elimination-Dispersal Algorithm

29

(
New

iX) found after replication is found to be already explored, then the replication (step 1) is

again performed. However, it is important to note that if the new cost of the replicated

bacterium position is found to be higher than its original position, then it is not accepted.

3.2.6.4 Demonstration of Proposed Replication Algorithm

Let us assume j (current iteration count) = 24 in the iterative process, then at this step

according to the flowchart shown in Figure 3.4 x = 24 (as k > 0; Nre= 5) which indicates

replication can be performed for the bacterium’s at this current ‘j’ step. Now for X1= (3, 2, 1,

1), as per replication algorithm after generating new random ‘α’ for every resource type

(every dimension), say we get, 1

NewX = (5, 2, 2, 2) as new resource configuration.

However, N(R1) > N(R1)
max

 and N(R4) > N(R4)
max

, therefore resource clamping is needed,

which results in 1

NewX = (4,2,2,1). Since, if this resource configuration is found explored so

far, then a new configuration is explored using different ‘α’ as shown in step3 (Figure 3.4).

Once new values are found, temp is increased by ∆t.

3.2.6.5 Proposed Elimination-Dispersal Algorithm to Introduce Diversity

The number of times ED algorithm is performed is denoted by ‘Ned’. We imitate the

biological phenomenon of an E.coli where a small rise in the temperature may kill a certain

group of bacteria [37, 44] in our ED algorithm of the proposed DSE. Here, the temperature

chosen after which the elimination has to be performed is 40deg C. So, in order to implement

this behavior, new replacements are randomly initialized over the search space (between the

least fit and best fit bacterium position but beyond their midpoint) by eliminating the least fit

bacterium as shown in Figure 3.5. If the new replacement found (Xv) is already found to be

explored, then the dispersal is repeated (step 4.3). Moreover, similar to replication algorithm

it is important to note that if the new cost of the dispersed bacterium position is found to be

higher than the replaced bacterium, then it is not accepted.

3.2.6.6 Demonstration of Proposed Elimination-Dispersal Algorithm

Let us assume j= 30 in the iterative process, then at this step according to the flowchart in

Figure 3.5. x = 30 (as l > 0; Ned = 4) which indicates ED can be performed for the bacterium’s

at this current ‘j’ step. However, before performing ED, the initial temp is verified in order to

simulate the real life biological phenomenon. Since, the value of Temp is not ≥ 40 deg C,

therefore the ED is not executed at this j step.

30

3.2.7 Termination Criteria (Z)

Two important aspects have been considered while deciding the condition of termination:

 The algorithm must not go into infinite loop.

 The proposed approach should not prematurely converge.

Considering these aspects, the termination criteria for the proposed approach has been fixed.

The criteria are:

 Terminates when the temperature has reached to the maximum value (45 °C) or

reached designer specified ‘Nc ’ (i.e. maximum possible chemotactic step).

 When no improvement is seen in the global best among the bacteria population over

last 10 iterations (chemotactic steps).

If either of them is true then the exploration process will terminate.

Note – Results of the proposed method are given in chapter 8 section 8.1.

3.3 Summary

This chapter presents a fast and efficient DSE methodology for exploring power/area-

performance tradeoff in HLS. The proposed methodology transforms a BFO algorithm for

solving DSE of datapaths in HLS. The algorithm mimics the biological phenomenon of E.

coli bacteria and simulates the DSE process within the operating temperature of E. coli. The

process is able to efficiently explore the architectures within the design space by yielding

optimal results and resolves the multi-conflicting objectives by concurrently handling the

orthogonal issues such as QoR and exploration time.

31

Chapter 4

Automated Design Space Exploration of Multi-Cycle

Transient Fault Detectable Datapath based on Multi-

Objective User Constraints for Application Specific

Computing

Solving the DSE problem for data intensive applications and optimizing area, power and

performance has no longer been sufficient now. Specifically, for current generation of

systems which demand designs (especially for space applications where radiation induced

faults are highly possible) that requires ability to detect errors occurring due to transient faults

(such as single event upsets). Transient faults are radiation induced faults which are non-

permanent in nature. These nonrecurring faults can be caused by energized particles,

environmental noise or electromagnetic interference. The duration of such faults is in order of

a few picoseconds [28, 37]. In order to achieve high reliability, multi cycle transient fault

security [48-52] should be considered as design metric (or constraint) during multi-objective

DSE in HLS. Generation of an optimal fault secured datapath structure based on user power-

delay budget during HLS in the context k-cycle (kc) transient faults is considered a NP

complete problem. This is due to the fact that for every type of candidate design solution

produced during exploration; a feasible kc fault secured datapath may not exist satisfying the

conflicting user constraints/budget.

 This chapter presents an automated DSE approach of multi-cycle transient fault

detectable datapath based on multi-objective user constraints (power and delay) for

application specific computing. The proposed DSE framework is driven by an intelligent

PSO algorithm which incorporates multiple parameters and conditions to handle efficient

exploration. To the best of the authors’ knowledge, this is the first work in the literature to

address this problem. Moreover, novel schemes for selecting appropriate edges for inserting

cuts in the scheduled DFG, minimizing delay overhead associated with fault security are

32

proposed in the chapter. The detailed description of the proposed methodology is given in

subsequent sections.

4.1 Problem Formulation

To explore the design space of a given DFG, and determine an optimal resource set

1 2{ (), (), ().... ()}i d DX N R N R N R N R

which satisfies conflicting user constraints and minimizes the overall cost.

The problem can be formulated as:

Find: an optimal Xi

with minimum hybrid Cos (,)DMR DMR

T Et P T

subjected to:
DMR DMR

T cons E consP P and T T  and kc fault.

Where, N(Rd) is number of instances of a resource type ‘d’,
DMR

TP is power consumed by a

fault secured DMR system,
DMR

ET is the delay of a fault secured DMR, Tcons and Pcons are the

user specified execution delay and power constraints while kc is the strength of the fault.

4.2 Proposed Methodology

4.2.1 Motivation

As already discussed in chapter 2, due to escalation in technology trends and density per unit

area, there have been serious concerns related to security and faults in the devices. It can be

said that the increase in density per unit area is negatively impacting the device and overall

systems reliability by making it susceptible to transient fault or the Single Event Upset (SEU)

6

2

5 4 3

7

8

a

y(n)

A

+

+

1.

2.

3.

4.

A1

X
M1

X

X M1 X M2

A 1

+ A 1

- A 1

Xn B Xn1 Xn2 D Yn2 E Yn1

X M 1

5.

Reg1

1

9

M2

Figure 4.1 Scheduled Sequencing Graph with Data Registers

33

[48] leading to SET especially in space applications. In terrestrial applications, the SEU can

also be caused by the alpha particles emitted from the impurities during IC packaging.

Transient faults can be single or multi-cycle in nature. So, it is important to consider the

strength of the transient fault (kc) during specification as design objective while designing a

system. This worst case transient pulse duration (kc) value is used as a design specification

(or fault constraint) before initiating the exploration of optimal kc transient fault secured

datapath during HLS [49].

Let us take an example to demonstrate the multi-cycle transient faults and its effect.

Given a sample scheduled data flow graph (SDFG) in Figure 4.1. It shows a scheduled data

flow graph of an application which uses two multipliers (M1, M2) and one adder (A1). Under

standard conditions, the circuit undergoes a traditional computation, thereby generating a

feasible error free output. However, if a transient fault occurs at any unit in the circuit due to

particle strike, the corresponding output becomes erroneous, thereby affecting the entire

circuit. For example, let us assume, if a two cycle fault occurs at Multiplier M1, when the

state of the system is in control step 1. Then the error developed affects all the operations

performed by the operator M1 during those two cycles. The span of the error affecting similar

operators depends upon the nature of the transient fault (cycle duration). Thus, M1

incorrectly executes operation 1 at step 1 and also, operation 4 at step 2. But as soon as the

system propagates to step 3, the effect of fault generated on M1 normalizes and the fault

disappears. Hence, M1 operates correctly for the operation 7 at step 3. Such faults which

occur once and then disappear are referred as transient faults. Once this fault occurs on a

logic element of a system, the fault is associated as transient fault of the operator.

 Therefore, it is important to consider transient fault (kc) as a design metric while

Figure 4.2 Block Diagram of Proposed Approach

Particles encoding

Determination of

new Velocity

Insert cuts based

on proposed

scheme

Block for

Designing kc cycle

Fault Secured

SDFG
DMR

Module

Library

Constraints

PCONS, TCONS, kc

Control

parameter

Determination of

new Location

Update global

best and local

best

CDFG/DFG

Optimal fault secured

datapath architecture PSO-DSE process

34

designing a datapath during HLS. The framework to obtain a low cost kc cycle transient fault

secured datapath during behavioural level (reliability centric design) is explained in later

sections.

4.2.2 Proposed Framework

This section presents a framework which handles transient faults with kc strength and

generates a low cost kc cycle transient fault secured datapath during behavioural level. The

framework of the proposed multi cycle fault secured PSO-DSE is shown in Figure 4.2. The

input block comprises of module library, behavioral description of DFG, predefined user

parametric constraints for power and delay as well as k-cycle fault constraint (kc). Further, the

input block for control parameters such as acceleration coefficient, inertia weight, swarm size

and terminating criteria are used for regulating the exploration process. The proposed

framework has a subunit for initialization/encoding of the particles. Each encoded particle is

passed through the block for designing fault secured SDFG
DMR

, which is responsible for

converting an untimed DFG into a scheduled kc fault secured DMR system.

During this process appropriate cut (for checkpointing) is inserted based on proposed

scheme (discussed in later sections) to optimize the delay overhead associated with fault

security. Once the optimized SDFG
DMR

 is built, it is subjected to fitness evaluation and the

new velocity of each particle is determined for obtaining the new design solution (new

location in the design space). The new design solutions obtained are again similarly subjected

to the fault secured SDFG
DMR

 block to convert it into a fault secured SDFG, followed by its

fitness evaluation. Subsequently, the global best and local best solutions in the process are

also updated. This process continues until the terminating criterion is reached yielding an

optimal fault secured datapath architecture (or SDFG
DMR

) which comprehensively satisfies

the constraints of Pcons, Tcons, kc and minimizes cost.

4.2.2.1 DSE Framework

The DSE framework used for generating a lost cost kc cycle transient fault secured datapath

during HLS is PSO-DSE. To solve the problem mentioned in this chapter, PSO as DSE

framework is used to explore the design space. This is because PSO is considered more

suitable than other Evolutionary Algorithms (EA) such as GA, hybrid GA and BFOA. This is

due to reason that the later approaches do not provide enough flexible options for introducing

stochasticity into the exploration process as well as is computationally more expensive.

35

Algorithm: PSO-DSE
Input- DFG, Module library, User Constraints Output- Optimal resource configuration
{
 Read Library ()
 Read DFG ()
 Determine boundary constraints for power and execution time

 If ((||min max min maxP P P T T Tcons cons   )) //checking validity of user constraints

 {
 !! Show error message and request for valid constraints
 }
 Initialization (resource configuration, velocity)
 For i =1 to S //S = # of particles)
 {

 (,)()
f iC f Power Execution timeX  // calculate fitness of all particle

 }
 //find best resource configuration that is the current global best resource configuration
 // M = # of iteration

1 1 11 2 3[((), (), ().... ())]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X

 While (Z)
 {
 For i=1 to p //p = (# of particle)
 {
 For d=1 to D
 {

 // determine new resource configuration and velocity for i
th

 particle and d
th

 dimension

 (,)
d d di i i

R f V R
 


 IF (
max max

d d di i i
V V V


  )

 {
 Perform Velocity Clamping ()
 }
 //check boundary constraints outreach

 IF (min(R) R max(R)
d d di


 )

 {
 Adaptive-end-terminal-perturbation ()
 }
 } // check for local best resource configuration
 IF (()() ()f i flb iC X t C X)

 {

 

 
lbi i

 t

 X X t

() ()
flb fi iC CX X



 }
 }
 // determine new global best resource configuration

1 1 11 2 3[((), (), ().... ())]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X

 Adaptive-Rotation-Mutation

1 1 11 2 3[((), (), ().... ())]

lb lb lb lbngb i f f f f nX X Min C X C X C X C X

 t++;
 } // end of while loop;

 Output optimal resource configuration
 }

Figure 4.3 Pseudo code for PSO-DSE

36

Moreover, it has been proved in previous works [53, 54, 55, 56] that PSO is highly adaptable,

provides faster convergence and offers higher chances of reaching optimal solution in less

exploration time.

The pseudo code of the PSO-DSE approach is presented in Figure 4.3. While the proposed

mapping is given as follows:

a)

b)

c)

Figure 4.4 Algorithm for generating a k-cycle Fault Secured SDFG
DMR

Not

Available

Xi, kc, DFG

Build SDFG
DMR

 comprising of U
OG

 and U
DP

 based on: Xi

Where Xi = N(R1), N(R2)……N(Rd)

Assign opn: v & v’; where v ϵ U
OG

 and v’ ϵ U
DP

 (v and v’ are same

operations of original and duplicate) to distinct hardwareif available

(this assignment helps in detection for kc> 1& kc= 1)

Goto checkpointing rules to insert

checkpoints/cuts based on Xi

Keep same

assignment for v’

(as v) as long as:

t(v’) – t(v) ≥ kc

Push v’

one CS

Xi

violation?

Assign v’ to any other available hardware

from Xi

kc violation
between
v&v’ ?

Change v’ to original assignment and assign

vc to new hardware unit

Evaluate cost

of SDFG
DMR

Do not insert

checkpoint/Cut

kc violation
still between

v&v’ ?

PSO-DSE framework

kc not satisfied kc constraint satisfied

No

Yes

Yes

No

No

Yes

START

kc constraint

satisfied

37

Position of particle Resource configuration

Velocity of particle Exploration deviation/drift

Dimension Number of Resource type

To transform the PSO into multi-objective DSE problem the position of a particle is

represented by a set comprising of resource combination, total number of dimensions is

represented by sum of the number of resource types, while the velocity of the particle in d
th

dimension acts as a parameter that provides the drift during DSE.

The later subsection describes the proposed approach (based on particle swarm optimization

[84, 85])

4.2.2.2 Assumptions of Proposed Algorithm

This subsection illustrates the assumptions which have been considered while designing the

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath.

 Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration

of single fault model for transient faults is widely assumed and adopted in all related

works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle

transient fault detectable datapath also uses the same assumption.

 The faults occur only at the hardware units and not at interconnecting wires.

 The system only handles the transient-faults and not permanent faults.

 The pair of unit in the DMR system has a comparator for error detection, whereby the

comparators are considered fault detectable.

4.2.2.3 Proposed Algorithm for Design of kc Fault Secured DMR System

The proposed methodology for designing kc fault secured DMR system is shown in Figure

4.4. The proposed algorithm accepts the following as inputs: Xi (particle position denoting

datapath configuration), the DFG, fault security constraint (kc) indicating the strength of the

fault and module library indicating the hardware units available for allocation. The output of

the proposed algorithm is a valid kc cycle fault secured scheduled DMR system that is

iteratively feedback to the PSO-DSE framework for exploring the next design solution based

on the fitness evaluation. The DMR system involves a SDFG
DMR

, consisting of schedules of

original unit (U
OG

) and duplicate unit (U
DP

). The pair of units is concurrently scheduled on

the basis of ASAP scheduling using the user supplied resource constraints Xi and available

dependency information of the nodes. After obtaining the scheduled DMR system, the

38

hardware allocation of both the units (U
OG

 and U
DP

) is performed. Operations of the

SDFG
DMR

 system are allocated to hardware on the basis of fault security conditions

(schemes) shown in Figure 4.4 (sub-block (a), (b) & (c)). Allocation of hardware to

duplication unit of SDFG
DMR

without obeying the rules proposed in the algorithm may result

in Transient Fault Hazards (TFH) between similar operations (of original and duplicate)

assigned to same hardware unit i.e. TFH between similar operations belonging to a same

hardware exists when:

t(v
’
)- t(v) < kc, where v ϵ U

OG
 and v

’
ϵ U

DP.
(4.1)

These hazards are resolved in the proposed algorithm by pushing the affected operation v’

(and accordingly its successor) of the duplicate unit in later control steps, if assignment

(allocation) rules (a) and (b) fails. The push is done such that the interval between v ϵ U
OG

and v
’
ϵ U

DP
 is greater than (or equals to) kc. This resolution of the TFH is done until the TFH

of the whole DMR system is resolved, i.e. SDFG
DMR

obeys either of the fault security scheme

((a) or (b) or (c)) proposed in Figure 4.4. The blocks after the cut condition block are for

handling the possible assignment violations that could occur in the modified fault secured

SDFG
DMR

 due to insertion of cut.

4.2.2.4 Demonstration of Proposed kc fault secured DMR system

 7

* 1’ M2

* 2’ M2

+ 4’ * M2 3’

* M2 5’

+ + 6

+ 8

A2

A2 A1

A2

(M1)

(M1)

(M1)

(M1)

 1

 2

 3

 4

 5

 6

*

*

*

+

M1

M1

M1 A1

 1

 2

 3 4

* 5 M1

+ 6 A1 + A2 7

+ 8 A1

 7

 8

 9

 10

In the figure below: kc violation occurs as fault is active till
5 cycles (i.e. from CS 1 to CS 5). The non-fault secured
(uncorrected) SDFG

DMR
 with Xi = (1M, 3A), Kc = 5:

Figure 4.5 Uncorrected 5-cycle fault secured

SDFG
DMR

39

Let us consider an example and demonstrate such condition. Consider the example shown in

Figure 4.5. In the Figure 4.5 both the conditions, a) and b) mentioned in Figure. 4.4 are not

satisfied. Therefore, condition c) (from Figure 4.4) is applied which successfully converts the

non-fault secured SDFG
DMR

into a kc fault secured SDFG
DMR

. Let us analyze the SDFG
DMR

shown in Figure 4.5. Assuming the particle position Xi as: (1M, 3A) and kc = 5, a fault

secured SDFG
DMR

 has to be designed. Based on the availability of resources (as per Xi), only

one multiplier is present for building the entire DMR system during scheduling. However, for

enabling single fault model security feature for kc> 1, distinct hardware assignment is

necessary between similar operations in original and duplicate e.g. opn 1 and opn 1’ cannot

be assigned to same hardware units (according to condition (a)) (Note: in duplicate unit,

hardware M2 is crossed to indicate that it is prohibited to use distinct hardware due to lack of

availability specified in Xi). Next, according to the condition (b) of Figure 4.4 stated above,

same hardware assignment may be kept if t(v’) – t(v) ≥ kc, however t(1) – t(1’) ≤ kc. Similarly,

t(2) – t(2’) ≤ kc , t(3) – t(3’) ≤ kc etc. Therefore as per proposed algorithm, condition (c) is

applied which pushes 1’ ϵ U
DP

into next CS. Automatically, 2’ ϵ U
DP

is pushed down into next

CS due to lack of available multiplier. Similarly other operations suffering from kc violation

is also pushed down in lower CS. The resultant corrected 5-cycle fault secured SDFG
DMR

 is

 7

* 1’

* 2’

+ 4’ * 3’

* 5’

+ + 6

+ 8

A2

A2 A1

A2

M1

M1

M1

M1

 1

 2

 3

 4

 5

 6

*

*

*

+

M1

M1

M1 A1

 1

 2

 3 4

* 5 M1

+ 6 A1 + A2 7

+ 8 A1

 7

 8

 9

 10

11

In the figure below: kc violation is removed by pushing v’ (and

associated operations) one CS below. The corrected SDFG
DMR

with Xi = (1M, 3A), Kc = 5:

Figure 4.6 Corrected 5cycle Fault Secured SDFG
DMR

40

shown in Figure 4.6.

4.2.2.5 Proposed Schemes for Insertion of Appropriate Cuts in Corrected kc SDFG
DMR

This section proposes schemes for inserting cuts in corrected kc SDFG
DMR

. Insertion of inapt

cut to optimize delay overhead associated with fault security in most cases may not yield

optimal solutions in the context of user constraints/budgets. In cutting some data edge of the

duplicate unit is broken to remove the data dependency between operations thereby moving

the dependent operation in upper CS (which then obtains its dependent output from similar

operation in original unit). According to our algorithm (Figure 4.4) explained in previous

section, insertion of appropriate cut is performed after the corrected kc SDFG
DMR

 is obtained.

However, insertion of appropriate cut (i.e. selecting the correct location/edge in the scheduled

DMR) is not a trivial task. This is due to the fact that inapt cutting does not facilitate in

optimizing delay occurring due to fault security, thereby resulting in resulting in longer delay

increasing chances of possible violation of user delay constraint. Further, hit and trial process

of inserting cut is highly time consuming thereby may increase exploration runtime beyond

an acceptable range.

Motivating from these bottlenecks, schemes for insertion of appropriate cuts in

corrected kc SDFG
DMR

are discussed later in this section. The schemes guarantee reduction of

delay overhead due to fault security, if any possibility exists. The cuts (checkpoints) are

inserted by traversing each node of corrected DMR schedule bottom to top searching for

existence of any condition 3 (C3)/condition 4 (C4) illustrated later. This is because as

described each of C3 or C4 is able to reduce delay overhead in fault secured DMR system.

* * *

+ *

+ +

+

* *

+ *

*

+ +

+

8’ ---> v
6’---> v’
7’---> v’’
Cut between 6’ &8’ or 7’& 8’does not reduce
delay as 8’ cannot shift up to CS 5

M1 M2 M3

A1 M1

A2

A1

 1 2 3

 4 5

A1 6
 7

 8

 1’ 2’ M2 M3

 4’ A3 3’ M1

 5’ M2

 6’ A2 7’ A1

 8’
A2

 1

 2

 3

 4

 5

 6

Figure 4.7 Example for C1

41

Note: Only single cuts (single additional checkpoint besides the regular checkpoint at

the final output) are allowed in all cases in order to avoid excess hardware overhead

(comparator/voter).

The Conditions are as follows:

 C1: If v’ & v’’ are the inputs to v, such that CS (v’’) – CS (v’) = 0 (i.e. v’ & v’’ are

allocated in same CS),

then:

No cut is allowed between v’ & v or v’’ & v.

o Demonstration of C1

For example, consider a SDFG
DMR

with Xi = (3M, 3A) shown in Figure 4.7. If a fault of kc>1

(multi cycle) effects the system, then, a cut between 6’ & 8’ or 7’& 8’does not reduce delay

as 8’ cannot shift up to CS 5. Therefore, no cut is allowed between any nodes.

 C2: If v’ & v’’ of same operator type are the outputs of v, such that CS (v’’) – CS (v’)

= 0 (i.e. v’ & v’’ are allocated in same CS),

then:

 No cut is allowed between v’ & v or v’’ & v.

o Demonstration of C2

For example, consider a SDFG
DMR

with Xi= (3M, 3A) shown in Figure 4.8. If a fault of kc>1

(multi cycle) effects the system, then, cut between 5’ &6’ (or 5’ & 7’) does not reduce delay

as shifting 6’ (or 7’) to CS5 does not benefit. Therefore, no cut is allowed between any nodes.

+

* *

+ *

*

+

+

 1’ 2’ M2 M3

 4’ A3 3’ M1

 5’ M2 6’ A2

 7’ A1

 8’
A2

* * *

+ *

+ +

+

5’ ---> v
6’---> v’
7’---> v’’
Cut between 5’ &6’ (or 5’ & 7’) does not reduce

delay as shifting 6’ (or 7’) to CS5 does not benefit

M1 M2 M3

A1 M1

A2

A1

 1

2

 3

 4 5

A1 6
 7

 8

 1

 2

 3

 4

 5

 6
Figure 4.8 Example for C2

42

 C3: If v’ & v’’ of different operator type (tv’’ < tv’ i.e. delay of v’’< delay of v’) are

the outputs of v, such that CS (v’’) – CS (v’) = 0 (i.e. v’ & v’’ are allocated in same

CS),

then:

Cut is allowed between v’& v.

o Demonstration of C3

For example, consider a SDFG
DMR

with Xi= (3M, 3A) shown in Figure 4.9. If a fault of kc>1

(multi cycle) effects the system in Figure 4.9 then, a cut between 5’ & 6’reduces delay in

nanosecs as 6’ is a multiplication. So after shifting 6’, CS 5 only contains 7’ (addition).

 C4: If v’ & v’’ are the inputs to v, such that v is a single operation in a CS in

duplicate and CS (v’) – CS (v’’) > 1 (i.e. v’ & v’’ are greater than one CS apart),

then,

 Cut is allowed between v & v’.

o Demonstration of C4

For example, consider a SDFG
DMR

with Xi= (3M, 3A) shown in Figure 4.10. If a fault of kc =

1 effects the system in Figure 4.10, then, as seen in Figure 4.11, an additional checkpoint is

inserted at the output of 3’. Now, if a fault occurs at M3 affecting opn 3, then this faulty

output affect opn 5’. The checkpoint at final output (comparing 8 and 8’) is not able to detect

the fault. However opn 3’ remains fault secured. Therefore, the additional checkpoint inserted

at output of opn 3’ (comparing 3 and 3’) detects the transient fault.

Figure 4.9 Example for C3 Before Cut

* * *

+ *

* +

+

* *

+ *

*

* +

+

5’ ---> v
6’---> v’
7’---> v’’
Cut between 5’ &6’reduces delay in nanosecs as
 6’ is a multiplication. So after shifting 6’, CS 5
only contains 7’ (addition).

M1 M2 M3

A1 M1

A2

A1

 1 2 3

 4 5

M1 6
 7

 8

 1’ 2’ M2 M3

 4’ A3 3’ M2

 5’ M2

 6’ M2 7’ A1

 8’
A2

 1

 2

 3

 4

 5

 6

43

Note: While deciding for inserting cuts in duplicate, only C3 andC4 is checked. If

either of the conditions (C3/C4) yield benefit, further checking is not carried out for that

SDFG
DMR

i.e. if C3 is found to yield benefit, then C4 is not checked further.

4.3 Proposed Evaluation Models

For evaluation of a particle (or design point), the following models have been proposed.

4.3.1 Proposed Power Model

PT
DMR

 of a resource set is represented in terms of Static Power (PS
DMR

) and Dynamic Power

(PD
DMR

). ‘PT
DMR

’ is represented as:

 DMR DMR DMR

T S DP P P  (4.2)

PS
DMR

 is a function of area of resources and leakage power per transistor. It can be

formulated as:-

1

((). ().
D

DMR

S d d c

d

P N R K R p


 (4.3)

Figure 4.10 Example for C4 Before Cut

 5

6

* * *

+ *

+ +

* *

+ *

*

+ +

5’ ---> v
3’---> v’
1’---> v’’
Cut between 3’ &5’ is applied

M1 M2 M3

A1 M1

A2

 1 2 3

 4 5

A1 6 7

 1’ 2’ M2 M3

 4’ A3 3’ M1

 5’ M2

 6’ A2 7’ A1

 1

 2

 3

 4

 5

+ 8 A1

+ 8 A2

+

* *

+ * *

+

 1’ 2’ M2 M3

 4’ A3 3’ M1
 5’

M2

 6’ A2
 7’

A3

* * *

+ *

+ +

+

5’ ---> v
3’---> v’
1’---> v’’
Cut between 3’ &5’reduce delay in nanosecs as 5’
 shifts to CS3 without violation

M1 M2 M3

A1 M1

A2

A

+ 8 A1

1

 1 2 3

 4 5

A1 6 7

8

 1

 2

 3

 4

5

6

+ 8’ A2

+ 8 A1

Figure 4.11 Example for Condition 4 After Cut

44

Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power

dissipated per area unit (e.g. transistors).

While, the average dynamic power consumed by a resource configuration is a function of

dynamic activity of the resources and can be given as:

DMR
DMR FU

D DMR

E

E
P

T
 (4.4)

Where, DMR

FUE is the total energy consumption of the resources in fault secured DMR system

and DMR

ET is the total execution time of DMR system.

4.3.2 Proposed Execution Time (Delay) Model

For given ‘D’ functional resources the execution time is:

' '

. 1

((),.... (), (),...... ())
n

DMR

E i n i n

c s

T Max D op D op D op D op


 (4.5)

Where, 1 ≤ i ≤ n and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate are labelled as

i and i’ respectively; n and n’ are maximum value of node); D(opn) is the delay of operation

‘n’ while c.s is the control step.

4.3.3 Proposed fitness function

To assess the quality of explored configuration, the proposed fitness function motivated from

the existing fitness function discussed in equation (3.8) is defined as:

 1 2

max max

()
DMR DMR

T cons E cons
f i DMR DMR

P P T T
C X

P T
 

 
  (4.6)

Where, ()f iC X is the cost of particle with resource set Xi, 1 and 2 are the user defined

weights for power and execution time parameters,
max

DMRT is the maximum execution time of

a fault secured DMR system in design space while
max

DMRP is the maximum power of a fault

secured DMR system in design space. The above function is a normalized penalty function

where the cost value obtained, considers the power and execution time of DMR design. The

normalization is achieved by dividing the value obtained by placing the maximum value in

the denominator of the function.

45

4.4 Demonstration of PSO-DSE Methodology

4.4.1 User Specification

The goal of exploration problem is to simultaneously meet the user provided constraints for

power and execution time and generate a low cost optimal kc transient fault secured datapath.

Therefore, the exploration process requires constraint inputs of power and execution time i.e.

consP and consT , before initiation.

4.4.2 Boundary Constraints Check Module

 This module checks whether the specified user constraint falls in the valid range of boundary

limits. The following condition is checked for each parametric constraint specified:

1. Check: min max min max||
DMR DMR DMR DMR

P P P T T T
cons cons

   

2. If the above condition is true then stop and correct the constraints.

Else the above condition fails and goes to step 3.

3. Execute the initialization process of Module.

4.4.3 Particle Encoding/Initialization

The particles are initialized to uniformly cover the design space. The initialization is done on

the basis of proposed scheme discussed in previous chapter. For example, in Figure 4.1 used

for demonstration, as evident there are three types of resources (i.e. D= 3) viz. multiplier,

adder and subtractor. Therefore with respect to the example, a particle position is given by: Xi

Adaptive end terminal perturbation
Input- Resource configuration which crosses the design space
Output- New value of resource configuration with in design space

//When Rid crosses the design space boundary

While (Rid< L)
{

Rid = Rid + Y
}
While(Rid> U)
{

Rid=Rid-Y
}

/* where ‘Y’ is a random value between minimum resource constraints and
maximum resource constraints.
‘L’ is lower boundary which means minimum resource value single instance.
‘U’ is the upper boundary which means maximum # of resources*/

 Figure 4.12 Adaptive End Terminal Perturbation Algorithm

46

= (N(mul), N(add), N(sub)). Hence, using initialization as done in chapter 3, X1 = (1, 1, 1); X2

= (4, 2, 2); X3= (2, 1, 1) can be obtained assuming maximum available multiplier resources:

4, and adder resources: 2 and subtractor resources: 2.

4.4.4 Initialization of Velocity, Acceleration Coefficient

Velocities of all particles are initialized to zero. Further, in order for the PSO-DSE to achieve

convergence, it has been theoretically established before in [56] that the cognitive learning

factor (b1) and the social learning factor (b2) can be initialized to any value between [1-2].

(Note: It is mathematically proved by authors in [51] that, when the value of ‘b’ is pre-tuned

between [1-2] and value of ‘ω’ between [0.9 to 0.1], the algorithm will converge for any

given initial value of position and velocity). Therefore, the value of b=2 and ω linearly

decreasing from 0.9 to 0.1has been used during experimentation.

4.4.5 Determination of Fitness and Update Local and Global Best Position

Based on the initialization of particles performed in section 4.4.3, the initial fitness of the

individual values of power and execution time for all particles needs to be calculated.

Adaptive rotation mutation
Input – Local best resource configuration R

lb

Output – New mutated local best resource configuration
R

lb

For i=1 to p // where p = Swarm size(#of particles)
{
 if (i%2==0) // Left Rotation

{
For j=1 to D
{

Temp = Rj
Rj = Rj +1
Rj+1 = temp
j++

}
 }

 if(i%2==1)
 {
 For j=1 to D
 {
 Rj = Rj  X

// X is a random number between [1,3]
j++
}

 }
i++;

}

Figure 4.13 Adaptive Rotation Mutation Algorithm

47

4.4.6 Determination of Local and Global Best Position

Since in iteration 1, there is no previous local best position for an i
th

 particle (Xlbi) therefore

the current position (Xi) assumes the value of Xlbi. The global best position (Xgb) of the

population so far is determined using equation (15) as follows [31, 32]:

1 1 11 2 3[((), (), ().... ()]
lb lb lb lbngb i f f f f nX X Min C X C X C X C X (4.7)

Where, ()
lbif iC X is the local best fitness of particle ‘Xi’ and ‘Xgb’ indicates the global best

particle position with minimum cost among all particle positions (X1 …..Xn).

The PSO-DSE [31, 32] also comprises of mutation performed on the local best with

probability Pm = 1.0 and adaptive algorithms to handle boundary overreach (shown in Figure

4.12) and mutation (shown in Figure 4.13) during exploration.

4.4.7 Determination of new position of each particle

Iteration process initiates at this step. According to PSO-DSE, each individual iteration

computes new resource value of a particle Xi in d
th

 dimension through: (,)
d d di i i

R f V R
 
 which

can be expanded as specified in equation 4.8 [54, 55, 57]:

idi d di

R R V
 
  (4.8)

Where,
di

R
 is the new resource value of particle Xi in d

th
 dimension and

idR is the previous

resource value of particle Xi in d
th

 dimension; di
V 

 is the new velocity of particle Xi in d
th

dimension (i.e. step length taken per unit time in d
th

dimension) which is updated by equation

(4.9) [54, 55, 57]:

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      (4.9)

Where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension and ‘

gbdR ’is the resource value of

Xgb in d
th

 dimension.

Note-
1 2{ , ... }

lbi lbi lbilbi DX R R R and
1 2{ , ... }

gb gb gbgb DX R R R

4.5 Stopping Criteria (Z)

The proposed algorithm terminates when one of following condition holds true:

 When the maximum number of iteration have been exceeded (M = 100) or,

 S
1
: When no improvement is seen in

gbR over ‘£’ number of iteration. (£=10) or,

 S
2
: If the population reaches to equilibrium state i.e. all particles velocity become zero

(V
+
 = 0).

48

Note: Results of the proposed method are given in chapter 8 section 8.2.

4.6 Summary

Over the years the DSE process has evolved where the requirements specified by the user

have also convoluted, ranging from simple area-delay tradeoff in initial years to complex

power-delay tradeoff in recent years. The approaches developed so far aimed at exploring the

design space along with balancing some multi-conflicting issues during generation of the best

possible solution. Solving the DSE problems with such objectives has no longer been

sufficient now. There is demand for designs, which require ability to detect errors occurring

due to transient faults. To achieve this, high reliable designs that have ability to detect errors

are generated. This chapter presented an automated DSE approach to detect transient faults

and generate an optimal fault secured datapath for data intensive applications based on user

specified power-delay budget during HLS.

49

Chapter 5

Multi-Cycle Single Event Transient Fault Security Aware

MO-DSE for Single loop CDFGs in HLS

The availability of faster devices is a feature of future technologies that induces major

concerns to the fault detection community. For those technologies, even particles with modest

Linear Energy Transfer (LET) values will produce transients lasting longer than the predicted

cycle time of circuits. Therefore the technology evolution and LET of particle impact both

plays a major role in inducing multi-cycle (k-cycle) transient fault (longer duration transient)

in a device [58. 59]. Therefore, fault security should be considered early in the design cycle

as design objective, besides traditional design objectives such as area and delay during DSE.

Multi-cycle SET fault security aware Multi Objective Design Space Exploration (MO-DSE)

for single loop CDFGs during behavioural synthesis has not received much attention in the

literature. Solving the aforesaid problem in the context of CDFG is non-trivial. This is

because it involves simultaneous generation of an optimal combination of multi-cycle fault

secured datapath and loop unrolling factor satisfying conflicting user constraints (such as

hardware area and delay).

This chapter solves the aforementioned problems and proposes a multi-cycle SET

fault security aware MO-DSE methodology that explores an optimal combination of transient

fault secured DMR datapath configuration and loop UF for CDFG. The proposed approach

maintains a trade-off between hardware area and delay as user constraints during exploration

process. The detail description of the proposed approach is given in subsequent sections in

this chapter.

5.1 Problem Formulation

The problem can be formulated as:

Find: Optimal (Xi) = (Rx, UFN)

with minimum hybrid Cost (,)DMR DMR

T EA T

Subjected to:
DMR DMR

T cons E consA A and T T  and kc transient fault constraint;

where, ‘Xi’ is a set comprising of resource combination and UF formally represented as :

50

Xi = (Rx, UFN) = }),()....(),(),({ 21 NDd UFRNRNRNRN

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D’ is the total number of

resource types; UFN is the N
th

 unrolling factor; ‘Rx’ is a candidate resource combination for

optimal solution; UFN is a candidate UF; ‘AT
DMR

’ and ‘TE
DMR

’ are the areas used by a fault

secured DMR system and execution delay of a fault secured DMR system respectively;

‘Acons’ and ‘Tcons’ is area and execution time constraints specified by the user.

5.2 The Proposed Framework and Mapping Process

The framework for exploration of an optimal multi-cycle transient fault secured solution is

presented in Figure 5.1. To transform the PSO into multi-objective DSE problem the position

of a particle is represented by a set comprising of resource combination and UF; total number

of dimensions is represented by sum of the number of resource types and UF. Finally, the

velocity of the particle in dth dimension acts as a parameter that provides the drift during

DSE.

During exploration process the design points are evaluated. To evaluate the design

points, model for execution time, model for area evaluation and model for cost (fitness) have

been presented in the upcoming section.

5.3 Proposed Evaluation Models and Formulation

In the proposed PSO-DSE, each particle position represents a resource set (Rx) in the design

space.

5.3.1 Proposed Model for Execution Time

PSO-DSE Process

(Initialization, velocity

calculation/clamping,

Global best position and

fitness evaluation of

candidate design

solutions)

Module Library

User Constraints

Pre-processing algorithm

Single loop CDFG

Transient fault strength

INPUT BLOCK

Block for designing

multi-cycle Transient

Fault secured scheduled

DMR CDFG

Optimal multi-cycle transient

fault secured solution

Figure 5.1 Proposed Multi-cycle Transient Fault Security Aware DSE During

Behavioural Synthesis

51

In order to describe the formulation of proposed execution time (
DMR

ET) (function of loop

unrolling factor) for a CDFG, an example of loop unrolling is used shown in Figure 5.2.

Figure 5.2(a) shows the original loop part of CDFG for FFT and Figure 5.2(b) shows the

same loop part unrolled twice. Figure 5.3 shows ASAP scheduled CDFG
DMR

 for FFT

unrolled twice with resource constraint of 4(+), 2(*), 1(-) and 1(<); UF=2 and iteration

count=4. It also shows the trailing loop part of the unrolled CDFG is not available for this

case.

The generic execution delay model for a loop unrolled CDFG
DMR

 is shown as follows:

 * mod * ,

floor

DMR DMR DMR

T body first

I
C C I U F C

UF

  
      

 (5.1)

+ +

+ +

+

-

-

+ +

-

+ +

-

*

4 5

6 7

8

9

10

11 12

13

14 15

16

17

+ +

+ +

+

-

-

+ +

-

+ +

-

*

<

18 19

20

21

22

23

24

25 26

27

28 29

30

31

32

*

+

*

+ +

+ +

+

-

-

+ +

-

+ +

-

*

<

join

1

4 5

6 7

8

9

10

11 12

13

14 15

16

17

18

2

3

Figure 5.2(a) FFT Loop Figure 5.2(b) FFT Loop Unrolled Twice

52

Where, *

floor

DMR

body

I
C

UF

  
     

are total CS for unrolled loop,  mod * DMR

firstI U F C are total CS

for sequential loop.
DMR

TC is total CS required to execute the loop of CDFG
DMR

 completely,

DMR

bodyC is the number of CS required to execute loop body of CDFG
DMR

 once, ‘I’ is the

maximum number of iteration (loop count),
DMR

firstC is number of CS required to execute first

iteration of the CDFG
DMR

. However, if the system design supports enough hardware

instances such that sequential loops are possible to be fed to multiple hardware instances in

parallel, then the total CSs for sequential loops from above equation (5.1) is,
DMR

firstC . Finally,

execution time for the system calculated as:

- 13
S1

* 14
M1 * 15

M2
- 24

S1

* 25
M1

* 17
M1

* 29
M1

- 16
S1 + 26

A1

- 27
S1

* 28
M2

* 31
M1

- 30
S1

< 32
C1

112

-
9

S1

+
22

A2 +
8

A1

+
21

A4 +
20

A3 +
7

A2 +
6

A1

-
10

S1

* 12
M1 * 11

M2
- 23

S1

+ 4
A1

112

+ 5
A2

112

+ 18
A3

112

+ 19
A4

112

+ 4’

A3

112

+ 6’
A1

112

+ 8’
A1

112

- 9’
S1

112

+ 7’
A2

112

+
15’

A4

112

+
18’

A3

112

+
19’

A4

112

+ 20’
A2

112

+ 22’
A1

112

- 10’
S1

112

* 11’
M1

112

* 12’
M2

112

 * 15’
M2

112

- 24’
S1

112

- 23’
S1

112

- 13’
S1

112

* 14’
M1

112

- 16’
S1

112

* 17’
M1

112

* 25’
M1

112

+ 26’
A1

112

- 27’
S1

112

* 28’
M1

112

* 29’
M2

112

- 30’
S1

112

* 31’
M1

112

< 32’
C1

112

+ 21’
A3

112

Figure 5.3 kc Fault Secured SCDFG
DMR

of FFT Loop body for Resource

configuration (4(+),2(*),1(-),1(<), UF=2) at I=4 and kc =2

(adopted from [9])

Duplicate Unit

Unrolled Loop Original Unit

53

*DMR DMR

E TT C  (5.2)

where, ‘Δ’ is the delay of one CS in nanoseconds.

5.3.2 Proposed area model

Total area consumed (AT
DMR

) by a resource set is given by:

1

(()* ())
n

DMR

T i i

i

A N R K R


 (5.3)

where, DMR

TA is the total area of a DMR design, ‘N(Ri)’ is the number of instances of

resource type ‘Ri’.Note: The area component includes area due to functional resources,

interconnect units (mux and demux), comparator (for error detection) as well as overhead

incurred from internal buffering (during temporary storage of operation output in DMR

scheduling).

5.3.3 Proposed Fitness Function

A fitness function which is a normalized penalty function where the cost value obtained

considers the constraints for area and execution time of DMR design is proposed as follows:

1 2

max max

()
DMR DMR

T cons E cons
f i DMR DMR

A A T T
C X

A T
 

 
  (5.4)

The above equation is motivated from the existing fitness function discussed in equation

(3.8). Where, ()f iC X is the cost of particle with resource set iX ;
max

DMRT is the maximum

execution time of a fault secured DMR system in design space while
max

DMRA is the maximum

area of a fault secured DMR system in design space.

5.4 Proposed Methodology

As seen from Figure 5.1 the input blocks comprise of module library, behavioural description

of CDFG, predefined user parametric constraints for area and delay as well as pre-processing

of unrolling factors. The pre-processing of UFs is explained in later sections. Wherein, the

iteration count is provided as an input for pre-processing. Furthermore, the input block for

control parameters comprises of acceleration coefficient, inertia weight, swarm size and

terminating criteria which are used for regulating the PSO driven exploration process. PSO

exploration process used has been explained in chapter 4.

The inputs required are further fed to the PSO-DSE block where, initialization and

encoding of the particles, velocity and position up-gradation, velocity clamping and end-

terminal perturbation, mutation and finally the updating of local best and global best positions

54

are done. To evaluate the fitness of a particle, each encoded particle is passed through

transient fault security block for designing a fault secured DMR Scheduled Control Data

Flow Graph (SCDFG
DMR

) which is responsible for converting an untimed CDFG into a

scheduled kc fault secured DMR Control Data Flow Graph (CDFG
DMR

). After this process,

appropriate cut for additional checkpointing is inserted based on proposed scheme to

optimize delay overhead associated with fault security, followed by its fitness evaluation.

Every such new design solutions (particle) obtained are again similarly convert it into a fault

secured SCDFG
DMR

. Subsequently, the global best and local best solutions in the PSO

process are also updated. This process continues until the terminating criterion is reached

yielding an optimal fault secured datapath architecture (or SCDFG
DMR

) which

comprehensively satisfies the constraints of Acons, Tcons, kc and minimizes cost.

5.4.1 Pre-processing of Unrolling Factors

A pre-processing of the unrolling factors is done to prune the design space. The pre-

processing algorithm, shown in Figure 5.4, filters unfit UFs to create a list of viable solutions.

The algorithm filters UFs with higher value since UFs with higher value offer minor

improvement in the execution time and consume more power thereby increasing the overall

cost of the solution. UFs which produce higher sequential loops are also removed from the

Pre-processing of unrolling factor

Input – value of ‘I’ (Total no. of loop iteration)

Output – screened set of unrolling factor (UF)

1 Begin

// Screening of UF//

2 For UF =2 to I Do

2.1 IF ((I mod UF <
2

UF) &&

 (UF <= I/2)) Then

//Add UF into the accepted UF list//

2.2 Accepted UF[k] = UF

2.3 k++

2.4 End IF

2.5 End For

3 End

Algorithm

1 Begin

2 For UF =2 to I do

//All U F are added into the accepted list until (I

mod UF) <
2

UF
//

2.1 IF ((I mod UF)<
2

UF) Then

2.2 Terminate adding process jump to the

end of the function

2.3 End IF

2.4 Accepted UF[k] =UF

2.5 k++

2.6 End For

3 End

Figure 5.4 Pre-processing of UF

Figure 5.5 Algorithm for Inclusion of Some

Special UFs

55

set. However, some special UFs are added which might be initially screened out in pre-

processing to include good solutions. This is accomplished using the algorithm shown in

Figure 5.5.

5.4.2 Proposed Initialization Process of Particles

After preprocessing step initialization of the particle take place. During initialization process

particles position, are initialized as follows:

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD-1),UF)

the initialization of particles is such that it uniformly covers the entire design space

 X1= (min(R1), min(R2),.. min(RD-1),min(UF)) (5.5)

 X2 = (max(R1), max(R2),.. max(RD-1),max(UF) (5.6)

 X3=(((min(R1)+max(R1))/2..,((min(RD-1)+max(RD-1))/2,max(UF)/2) (5.7)

Rest of the particle positions(X4…Xn) are initialized with random values between minimum

and maximum values of resources and UF. Since, an optimal design solution to a multi-

objective exploration problem will always lies between the maximum parallel and serial

implementation of the application. Therefore, keeping in mind the above, X1 is represented by

the serial implementation, X2 by parallel implementation, X3 with the mid value between

serial and parallel implementation and X4-Xn scattered anywhere between serial and parallel

implementation.

5.4.3 Initialization of Velocity, Acceleration Coefficient and Inertia Weight

The details about velocity, acceleration coefficient and inertias weight initialization have

already been discussed in section 4.4.4 of chapter 4.

5.4.4 Assumptions of Proposed Algorithm

This subsection illustrates the assumptions which have been considered while designing the

proposed PSO driven multi objective DSE for multi-cycle fault detectable datapath.

 Single fault model i.e. fault occurring at a single site in the circuit. Note: consideration

of single fault model for transient faults is widely assumed and adopted in all related

works such as [28, 30, 32]. Therefore, the proposed work on DSE of single/multi-cycle

transient fault detectable datapath also uses the same assumption.

 The faults occur only at the hardware units and not at interconnecting wires.

 The system only handles the transient-faults and not permanent faults.

 The pair of unit in the DMR system has a comparator for error detection, whereby the

comparators are considered fault detectable.

56

5.4.5 Proposed Algorithm for Design of kc Fault Secured DMR system

The proposed methodology for designing kc fault secured DMR system is shown in Figure

5.6. The proposed algorithm accepts the following as inputs: Xi (particle position denoting

datapath configuration), the CDFG, fault security constraint (kc) indicating the strength of the

fault and module library indicating the hardware units available for allocation. The output of

a)

b)

c)

Figure 5.6 Algorithm for Generating a kc Fault Secured SCDFG
DMR

Not

Available

Xi, kc, CDFG

Build SDFG
DMR

 comprising of U
OG

 and U
DP

 based on: Xi

Where Xi = N(R1), N(R2)……N(Rd)

Assign opn: v & v’; where v ϵ U
OG

 and v’ ϵ U
DP

 (v and v’ are same

operations of original and duplicate) to distinct hardwareif available

(this assignment helps in detection for kc> 1& kc= 1)

Goto checkpointing rules to insert

checkpoints/cuts based on Xi

Keep same

assignment for v’

(as v) as long as:

t(v’) – t(v) ≥ kc

Push v’

one CS

Xi

violation?

Assign v’ to any other available hardware

from Xi

kc violation
between v &

v’ ?

Change v’ to original assignment and assign

vc to new hardware unit

Evaluate cost

of SDFG
DMR

Do not insert

checkpoint/Cut

kc violation
still between

v & v’ ?

PSO-DSE framework

kc not satisfied kc constraint satisfied

No

Yes

Yes

No

No

Yes

START

kc constraint

satisfied

57

the proposed algorithm is a valid kc cycle fault secured scheduled DMR system that is

iteratively feedback to the PSO-DSE framework for exploring the next design solution based

on the fitness evaluation. The DMR system involves a SCDFG
DMR

, consisting of schedules of

U
OG

 and U
DP

. The pair of units is concurrently scheduled on the basis of ASAP scheduling

using the user supplied resource constraints Xi and available dependency information of the

nodes. After obtaining the scheduled DMR system, the hardware allocation of both the units

(U
OG

 and U
DP

) is performed. Operations of the SCDFG
DMR

 system are allocated to hardware

on the basis of fault security conditions (schemes) shown in Figure 5.6 (sub-block (a), (b) &

(c)). Allocation of hardware to duplication unit of SCDFG
DMR

without obeying the rules

proposed in the algorithm may result in TFH between similar operations (of original and

duplicate) assigned to same hardware unit i.e. TFH between similar operations belonging to a

same hardware exists when:

 t(v
’
)- t(v) < kc, where v ϵ U

OG
 and v

’
ϵ U

DP.
 (5.8)

These hazards are resolved in the proposed algorithm by pushing the affected operation v’

(and accordingly its successor) of the duplicate unit in later control steps, if assignment

(allocation) rules (a) and (b) fails. The push is done such that the interval between vϵ U
OG

and v
’
ϵ U

DP
 is greater than (or equals to) kc. This resolution of the TFH is done until the TFH

of the whole DMR system is resolved, i.e. SDFG
DMR

obeys either of the fault security scheme

((a) or (b) or (c)) proposed in Figure 5.6. The blocks after the cut condition block are for

handling the possible assignment violations that could occur in the modified fault secured

SCDFG
DMR

 due to insertion of cut.

The cut conditions employed in order to reduce the additional execution time delay incurred

due to shifting of operations in later control steps have been discussed in section 4.2.2.5 of

chapter 4.

5.4.6 Determine Global Best Position

The global best position of the population is determined as follows:

1 1 11 2 3[((), (), ().... ())]

lb lb lb lbngb i f f f f nX X Min C X C X C X C X (5.9)

The global best particle position has minimum cost among all particle positions (X1 …..Xn).

5.4.7 Determination of New Position of Each Particle

Iteration process initiates at this step. According to PSO-DSE, each individual iteration

computes new resource value of a particle Xi in d
th

 dimension through: (,)
d d di i i

R f V R
 
 which

can be expanded as specified in equation 4.8 [54, 55, 57]:

58

idi d di

R R V
 
  (5.10)

Where,
di

R
 is the new resource value of particle Xi in d

th
 dimension and

idR is the previous

resource value of particle Xi in d
th

 dimension; di
V 

 is the new velocity of particle Xi in d
th

dimension (i.e. step length taken per unit time in d
th

dimension) which is updated by equation

(5.11) [54, 55, 57]:

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      (5.11)

Where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension and ‘

gbdR ’is the resource value of

Xgb in d
th

 dimension.

Note-
1 2{ , ... }

lbi lbi lbilbi DX R R R and
1 2{ , ... }

gb gb gbgb DX R R R

5.4.8 Adaptive end Terminal Perturbation and Adaptive Rotation Mutation

To handle boundary outreach problem during exploration process we propose adaptive end

terminal perturbation, described in chapter 4.

In order to increase variation and diversity, mutation is performed on all the local best

position of each particles with probability Mp =1.0 using Adaptive rotation mutation

described in chapter 4.

5.5 Stopping Condition (Z)

The proposed algorithm terminates when the maximum number of iterations exceeds 100, or

when no improvement is visible in Xgb over ‘£’ number of iteration. (£=10). Details on

stopping criteria have already been discussed in chapter 4.

Note: Results of the proposed solution are explained in chapter 8 section 8.3.

5.6 Summary

This chapter presented a novel multi-cycle SET fault security aware MO-DSE approach

which explores an optimal transient fault secured datapath configuration and loop UF for

control intensive applications. The datapath generated abides by the user specified area-delay

constraints during exploration process.

59

Chapter 6

Bacterial Foraging Driven Exploration of Multi Cycle

Fault Tolerant Datapath based on Power-Performance

Tradeoff in High Level Synthesis

Due to recent advancements in technology, the idea of packing millions of transistors on a

single chip has become more feasible. Technology evolution and impact of particle both plays

a major role in inducing multi-cycle transient fault (longer duration transient) in a device.

However, designing an optimized multi-cycle fault tolerant system is non-trivial. A multi-

cycle fault tolerant system is a design that is, resilient against transient fault eminating due to

SETs. For the current and future technology transient faults can span more than one clock

cycle resulting in its multi cycle nature. Therefore, a multi-cycle fault tolerant system not

only has capability to detct a transient fault but also to recover from it.

This chapter presents a novel multi-cycle fault tolerant DSE approach based on

power-performance tradeoff during HLS. To the best of the authors’ belief, this is the first

effort to solve this problem in the literature so far. The proposed methodology is based on an

adaptive BFOA that allows reaching the true Pareto optimal curve. The chapter also discusses

about a novel DMR with equivalent circuit scheme that performs the equivalent function of

extracting the correct output.

6.1 Problem Formulation

To explore the design space of a given DFG, and determine an optimal resource set

1 2{ (), (), ().... ()}i d DX N R N R N R N R

which satisfies conflicting user constraints and minimizes the overall cost.

The problem can be formulated as:

Find: an optimal Xi

with minimum hybrid Cos (,)DMR DMR

T Et P T

subjected to:
DMR DMR

T cons E consP P and T T  and kc fault.

60

Where, N(Rd) is number of instances of a resource type ‘d’,
DMR

TP is power consumed by a

fault tolerant DMR system,
DMR

ET is the delay of a fault tolerant DMR, Tcons and Pcons are the

user specified execution delay and power constraints while kc is the strength of the fault.

6.2 Proposed Framework

The framework of a fault tolerant DSE scheme has been shown in Figure 6.1. A BFOA

driven DSE framework is used for exploration of designs. The input block comprises of:

module library, behavioral description of DFG, predefined user parametric constraints for

power and time execution as well as kc. Further, the control parameters such as Nc, Ned, p

explained in chapter 3 are used for regulating the BFOA driven exploration process. The

proposed framework has a subunit for initialization/ encoding of bacteria. The encoded

Bacteria

Encoding

Chemotaxis for

exploring new

configurations

Dispersal to

introduce

diversity in

configurations

Fault Tolerant Block

Build DMR

Scheduling

Identification

and Resolution

of TFH

Cost

Function

TE

Evaluation

Power

Evaluation
Allocation of

hardware units

Fault Tolerant

DMR schedule

Optimal Configuration

User Constraints Module

Library
DFG

Control Parameters

Nc , Ned , tmin , tmax

Input Block

Pcons , Tcons

 kc

Datapath

Exploration

kc

Fault

Fault Tolerant - BFOA driven DSE

Fitness Bock

Figure 6.1 Proposed Multi Objective Multi Cycle Fault Tolerant BFOA-DSE

Approach

61

bacteria are then subjected to chemotaxis and dispersal algorithms during the DSE process to

explore new and diverse resource configurations. The solutions generated through the

algorithms are fed into the fault tolerant block for converting into a kc error-correctable

design (masking the fault) by evaluating the DMR schedule on the basis of kc fault behavior.

A DMR design is obtained corresponding to each bacterium solution during DSE where the

TFH due to kc fault are identified and resolved subsequently to obtain a fault tolerant DMR

schedule through the proposed algorithm. The obtained fault tolerant DMR schedule is

passed into the fitness block to determine the cost of the fault-tolerant solutions generated.

This process continues through the proposed BFOA-DSE framework to generate an optimal

fault tolerant DMR system that comprehensively satisfies Pcons, Tcons, kc as well as minimizes

the hybrid cost.

6.2.1 Framework for DSE

BFOA DSE framework generates intermediate solutions during exploration that are fed into

the proposed multi cycle fault tolerant algorithm. The multi cycle fault tolerant algorithm

uses these explored solutions to convert them into a fault tolerant DMR schedule considering

the user specified power budget and performance requirement. This process continues until

an optimal solution i.e. a fault tolerant DMR system that comprehensively minimizes and

satisfies the multi objective power and execution time constraint. The proposed multi cycle

fault tolerant algorithm is described in next section.

6.2.2 Proposed DMR System for kc Fault Tolerance

6.2.2.1 Assumptions of Proposed Algorithm

In the proposed work, following assumptions have been considered while designing the

proposed BFOA driven multi objective DSE for multi-cycle fault tolerant datapath.

 Single fault model i.e. fault occurring at a single site in the circuit.

 Faults occurring only in the original unit of the DMR design.

 The pair of unit in the DMR system has a comparator for error detection, whereby the

comparators are considered fault tolerant.

 The system only handles the transient-faults and not permanent faults.

 The faults occur only at the hardware units and not at interconnecting wires.

6.2.2.2 Proposed Multi Cycle Fault Tolerance (MCFT) Algorithm

An explored fault tolerant DMR system for dealing with kc faults, based on user specified

power budget and execution time constraint has been proposed in Figure 6.2. The DMR

62

system involves a SDFG
DMR

, consisting of schedules of U
OG

 and U
DP

. The pair of units is

concurrently scheduled on the basis of ASAP scheduling using the user supplied resource

constraints Xi, and available dependency information (Dc) of the nodes. After obtaining the

scheduled DMR system, the critical paths (pcri) from the units (both U
OG

 and U
DP

) are

identified. Operations of the SDFG
DMR

 system are allocated to operators on the basis of

following scheme:-

i. Allocate opn (oi) of pcri

ϵ U

OG
 and pcri

ϵ U

DP
 to distinct operators (hardware units).

ii. Allocate the remaining operations by:

 If opn(oi) ϵ U
OG

 , then assign operator on the basis of availability

Inputs: DFG, Xi, kc, DC

Output: Fault tolerant SDFG
DMR

Begin

1. Build a DMR scheduling graph (SDFG
DMR

) comprising of U
OG

+ U
DP

;

SDFG
DMR

 = U
OG

+ U
DP

Subjected to: a. Constraint Xi; where Xi = (R1, R2,….Rd-1, RD)

 b. Constraint Dc

 2. Identify the critical path (pcri) from both U
OG

 and U
DP

.

 3. Allocate opn (oi) of pcri

ϵ U

OG
 and pcri

ϵ U

DP
 to distinct operators (hardware units).

 4. Allocate opn (oi) of non-critical paths by keeping assigned operations to similar operators

in both U
OG

 and U
DP

 if available.

 Loop 1:

do

{

5. Identify the transient fault hazards (TFH), if any, and prepare a list L[k] which

indicates the transient fault hazards (TFH) between v and v
’
of similar operators

in the current scheduling (SDFG
DMR

) such that:

v ϵ U
OG

v
’
ϵ U

DP

Loop 2:

do

{

 6. Select TFH to be resolved from L[k].

 7. Push v
’
 and its successor’s ϵ U

DP
 in lower CS such that:

a) t(v
’
)- t(v) => kc (i.e. interval between v and v

’
is greater than kc)

b) Constraints Xi and Dc satisfies.

 8. k++;

 9. Goto: Step 6

 }while (L(k)!= φ);

 Goto: Step 5

 }while(all t(v
’
)- t(v) => kc in SDFG

DMR
 (i.e. no TFH exists in the SDFG

DMR
))

10. Are similar operators of U
DP

used in U
OG

 in subsequent control steps within range of kc

cycle? If reused then, adjust the conflicting operations of U
DP

Loop 1: Prepares a list L[k] containing TFH in intermediate schedules of DMR.

Loop 2: Iterates to resolve the successive TFH from L[k].

Figure 6.2 Pseudo code for Multi Cycle Fault Tolerant Algorithm

63

 If opn(oi) ϵ U
DP

, then assign operations to similar operators as in U
OG

, if available to

enable resource sharing and reduction of usage of extra operators.

NOTE: This is because during designing fault tolerant datapath (for multi cycle faults)

assigning to distinct hardware operator sin duplicate unit does not assist in masking the fault

in duplicate. This is owing to the reason that faults anyways affects some other operation

 +

3

2

1

19

A1
‘28

‘27

 +

 +

 +

A1

M2

*

* +

‘13

M1

‘12

*

*

*

‘8

M2

‘6

M1

A1

‘3

 +

*

*

*

*

‘24

*

*

*

 +

9

*

*

 +

* *

*

*

*

*

 +

*

*

 +

 +

 +

*

*

 +

 +

1 2

M1 M2

3 4
M1

M2 A1
5

15

M1

16

M2

 17
2 18

4 M2

24 A1

23

A1

6

A1

7 A1

11

M1
10

M2

8
A1

12
M1

M2

13

A1

 + 14
A1

*

* 20

M1 21
M2

 +

 +

 + 28
A1

27 A1

26 A1

25 A1

22
M2 M1

*

*

 +

‘17 ‘18 M1

M2

*

‘15 ‘16

‘23

M1 M2

 +

‘4

A1

A1

A1

‘1 ‘2

M2

‘5

M1

 + ‘7 A1

‘10 ‘11

M1 M2 A1

*

‘9

M2

 + A1

‘14 ‘20 ‘21

M1 M2 A1

‘19 ‘22

M1

 + ‘25

‘26 A1

A1

17

M1

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure 6.3 SDFG
DMR

 of ARF with Xi = 1(+), 2(*)

 +

*

*

64

assigned to the same operator in duplicate. Assigning to distinct hardware only assists in

fault security (i.e. detection).

Once the assignment of operators is done, the behavior of the system due to k-cycle fault is

observed by identifying the TFH between any operations belonging to an operator. The TFH

between any operations belonging to an operator exists when :

Figure 6.4 Intermediate Fault Tolerant SDFG
DMR

 of ARF for kc = 2

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

3

2

1

30

*

*

+

+

+

+

+

M1

17

‘27

‘28
A1

A1

A1
‘26

A1
‘25

M1 M2
‘19 ‘22

*

*

‘21 ‘20

M2 M1
A1

‘14

A1
‘13

+

M1 M2

‘9 ‘12

*

*

A1
‘8

+

M1

‘10
M2

‘11

*

*

A1

‘7

M1 M2

 +

A1

A1

A1

‘23

‘6

‘5

‘2 ‘1

A1 ‘24
 +

M2 M1

‘18
‘17

*

*

M1

‘15

M2

‘16

 +

*

*

M2 M1

‘4 ‘3

* *

 +

 +

*

*

*

*

 +

9

*

*

 +

* *

*

*

*

*

 +

*

*

 +

 +

 +

*

*

 +

 +

1 2

M1 M2

3 4
M1

M2 A1
5

15

M1

16

M2

 17
2 4 18

 M2

24 A1

23

A1

6

A1

7 A1

11

M1

10

M2

8
A1

12
M1

M2

13

A1

 + 14

A1
*

* 20

M1 21
M2

 +

 +

 + 28
A1

27 A1

26 A1

25 A1

22

M2 M1

65

t(v
’
)- t(v) < kc, where v ϵ U

OG
 and v

’
ϵ U

DP.
(6.1)

These hazards are then resolved by pushing the affected operation of the duplicate unit in

later control steps, thereby shifting its successors accordingly. The push is done such that the

interval between v ϵ U
OG

 and v
’
ϵ U

DP
 is greater than (or equals to) kc. This identification and

+

*

M1

M2 M1
*

*

‘15

M2

‘16

*

M2
M1

‘4 ‘3

M1

‘2

M2

‘1 * *

 +
 +

M2

‘11

* M1 A1

M2
*

*

A1
‘13

+

‘21

M2 M1
*

*

‘14

+

M2
‘22

* M1

A1

A1

+

+

+

Figure 6.5 Fault Tolerant SDFG
DMR

 of ARF for kc = 2

EQUIVALENT CIRCUIT

‘10 ‘8

*

‘7

A1

 +

 +

*

‘20
A1

‘12

+

A1 +

A1
‘27

‘28

‘25

‘19

‘9

5

17

29

28

27

26

25

24

23

22

21

30

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

3

2

1

A1

‘26

M1

A1

A1

A1

‘23

‘6

‘5

‘24

‘18 ‘17

M1

 *
 *

*

*

 +

9

*

*

 +

* *

*

*

*

*

 +

*

*

 +

 +

 +

*

*

 +

 +

1 2

M1 M2

3 4
M1

M2 A1
5

15

M1

16

M2

 17
2 4 18

 M2

24 A1

23

A1

6

A1

7 A1

11

M1
10

M2

8
A1

12
M1

M2

13

A1

 + 14
A1

*

* 20

M1 21
M2

 +

 +

 + 28
A1

27 A1

26 A1

25 A1

22
M2 M1

66

resolution of the TFH is done until all the TFH of the whole DMR system are resolved, i.e. in

SDFG
DMR

 all:

t(v
’
)- t(v)≥ kc (6.2)

Figure 6.2 illustrates the pseudo code of the proposed MCFT algorithm.

6.2.2.3 Demonstration of MCFT using DMR

The proposed approach is explained with the demonstration of Auto Regression filter (ARF)

DFG. Figure 6.3 and Figure 6.4 shows the non fault tolerant SDFG
DMR

 and Figure 6.5 shows

the fault tolerant SDFG
DMR

 of ARF respectively based on the final explored solution of 1(+),

2(*) obtained through the proposed DSE framework. In other words, this indicates while

designing DMR schedule of ARF the operations of both the units have to simultaneously

obey the resource configurations explored by BFOA DSE. The DMR system has operations

labeled as 1, 2, … n for the original unit while the duplicate unit operations are represented as

‘1, ‘2, … ‘n, where n and ‘n are the values of maximum number of node in the particular

application. In the SDFG
DMR

 shown in Figure 6.3, the value of n is 28 for the original unit

while that of ‘n is ‘28 for the duplicate unit. Suppose if a 2-cycle fault occurs in the system,

then, the TFHs occurring in the system are first identified. TFH occur between operations

F* = 1 or 0

F = 1 or 0
Mux 1 Mux 2 Mux n

 AND

OR

O1
OG/

O1
DP

O2
OG/

O2
DP

On
OG/

On
DP

in i3 i2 i1

1 or 0

1 or 0

1 or 0

O2
OG O2

DP On
OG On

DP O1
OG O1

DP

ASP (Fault Tolerant)

NEXT

C

O

M

1

C

O

M

2

C

O

M

n

 COM

F’ = 1 or 0

G(OB) G(OA)

G(OB) = Golden output before deployment of original

G(OA) = Runtime output of original after deployment

Figure 6.6 Circuit Diagram for Voting Scheme

67

belonging to a particular operator in U
OG

 and operations performed by similar operator in

U
DP

, if the operations are not k-cycle apart. Corresponding to the Figure 6.3, list L[k]

contains hazards between 18(M2) and ‘1(M2), 17(M1) and ‘2(M1), 8(A1) and ‘5(A1) and so

on. For example, if a 2 cycle fault occurs at M1 at control step 4, whose effect continues until

step 5. Accordingly multiplier M1 may incorrectly execute operation ‘2 at step 5 in U
DP

,

thereby producing a faulty output. Therefore, in order to make the system fault tolerant (i.e.

mask the fault occurring in original) and to generate an error free output, operation ‘2

assigned to M1 of U
DP

, is pushed below into step 6 (where equation 6.2 is satisfied and

explored resource configuration is met (in this case: 1(+), 2(*))) to avoid the propagation of

2-cycle fault in the U
DP

 as well as propagation of fault from UDP to UOG (using step 10 of

algorithm in Figure 6.2). Similarly as per step 7 and 10 of the algorithm (Figure 6.2), opn ‘3

and ‘4 is scheduled in step 14 as in the prior steps either resource constraint (Xi) was being

violated or kc fault was being propagated. Figure 6.5 shows 2-cycle fault isolated SDFG
DMR

obtained through this process. This arrangement ensures that similar operators in both units

are isolated by more than 2-cycles to prevent propagation of faults from one unit to other.

6.2.2.4 Proposed equivalent circuit for a voter

Figure 6.6 shows the equivalent circuit diagram for a voter to compare the outputs of the

respective units in DMR system. The outputs are compared, in order to find whether a fault

has occurred in the system or not. If a fault has occurred in the system, the duplicate

scheduling unit obtained through the proposed algorithm always remains fault free. This

indicates the outputs of the original and duplicate scheduling unit will always have a

difference (original producing faulty output, while duplicate producing non faulty).

Therefore, the comparator units are used to perform this comparison of outputs. In case of

multiple outputs from original and duplicate the outputs of comparators are OR’ed (oring the

outputs of comparison from multiple comparators helps the system in indicating fault if

atleast one of the output is faulty i.e atleast one comparator produces a difference) and fed

Table 6.1 Output Unit Selection

F* F’ F Output

1 1 1 U
DP

1 0 0 U
OG

0 1 0 NOT VALID

0 0 0 U
OG

68

into the select line ‘F’ of the multiplexers. As seen in Table 6.1, if F = 1 (indicating fault

because of difference produced by comparators), then the output is taken from duplicate unit

else for a fault free system (F=0 indicating no difference in outputs of both units), the output

is taken from the original. This scheme described above assists in extracting the outputs from

27
‘27 28

L

A

T

C

H

Latch

Strobe A1

Enable A1

Output

Strobe A1

De-selector

A1

M

U

X

M

U

X

A

D

D

A

1

D

E

M

-

U

X

L

A

T

C

H

L

A

T

C

H

Selector A1

M

A

Latch Strobe

M1

Sel M1

Enable M1

OutputStrob

e M1

De-selector

M1

M

U

X

M

U

X

M

U

L

M

1

D

E

M

U

X

Latch Strobe

M2

Sel M2

Enable M2

OutputStrob

e M2

De-selector

M2

M

U

X

M

U

X

M

U

L

M

3

D

E

M

U

X

MUX 2:1

NEXT

STAGE

COMP COMP

OR

F

=

1

o

r

0

0 1 0 1

Circuit for

sampling the

output for next

stage

‘28

LAT

-CH

LAT

-CH

LAT

-CH

LAT

-CH

LAT

-CH

LAT

-CH

MUX 2:1

0/1

0/1

0 0 1 1

Figure 6.7 Datapath Circuit Corresponding ARF with Xi = 1(+), 2(*)

69

respective units without extra redundancy (such as TMR) and saves unnecessary clock

cycles.

Figure 6.7 shows the datapath circuit of the demonstrated fault tolerant ARF application

(Figure 6.5). The data path circuit incorporates multiplexers and demultiplexers into the

system. These multiplexing and demultiplexing units are used for representing the systems

resources with their respective inputs, outputs, the operations performed by them and the

necessary storage units along with the necessary interconnections. The empty boxes in Figure

6.7 represent the register units, required to store the inputs or the intermediate results of an

operation. The equivalent circuit of voter is represented with a dashed block. The block

contains multiplexers and comparators units to compare the outputs ((27 or ’27) and (28 or

’28)) based on the value of select line ‘F’ (either 0 or 1). Further, generating the error free

output from the system.

6.3 Proposed Evaluation Models

For evaluation of a particle (or design point), the following models have been proposed.

6.3.1 Proposed Power Model

PT
DMR

 of a resource set is represented in terms of Static Power (PS
DMR

) and Dynamic Power

(PD
DMR

). ‘PT
DMR

’ is represented as:

 DMR DMR DMR

T S DP P P  (6.3)

PS
DMR

 is a function of area of resources and leakage power per transistor. It can be

formulated as:-

1

((). ().
D

DMR

S d d c

d

P N R K R p


 (6.4)

Where ‘N(Rd)’ represents the number of instances of resource Rd. ‘K(Rd)’ represents the area

occupied by resource Rd, ‘D’ is the number of resources (FU’s) and ‘pc’ denotes the power

dissipated per area unit (e.g. transistors).

While, the average dynamic power consumed by a resource configuration is a function of

dynamic activity of the resources and can be given as:

DMR

DMR FU
D DMR

E

E
P

T
 (6.5)

Where, DMR

FUE is the total energy consumption of the resources in fault secured DMR system

and DMR

ET is the total execution time of DMR system.

70

6.3.2 Proposed Execution Time (Delay) Model

For given ‘D’ functional resources the execution time is:

' '

. 1

((),.... (), (),...... ())
n

DMR

E i n i n

c s

T Max D op D op D op D op


 (6.6)

Where, 1 ≤ i ≤ n and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate are labelled as

i and i’ respectively; n and n’ are maximum value of node); D(opn) is the delay of operation

‘n’ while c.s is the control step.

6.3.3 Proposed fitness function

The proposed fitness function is defined as:

1 2

max max

()
DMR DMR

T cons E cons
f i DMR DMR

P P T T
C X

P T
 

 
  (6.7)

Where, ()f iC X is the cost of particle with resource set Xi, max

DMRT is the maximum execution

time of a fault tolerant DMR system in design space while
max

DMRP is the maximum power of

a fault tolerant DMR system in design space.

6.3.4 Advantages of proposed scheme over existing scheme

The proposed MCFT scheme offers several novelties/ advantages over the fault tolerant

approach [32].

 The existing approach [32] employs triple modular redundancy (TMR) scheme to

make the entire schedule fault tolerant. While the proposed scheme generates a fault

tolerant schedule using double redundancy. The respective TMR obtained for ARF

benchmark through [32] is shown in Figure 6.8. However, in contrast, the proposed

1 1 M1 2 M2

2 3 M1 4 M2 5 A1

3 15 M1 16 M2 6 A1 7 A2 ‘1 M3 ‘2 M4

4 17 M1 18 M2 23 A1 8 A2 ‘3 M3 ‘4 M4 ‘5 A3

5 24 A1 10 M1 11 M2 ‘15 M3 ‘16 M4 ‘6 A3 ‘7 A4 ‘‘1 M5 ‘‘2 M6

6 9 M1 12 M2 ‘17 M3 ‘18 M4 ‘23 A2 ‘8 A3 ‘‘3 M5 ‘‘4 M6 ‘‘5 A4

7 13 A1 14 A2 ‘24 A3 ‘10 M3 ‘11 M4 ‘‘15 M5 ‘‘16 M6 ‘‘6 A4 ‘‘7 A5

8 20 M1 21 M2 ‘9 M3 ‘12 M4 ‘‘17 M5 ‘‘18 M6 ‘‘23 A3 ‘‘8 A4

9 19 M1 22 M2 ‘13 A1 ‘14 A2 ‘‘24 A3 ‘‘10 M3 ‘‘11 M4

10 25 A1 26 A2 ‘20 M3 ‘21 M4 ‘‘9 M5 ‘‘12 M6

11 27 A1 28 A2 ‘19 M1 ‘22 M2 ‘‘13 A3 ‘‘14 A4

12 ‘25 A3 ‘26 A4 ‘‘20 M1 ‘‘21 M2

13 ‘27 A1 ‘28 A2 ‘‘19 M1 ‘‘22 M2

14 ‘‘25 A1 ‘‘26 A2

15 ‘‘27 A1 ‘‘28 A2

Original unit

Duplicate unit 1

Duplicate unit 2

Note: The operation numbers above correspond to the nodes of ARF benchmark shown previously

in Figure 6.3
Figure. 6.8 SDFG

TMR
 for [32] Corresponding ARF with Xi = 5(+), 6(*) for kc = 2

71

algorithm obtains a fault tolerant schedule for ARF using DMR as shown in Figure

6.5 before. As observed from Figure 6.8, the structure obtained consumes 5(+), 6(*)

and control steps = 15 (Latency = 121.5 us); while the final fault tolerant DMR for

ARF (Figure 6.5) obtained through proposed BFOA-DSE approach occupies 1(+),

2(*) and control steps = 30 (Latency = 179.5 us). The corresponding cost of the fault

tolerant solutions calculated using equation (6.7) for proposed and [32] is -0.217 and

0.0443 respectively. This indicates a substantial improvement in final cost (quality).

 The final solutions obtained through the proposed and [32] have a significant

difference in quality (optimality). This is because the solution obtained through [32]

does not satisfy the power budget and execution time constraint specified by user.

However, the proposed approach explores (by iteratively refining through BFOA) a

solution which not only satisfies the power budget and execution time constraint

specified by user but also comprehensively minimizes the total cost of the solution.

 The proposed approach produces a fault tolerant structure using DMR (without using

conventional voter scheme) in contrast to previous fault tolerant approach [32] using

TMR.

6.4 Termination criteria

The BFOA driven exploration process has following terminating criteria:

 Terminates when a designer specified ‘Nc’ is reached.

 When no improvement is seen in global best among bacteria population over last 10

iterations (chemotactic steps).

Details on termination criteria have already been discussed in chapter 3.

Note: Results of proposed approach are explained in chapter 8 section 8.4.

6.5 Summary

The availability of faster devices is a feature of future technologies that induces major

concerns to the fault detection community for longer duration transient faults. The technology

evolution and LET of particle both play a major role in inducing multi-cycle (k-cycle)

transient fault (longer duration transient) in a device. Hence, optimizing power and delay

remains no longer sufficient now, specifically for current generation of systems which

demand designs (especially for space applications where radiation induced faults are highly

possible) that requires ability to detect errors occurring due to transient faults (such as single

event upsets). Therefore, an adaptive/intelligent system for solving the DSE problem of

multi-cycle transient fault tolerant datapath during HLS has been proposed in this chapter.

72

Chapter 7

Untrusted Third Party Digital IP cores: Power-Delay

Trade-off Driven Exploration of Hardware Trojan

Secured Datapath during High Level Synthesis

Complexity of the SoC has increased tremendously over the years. This allows us to have

more complex systems. However, the design productivity has not increased with the same

pace. Therefore, to address this issue reuse based methodology has come into context, which

will benefit in producing complex designs at a higher productivity. To design complex

systems IPs are used which increase the productivity of design. This process requires

globalization of IPs through third party vendors. That is, globalization incurs importing IPs

from various 3P vendors. But there are serious security concerns for SoC integrators, due to

involvement of untrustworthy 3P vendors supplying IP cores. During the design stage of a

3PIP, an adversary (possibly an untrustworthy vendor) can deliberately infuse a Trojan logic

resulting in malfunctioning of the digital circuit. Typically, the Register Transfer Level

(RTL) files of the modules/IPs of the library are provided by the HLS Company which it may

have imported from third party vendors as RTL files. Therefore, to have a trustworthy design

it should be ensured during HLS that any possible infection of 3PIP is detectable. Detection

process of the Trojan during design of hardware Trojan secured schedule in HLS inevitably

requires multiple redundant hardware instances from different vendors, which if not

accounted for its power and delay during fitness evaluation, may result in a secured circuit

violating user constraint.

This chapter solves the aforementioned problem and proposes an approach which

generates a low cost Trojan secured schedule during HLS. The focus on hardware Trojan

secured schedule generation during HLS has been very little with absolutely zero effort so far

in DSE of a user MO constraint optimized hardware Trojan secured schedule. The design

process of hardware Trojan secured schedule should hence administer the usage of intelligent

73

DSE strategy that is driven through user power-performance constraints for exploring an

optimized hardware Trojan secured schedule. The detail description of the proposed approach

is given in subsequent sections of this chapter.

7.1 Problem Formulation

To explore the design space of a given DFG, and determine an optimal solution

(,)i n vX R A

1 2((), (), ()... ())n d DR N R N R N R N R

1 2{ (), (), ().... (), }i d D VX N R N R N R N R A

which satisfies conflicting user constraints and minimizes the overall cost.

The problem can be formulated as:

1

F

S (Sum)

C (Carry)/

B

(Borrow)

S

A B

 Mux

Mux

 Mux

Trojan

Trojan

Trojan

0 1

0 1

0 1

An infected 1- bit adder IP present in

the module library of a HLS

tool

Note: Only when select (S) = 1 is triggered by an adversary (controlled externally), then, Trojan blocks

get activated and the adder IP starts performing subtraction resulting in functional failure. Until

triggered, it remains dormant in the system and behaves like a normal adder IP.

Figure 7.1 An Infected 1- bit Adder IP Present in Module Library of a HLS Tool

74

Find: an optimal Xi

with minimum hybrid Cos (,)DMR DMR

T Et P T

subjected to:
DMR DMR

T cons E consP P and T T  and hardware Trojan fault secured.

Where, N(Rd) is number of instances of a resource type ‘d’, DMR

TP is power consumed by a

fault secured double modular redundant (DMR) system, DMR

ET is the delay of a DMR design,

Tcons and Pcons are the user specified execution delay and power constraints while Av is the

vendor allocation procedure type (where Av = ‘1’ or ‘0’).

7.2 Proposed Methodology

7.2.1 Motivation

Let us consider a scenario to explain the problem of hardware Trojan in 3PIP and hardware

security during HLS. During HLS, an untrusted IP vendor may malevolently insert Trojan

logic into the module/IP that is used in the module library of a HLS tool. This Trojan logic

remains hidden until triggered externally by the adversary and is therefore not possible to

detect during normal RTL simulation. This is because during normal situations (when not

triggered), it behaves like a functionally correct IP. Figure 7.1 shows an example of Trojan in

a third party IP/module present in the module library of a HLS tool. Here a 1 bit adder IP

that is used in the module library of a HLS tool may behave as a subtractor IP on triggering

(through external activation by setting S = 1). The detection process of such Trojans during

HLS Library

Vendor

Details

Adder IP, Sub

IP, Comparator

IP, etc.

DSE Steps

Binding

Vendor Allocation

DMR Scheduling

User

Constraints

Fitness

Evaluation

Hardware Trojan

Detection Rules

Encoding

R
x
i = (R

n
, A

v
)

INPUT BLOCK

DFG

Possibly Trojan

Infected

HLS Flow

Datapath resource configuration

Vendor Information

DSE

METHODOLOGY

Final Low Cost

Trojan secured

Datapath

a) exploarton of

datapath(Rn)

b) efficient vendor

allocation (A
v
)

Figure 7.2 Proposed Methodology for Trojan Secured Datapath

75

HLS becomes impossible with the Trojan detection techniques applied at lower levels of

abstraction such as side channel analysis and RTL simulation.

Note: The work presented in this chapter targets Trojans in 3PIPs that affect notmal

functional output.

The detection procedure suggested in the recent literature is accomplished by having IP cores

of same functionality from different vendors. This is because different vendors will have

different implementations and it is less likely that both are Trojan infected. Even if they are,

the chances of different vendor IPs generating same output behavior is considered extremely

uncommon. However, detection process of the Trojan during design of hardware Trojan

secured schedule in HLS inevitably requires multiple redundant hardware instances from

different vendors, which if not accounted for its power and delay during fitness evaluation,

may result in a secured circuit violating user constraint. Therefore, the design process of

hardware Trojan secured schedule should govern the usage of adaptive intelligent DSE based

on user power-delay constraint as well as effective vendor allocation procedure during

scheduling. The framework to obtain Trojan secured schedule is explained in the subsequent

sections of this chapter.

7.2.2 Proposed Framework

This section presents a framework which generates a low cost optimal hardware Trojan

secured schedule based on user power-delay constraint during HLS. The framework has been

shown in Figure 7.2 Module library, behavioral description of DFG and predefined user

parametric constraints for power and time executions (or delay) are provided as inputs to the

exploration process. A set of control parameters such as ‘Nc’ (maximum number of

chemotaxis steps allowed which is the stopping criterion that indicates the maximum limit of

the iterations that the proposed approach is allowed to execute) and ‘p’ (population size) are

used for regulating the BFOA driven exploration process where ‘p’ indicates the number of

individuals/bacterium (initial design solutions) participating in the evolutionary process of

exploration.

7.2.3 DSE Framework

The DSE framework employed for generating a lost cost Trojan secured schedule during

HLS is BFOA-DSE. To solve the problem mentioned in this chapter, BFOA as DSE

framework is used to explore the design space. The framework of this algorithm provides the

flexibility to be configured in a proficient way for eliciting efficient search behavior for this

76

problem. BFOA comprises of primarily of two major steps: chemotaxis and dispersal for

locomotion of bacterium. Using locomotive mechanisms (such as flagella) bacteria can move

around in their environment, sometimes moving chaotically, and other times moving in a

directed manner, referred to as swimming. The details about BFOA-DSE have already been

explained in chapter 3.

7.2.4 Proposed Encoding

A bacterium position (candidate design solution) is labeled as Xi:

 Xi = (nR , Av) (7.1)

Where, nR indicates the resource array (resource configuration e.g. number of adders,

multipliers etc) and ‘Av’ is the vendor allocation procedure type adopted. The reason behind

+

V1
+

* *

+

*

+

+

* *

* * *

+

+

* *

+

V2

‘3

V2

V2

V1

V1

V1

V1

V1

V2

V1

V1 V2 V1
V2

V2

V2

V2

2
1

3

4

5

6

7

8

9

‘1 ‘2

‘4

‘5

‘6

‘7

‘8

‘9

Figure 7.3 IIR Filter for Av = 0; nR = 2(+), 5(*) indicating Alternate Assignment

Procedure of Two Vendor Types

+

V1
+

* *

+

*

+

+

* *

* * *

+

+

* *

+

V1

‘3

V1

V2

V1

V1

V1

V1

V1

V2

V1

V2 V2 V2
V2

V2

V2

V2

2
1

3

4

5

6

7

8

9

‘1 ‘2

‘4

‘5

‘6

‘7

‘8

‘9

Figure 7.4 IIR Filter for Av = 1;
nR = 2(+), 5(*) indicating Each Entire Unit Strictly

Assigned to Same Vendor Type (U
OG

 to ‘V1’ and U
DP

to ‘V2)

77

incorporating the last dimension with vendor allocation procedure type ‘Av’ is discussed in

later sections.

7.2.5 Motivation of using Vendor Allocation Procedure ‘Av’ in Problem Encoding

During Exploration

In order to detect hardware Trojans a minimum of two vendors are always needed to provide

distinctness. However, technique of usage of the two vendors during allocation inside the

DMR scheduling (i.e. assignment process) of each vendor IPs inside the system during

allocation) dictates the final latency and power of entire system. This is because same

resource type/IP from two different vendors has different area, power and delay. Hence,

merely using distinctive vendor assignment for detection without probing into the procedure

of allocation (assignment) of vendor type in DMR system may lead to skipping of an

alternate better solution in context of DSE of a low cost optimal Trojan secured schedule,

exploration of an additional dimension, ‘Av’ (indicating allocation procedure of IP’s from

different vendor type) which can either be ‘0’ or ‘1’ is incorporated in the bacterium

encoding along with resource array. The value of ‘Av’ as ‘0’ or ‘1’ is interpreted as follows:

7.2.5.1 Vendor Allocation Procedure (Type 1): Av = 1

 All operations of a specific unit being strictly assigned to resources of same vendor

type (say: all operations of original unit strictly assigned to same vendor ‘V1’ and all

operations of duplication to same vendor ‘V2’).

 Similar operations of both original unit U
OG

 and duplicate unit U
DP

being assigned to

different vendors.

7.2.5.2 Vendor Allocation Procedure (Type 2): Av = 0

 Alternate vendor assignment to operations in control step of a unit. (Example, in

Figure 7.3, operation 3 & 6 assigned alternatively to ‘V1’ and ‘V2’. Next multiplication

if any would have been assigned to ‘V1’ alternately).

 Similar operations of both U
OG

 and U
DP

being assigned to different vendors.

In both above cases, whenever there is a conflict of operation during scheduling between

operation of U
OG

and U
DP

, preference is given to the operation of U
OG

 during scheduling.

7.2.6 Library Assumed

It is assumed that multiplier and adder provided by vendor V1 has area = ‘2468au’ &

‘2034au’, latency = ‘10000ns’ & ‘265ns’, and energy = ‘10.0pJ’ & ‘0.80pJ’ while multiplier

78

and adder provided by vendor V2 has area = ‘2464au’ & ‘2032au’, latency = ‘11000ns’ &

‘270ns’ and energy = ‘9.8pJ’ & ‘0.739pJ’ respectively.

7.2.7 Proposed Evaluation Models

For evaluation of a particle (or design point), the following models have been proposed.

7.2.7.1 Proposed power model

Total power consumption (PT
DMR

) by a resource set is represented in terms of Static Power

(PS
DMR

) and Dynamic Power (PD
DMR

). ‘PT
DMR

’ is represented:

DMR DMR DMR

T S DP P P  (7.2)

Static power (PS
DMR

) is a function of area of resources and leakage power per transistor. It

can be formulated as:-

2

1 1

((()*))*j

n
VDMR Vj

S i i c

j i

P A R R p
 

   (7.3)

where, Ri
Vj

 is the number of instances utilized from vendor Vj for a resource type Ri, and ‘n’ is

the maximum number of instances of resource type Ri for vendor Vj while A(Ri
Vj

) is the area

of a resource type (Ri) corresponding to vendor (Vj). On the other hand, the average dynamic

power consumed by a resource configuration is a function of dynamic activity of the

resources and can be given as:

 DMR FU
D DMR

T

E
P

L
 (7.4)

Where, EFU is the total energy consumed by the resources. Note: The power component

includes power due to functional resources, interconnect units (mux and demux), comparator

(for error detection) as well as overhead incurred from internal buffering (during temporary

storage of operation output in DMR scheduling).

7.2.7.2 Proposed Delay (Latency) model

For given ‘D’ functional resources the delay is:

. (max) 2

' '

. 1 1

((),.... (), (),...... ())
c s

DMR V j V j V j V j

T i n i n

c s j

L Max D op D op D op D op
 

   (7.5)

Where, 1≤i≤ n and ‘1≤ ‘i ≤ ‘n. (Here, operations in original and duplicate is labeled as i and

‘i respectively; n and ‘n = maximum number of operations in original and duplicate unit).

79

Here, D(opi
Vj

) is the delay of operation i, assigned to vendor Vj, c.s represents control steps,

while c.s(max) is the maximum number of control steps in a schedule.

7.2.7.3 Proposed Cost model

The proposed fitness function (considering total delay and power consumption of a solution)

is defined as:

 1 2

max max

()
DMR DMR

T cons T cons
f i DMR DMR

P P L L
C X W W

P L

 
  (7.6)

Where, Cf(Xi) is the cost of bacterium with resource set Xi, Pmax
DMR

 and Lmax
DMR

 are the

maximum power and delay of the DMR system and W1 and W2 are the user defined weights

both kept at ½ during exploration to provide equal preference.

7.2.8 Demonstration

For a resource set nR = 2(+), 5(*), there are two possible DMR schedules generated for IIR

filter benchmark on the basis of Av = 0 and 1, as seen in Figure 7.3 and 7.4. More specifically,

for Rx = (2(+), 5(*), 0), the latency is: 23,080ns and power is: 0.58mW; while, for Rx = (2(+),

5(*), 1), the latency is: 22,080ns and power is: 0.88mW. Clearly, a difference is observed in

the delay and power of the two generated scheduling solutions both abiding by distinct

vendor type assignment to similar operations for detect ability. The schedules generated in

Figure 7.3 and 7.4 are both hardware Trojan fault secured (with two vendor needed),

however, one is better than the other in different parameter. Only using distinct vendor

assignment without probing into the procedure of allocation of vendor type in DMR system

may lead to missing of better alternative (or optimal) solution in context of DSE. Therefore,

in context of DSE, it is worth to explore the additional dimension ‘Av’ incorporated in the

proposed bacterial encoding.

7.3 Termination Criteria

The BFOA driven exploration process has following terminating criteria:

 Terminates when reached designer specified ‘Nc’ (maximum chemotactic steps).

 When no improvement is seen in global best among bacteria population over last 10

iterations (chemotactic steps).

Details on termination criteria have already been discussed in chapter 3.

80

Note: Results of the proposed method are given in chapter 8 section 8.5.

7.4 Summary

Due to globalization, there have been serious concerns on the security and trustworthiness of

3PIPs , rendering the IP susceptible to possible hardware threats. To provide secure

information processing through digital ICs within user constraints and to ensure

trustworthiness while designing a low cost optimized DMR, Trojan secured HLS

methodology is crucial. This chapter presented a novel low cost Trojan security aware HLS

methodology. The approach explores efficient vendor allocation procedure within the

proposed DSE framework. It also provides a significant reduction in the cost of security

aware HLS solution in comparison to similar prior work.

81

Chapter 8

Results and Analysis

This chapter describes the complete experimental results of the proposed methodologies for

DSE described in previous chapters. This chapter divided into five sections where each

section present results of the respective methodology. The sections are as follows:

8.1 Experimental Results: Adaptive Bacterial foraging driven Datapath

Optimization: Exploring Power-performance Trade-off in High level

synthesis

This section describes the experimental results of the proposed approach explained in Chapter

3 and the improvements obtained compared to recent approach [20, 21]. The proposed

approach has been implemented in java and run on Intel Core-i5-3210M CPU with 3MB L3

cache memory and 4GB DDR3 primary memory. The processor has frequency of 2.5 GHz.

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1,

45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1,

98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle

problems of any size. Many large size benchmarks have also been tested through our

approach. The library is given in chapter 3 Table 3.1.

Experimentation is carried out considering two aspects:

 Analysis of variation of multiple BFOA parameters and their impact on the BFOA

driven DSE performance.

 Comparison of BFOA-DSE with previous DSE approaches in terms of Quality of

Results (for cost) and exploration time of the process.

The QoR is calculated as:

max max

1

2

T EP T
QoR

P T

 
  

 
 (8.1)

8.1.1 Analysis of Proposed BFOA-DSE with variation of multiple BFOA parameters

In this section multiple internal BFOA parameters are varied and their impact on the

results of proposed approach for selected benchmarks is noted. The bacterium size ‘p’ and the

82

step size (C(i)) parameters are varied and results are analyzed on the basis of quality of

results, convergence time and exploration time of the proposed DSE. The quality of solution

found and its comparison with other DSE approaches will be discussed in the next

subsection.

Table 8.1 Comparison of QoR and Exploration Time with respect to Bacterium size (p) for the

Proposed Approach

Benchmark [45, 86,

98, 99, 100]

Problem size of

Benchmarks in

terms of Nodes

Bacterium

Size (p)
Cost

Convergence

Time

Exploration

time

JPEG

DOWNSAMPLE
33

3 -0.281 203 624

5 -0.281 510 1220

7 -0.281 700 1505

JPEG IDCT2 112

3 -0.372 34100 71510

5 -0.372 73475 126595

7 -0.371 182720 252425

IDCT 42

3 -0.301 1635 4310

5 -0.301 2915 6725

7 -0.301 4295 8695

FEEDBACK

POINTS
41

3 -0.340 4134 12714

5 -0.340 8545 13420

7 -0.340 9235 15200

ARF 28

3 -0.239 540 2500

5 -0.239 2800 5035

7 -0.239 5035 8725

BPF 29

3 -0.296 475 1140

5 -0.296 835 1330

7 -0.296 1165 2085

FIR 23

3 -0.268 155 565

5 -0.268 330 1145

7 -0.268 675 1675

MESA MATRIX

MULTIPLICATION
84

3 -0.342 26675 51375

5 -0.342 92424 126532

7 -0.342 118605 160453

83

8.1.1.1 Bacterium size, p

In the proposed approach (BFOA-DSE), the bacterium size and configuration chosen is able

to comprehensively cover a design space. Generally, larger the bacterium size ‘p’, larger will

be the coverage of exploration of the design space in each iteration. However, during

experimentation of different benchmarks it was found that best size of bacterium for

Table 8.2 Impact in the Variation of Step Size (C(i)) on the Performance of Proposed DSE

Benchmarks [45,

86, 98, 99, 100]

C(i)=C(i)+1 C(i)=C(i)+2

Configuration
Convergence

Time(ms)

Exploration

Time(ms)

Convergence

Time(ms)

Exploration

Time(ms)

JPEG

DOWNSAMPLE
312 (p=3) 687 (p =3) 203 (p =3) 624 (p =3) 3(*), 1(+)

JPEG IDCT2 85929 (p =5)
195481 (p

=5)
73475 (p =5)

126595 (p

=5)
7(*), 1(+)

IDCT 1605 (p =3) 4320 (p =3) 1635 (p =3) 4310 (p =3) 3(*), 1(+)

FEEDBACK

POINTS
7845 (p =3)

11520 (p

=3)
4134 (p =3)

12714 (p

=3)
6(*), 1(+)

ARF 2106 (p =3) 4602 (p =3) 540 (p =3) 2500 (p =3) 3(*), 1(+)

BPF 780 (p =3) 3120 (p =3) 475 (p =3) 1140 (p =3) 4(*), 1(+)

FIR 421 (p =3) 1934 (p =3) 155 (p =3) 565 (p =3) 3(*), 1(+)

MESA MATRIX

MULTIPLICATION
50115 (p =3)

80392 (p

=3)
26675 (p =3)

51375 (p

=3)
6(*), 1(+)

0

20000

40000

60000

80000

100000

C
o

n
v

e
r
g

e
n

c
e

T
im

e
 (
m

s
)

Benchmarks

Comparison of Convergence Time (mS)

C(i)=C(i)+1

C(i)=C(i)+2

Figure 8.1 Comparison of Convergence Time with respect to

Step Size C(i)

84

proposed BFOA-DSE is p= 3 for most of the benchmarks. Had the design space been even

larger (or a very large size application), the advantage of having a large size ‘p’ would had

been visible. During the experiment, the results have been evaluated for three different

bacterium size, i.e for p = 3, 5 and 7.

The results are shown in the Table 8.1. As evident from the results for most benchmarks, the

best balance between achieving the fast exploration speed and having an optimal solution is

obtained at the bacterium size ‘p’ = 3. The primary selection criteria was low cost (or high

quality) solution. However, if the results found for different bacterium size ‘p’ were found to

be same, then the bacterium size for which the fastest convergence (and exploration) was

obtained was selected. However, there are some cases, for the larger size benchmarks like

JPEG IDCT2, better solutions are obtained at the bacterium size p = 5. This behavior for the

particular benchmark is due to the ability of attaining an optimal solution with more bacteria

initialized (p=5) over the design space.

As evident from the Table 8.1, it can be stated that a faster convergence is achieved for

smaller bacterium size as compared to the larger ones. Also, as the bacterium size increases

the exploration time also increases, since the number of bacteria per iteration increases,

thereby, increasing the computation complexity per iteration. The underlined bacterium size

‘p’ indicates the selected size which yields the most efficient results in terms of quality

(followed by small exploration time if the quality remains same). Therefore, after analyzing

the results it can be observed that for the tested benchmarks, the quality of results obtained

after varying the bacterium size indicates that in most of the cases faster convergence and

exploration of an optimal solution is achieved at smaller bacterium size.

8.1.1.2 Step size, (C(i))

During experimentation, the impact in the variation of step size on the performance of

proposed DSE has been investigated. The first variation is a step size C(i) = C(i) + 1 while

the other is a step size C(i) = C(i) + 2. The effect of these variations is evaluated on the basis

of convergence time exploration time and resource combination found. Table 8.2 shows the

results obtained after varying the step size for the tested benchmarks. the variations in C(i) do

not have any impact on the quality of result found(which is evident from the fact that

resultant resource configuration found is same for both C(i) = C(i) +1 and C(i) = C(i)

+2)).However, the convergence time and exploration time for step size C(i) = C(i) +1 is

higher compared to the step size of C(i)= C(i) +2. This behavior is due to the fact when the

step size is small (i.e. varied with a change of one unit), the exploration process consumes

85

more time to achieve an optimal solution as the chances of occurrence of repetitive

configurations is higher (when C(i) = C(i) +1 is substituted in equation (3.9) during

chemotaxis). On the contrary, with a bigger step size (i.e. C(i) = C(i) +2), the exploration

ability of the algorithm is better resulting in new (changed) configurations during chemotaxis.

The difference in step size only impacts the time to converge and not the quality (i.e. final

configuration found). However, there is some exception to this observation as obtained for

IDCT benchmark, where the convergence time for step size C(i) = C(i) +1 is found lesser

than the convergence time of step size C(i) = C(i) +2. This is a special case, where at C(i) =

C(i) + 1), the most optimal solution (1(+), 3(*)) was explored at a very early stage (at

chemotactic step j= 2) from a bacterium position (1(+),1(*)). While at C(i) = C(i) +2, due to

higher step jump, the chemotaxis function(eqn. (11)) from a bacterium position (1(+),1(*))

skips the optimal solution lying in between to reach a new bacterium position (2(+),3(*)).

Therefore, the optimal solution (1(+), 3(*)) was attained after few more evaluations at j =5.

This is an example where the exploitation ability of the algorithm (using small step size) has

better productivity than the exploration ability (using bigger step size). Figure 8.1 and 8.2

shows the graphical representation of the variation of convergence time and exploration with

the change in step size.

8.1.2 Comparison of BFOA-DSE with Previous DSE Approaches

This subsection describes the comparison of proposed BFOA-DSE with various previous

approaches [20] and [21]. Based on these parameter selections, the detailed results for power

0

50000

100000

150000

200000

250000

E
x

p
lo

ra
ti

o
n

 T
im

e
(m

s)

Benchmarks

Comparison of Exploration Time (mS)

C(i)=C(i)+1

C(i)=C(i)+2

Figure 8.2 Comparison of Exploration Time with respect

to Step Size C(i)

86

and execution time for the proposed approach are reported in Table 8.3. As evident from

Table 8.3, the proposed approach has been comprehensively able to minimize and satisfy the

specified constraints. For example, in case of IDCT, the explored solution, (3(*), 1(+)),

consumes a power of 0.28mW and execution time of 32ms which substantially minimizes

Table 8.3 Results of Estimated Power and Execution Time using Proposed Approach for DFGs

Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of population size,p

=3 or 5 Nc = 120, Nre = 5, Ned = 4

Benchmark [45, 86, 98, 99,

100]

Resources

found

Execution Time Power

Constraint
Proposed

solution
Constraint

Proposed

solution

JPEG

 DOWNSAMPLE
3(*), 1(+) 21ms 10ms 0.45mW 0.28mW

JPEG IDCT2 7(*), 1(+) 207ms 43ms 1.655mW 0.57mW

IDCT 3(*), 1(+) 86ms 32ms 0.45mW 0.28mW

FEEDBACK

POINTS
6(*), 1(+) 108ms 21ms 0.9mW 0.50mW

ARF 3(*), 1(+) 110ms 54ms 0.4mW 0.27mW

BPF 4(*), 1(+) 89ms 11ms 0.3mW 0.35mW

FIR 3(*), 1(+) 48ms 31ms 0.59mW 0.27mW

MESA MATRIX

MULTIPLICATION
6(*), 1(+) 240ms 65ms 1.125mW 0.49mW

Table 8.4 Comparison Of Proposed Approach With [20] in Terms of Exploration Time and

Cost

Benchmark [45, 86,

98, 99, 100]

Resource Configuration Exploration Time QoR (cost)

BFOA [20] BFOA [20] BFOA [20]

JPEG

DOWNSAMPLE
3(*), 1(+) 1(*),1(+) 0.624 sec 13.65sec 0.31 0.51

JPEG IDCT2 7(*), 1(+) 4(*), 3(+) 126.5 sec 110.6sec 0.22 0.30

IDCT 3(*), 1(+) 2(*), 2(+) 4.31sec 12.6sec 0.21 0.37

FEEDBACK

POINTS
6(*), 1(+) 3(*), 1(+) 12.71sec 25.6sec 0.20 0.29

ARF 3(*), 1(+) 4(*), 1(+) 2.5sec 14.3sec 0.32 0.35

BPF 4(*), 1(+) 2(*), 1(+) 1.14sec 10.54sec 0.27 0.43

FIR 3(*), 1(+) 4(*), 4(+) 0.565sec 8.2sec 0.30 0.38

MESA MATRIX

MULTIPLICATION
6(*), 1(+) 3(*), 2(+) 51.3sec 11.65sec 0.18 0.51

Average reduction in Run Time

w.r.t [20] =4 %

Average reduction in cost

w.r.t [20] = 35.98%

87

power and execution time as well as satisfies the user constraints specified. Similar results

were obtained for other benchmarks. During experimentation, for proposed BFOA driven

DSE, the following settings were maintained based on inferences drawn from the results

obtained in section 8.1.1.1 and 8.1.1.2 : φ1= φ2=0.5, p= 3 or 5, Nc = 120, Nre = 5, Ned = 4.

8.1.2.1 Comparison with [20]

The proposed approach when compared with [20] gave substantially better results. As evident

from theTable 8.4, the exploration time of proposed approach is much lesser than the [20]

approach. Also, there is a substantial improvement in the quality of result obtained in case of

Table 8.5 Comparison Of Proposed Approach With [21] in Terms of Exploration Time

 and Cost

Benchmark

Resource Configuration Exploration Time QoR (cost)

BFOA [21] BFOA [21] BFOA [21]

JPEG

DOWNSAMPLE
3(*), 1(+) 2(*), 2(+) 0.624 sec 27.8 sec 0.31 0.54

JPEG IDCT2 7(*), 1(+) 9(*), 2(+) 126.5 sec 14.2 min 0.22 0.26

IDCT 3(*), 1(+) 1(*), 8(+) 4.31sec 5.08min 0.21 0.69

FEEDBACK

POINTS
6(*), 1(+) 9(*), 5(+) 12.71sec 1.26min 0.20 0.32

ARF 3(*), 1(+) 1(*), 8(+) 2.5sec 3.50min 0.32 0.85

BPF 4(*), 1(+) 1(*), 3(+) 1.14sec 2.08min 0.27 0.64

FIR 3(*), 1(+) 8(*), 1(+) 0.565sec 43.7sec 0.30 0.36

MESA MATRIX

MULTIPLICATION
6(*), 1(+) 9(*), 1(+) 51.3sec 6.57 min 0.18 0.21

Average reduction in Run Time

w.r.t [21] =90 %

Average reduction in cost

w.r.t [21]= 48 %

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
 o

 R

Benchmarks

Comparison of QoR

BFOA [20]

Figure 8.3 Comparison of QoR between BFOA-DSE and [20] Approach

88

the proposed approach. However, there are some cases where a higher exploration time is

encountered. For JPEG IDCT2 the proposed approach has higher exploration time compared

to [20]. This behavior is due to the large size of the benchmark. Though the exploration time

for JPEGIDCT2 is slightly higher than the existing approach [20], nevertheless, the QoR cost

of the obtained solution (7(*), 1(+)) obtained through the proposed approach is significantly

better than [20]. This trend of better QoR has been observed for all the tested benchmarks.

Figure 8.3 shows the comparison of QoR (cost units) between the proposed approach

(BFOA-DSE) and the [20] approach. After experimentation, it has been found that there is an

average improvement in QoR of 35% and in exploration time of 4% as shown in Table 8.4.

8.1.2.2 Comparison with [21]

Table 8.5 shows the comparison of [21] with the proposed BFOA driven DSE approach.

From the Table 8.5 it is evident that the exploration time of [21] is multiple times higher than

the proposed approach. Also, proposed approach achieves a better QoR factor in comparison

to [21] for most of the benchmarks. The average improvement in QoR is more than 48% and

an average reduction of 90% is attained in exploration time as shown in Table 8.5.

Figure 8.4 shows the graphical representation of the comparison of QoR (cost units) between

proposed methodologies and [21].

8.1.2.3 Comparison Based on Performance Metrics.

Table 8.6 presents the analysis of the proposed and existing approaches ([20] and [21] driven

DSE) on the performance metrics. To evaluate the effectiveness of multi objective

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Q
 O

 R

Benchmarks

Comparison of QoR

BFOA [21]

Figure 8.4 Comparison of QoR between BFOA-DSE and [21] Approach

89

optimization algorithms, the metrics viz. GD, MFE, S, D and Wm are required to

demonstrate how close the obtained solutions have converged to the true Pareto-optimal front

[88]. It can be stated that a good optimization algorithm generates solutions close to the true

Table 8.6 Comparison Of Proposed DSE Approach With [20] and [21] in Terms of Quality

Metrics and QoR

Approach GD MFE Spacing (S) Spread (Δ)
Weighted

Metric (Wm)

JPEG DOWNSAMPLE

Proposed 0.000 0.599 0.052 0.937 0.408

[20] 0.571 1.050 0.000 0.742 0.656

[21] 0.198 0.636 0.000 0.636 0.417

JPEG IDCT2

Proposed 0.000 0.984 0.133 0.869 0.430

[20] 0.031 0.954 0.000 0.710 0.370

[21] 0.004 1.007 0.000 0.830 0.417

IDCT

Proposed 0.000 0.627 0.027 0.830 0.415

[20] 0.097 0.452 0.241 0.869 0.483

[21] 0.689 1.743 0.000 0.866 0.778

FEEDBACK POINTS

Proposed 0.000 0.855 0.110 0.785 0.392

[20] 0.087 0.718 0.000 0.795 0.441

[21] 0.025 0.951 0.041 0.894 0.460

ARF

Proposed 0.000 0.604 0.008 0.585 0.292

[20] 0.021 0.670 0.000 0.916 0.468

[21] 0.510 1.574 0.122 0.918 0.714

BPF

Proposed 0.000 0.47 0.107 0.670 0.335

[20] 0.199 0.722 0.000 0.996 0.598

[21] 0.599 1.448 0.007 0.867 0.733

FIR

Proposed 0.000 0.707 0.072 0.586 0.293

[20] 0.044 0.986 0.000 0.618 0.331

[21] 0.057 0.890 0.000 0.903 0.480

MESA MATRIX MULTIPLICATION

Proposed 0.000 0.887 0.058 0.774 0.387

[20] 0.033 0.959 0.091 0.941 0.487

[21] 0.002 0.931 0.045 0.903 0.452

90

Pareto-optimal front as well as solutions that span the entire Pareto-optimal region uniformly.

The GD metric is used to measure the convergence of solutions towards the Pareto-optimal

front. Further, metrics which quantify the diversity among obtained non-dominated solutions

are spacing and spreading. Spacing is the measure of relative distance between consecutive

nondominated solutions. On the other hand, spread accounts to the diversity of the non-

dominated solutions with respect to the extremities of the Pareto-solution set. An algorithm,

finding smaller values of both is able to find better diverse set of nondominated solutions. In

addition, Wm provides a combined qualitative measure of both closeness and diversity of the

solutions. An algorithm having an overall small value of Wm is good in both aspects. As

seen, the GD is zero for almost all benchmarks revealing that the proposed approach lies on

the true Pareto front compared to [20] and [21]. In some cases, spacing is either zero, or very

lower indicating that there is a uniform distribution of Pareto point on the curve. Also, the

weighted metrics is lower for the proposed approach compared to [20] and [21] indicating

better results obtained for all benchmarks.

91

8.2 Experimental Results: Automated Design Space Exploration of Multi-

Cycle Transient Fault Detectable Datapath based on Multi-Objective

User Constraints for Application Specific Computing

This section describes the experimental results of the proposed approach explained in Chapter

4 and the improvements obtained compared to recent approach [28, 30]. The proposed

MCFD-DSE as well as [28, 30] has been implemented in java and run on Intel Core-i5-

3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and processor

frequency of 2.5 GHz. An average of 10 runs was reported for the proposed DSE with equal

weightage to both user objectives of power and delay (Ø1= Ø2= ½) during experimentation.

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample [1,

45], JPEG IDCT2 [98], IDCT [99], Feedback Points [1, 98], ARF [45, 100], BPF [1], FIR [1,

98, 86], and MESA Matrix Multiplication [86, 45]. The proposed approach can handle

problems of any size. The library is given in chapter 3 Table 3.1. This section discusses the

following:

 Results of proposed approach for multi-cycle fault values in terms of delay and power

user constraints.

 Comparative results of the proposed methodology and existing fault detectable

approach [28, 30] in terms of resource solution found and cost of solutions. The user

specified weightage of both metrics viz. power and execution time are both kept at ½

during exploration to provided equal preference.

8.2.1 Results of Proposed Approach for kc = 10

Table 8.7 illustrates the results obtained for our proposed DSE of fault detectable datapath

based on 10-cycle faults i.e. kc = 10. It can be seen from results, the proposed approach

comprehensively meets the user constraints of delay and power (and minimizes cost) for all

benchmarks. This section provides the capability of the proposed approach to reach high

quality solutions for transient fault of high strengths (kc = 10) that satisfy the conflicting

multi-objective user constraints as well as minimizes the hybrid cost function. There have

been no previous works which report the results of exploration of power-execution time

constraint driven fault detectable datapath system for single and multi-cycle fault strength.

Further, the solutions obtained for the tested benchmarks are real optimal solutions which

were verified by comparing with the golden solutions found by exhaustive analysis.

92

8.2.2 Comparison of Proposed Approach

As seen from Table 8.8, the proposed approach when compared with existing approaches

gave better results. The existing approaches provide fault security however with no provision

of guaranteeing that the solution abides the user budget of power and delay. This is due to the

fact that [28], [30] are not able to generate a fault secured schedule for any number of

resource instance (say single instance of each resource type). They at least need two instances

of a resource type due to the compulsion of distinct hardware allocation. So, for a user which

requires a transient fault secured datapath at the lowest hardware area (say single instance),

approach [28] and [30] both will not be able to design one. Table 8.8 indicates the cost

improvement of the proposed approach over [28] and [30] for various benchmarks for kc = 1

(as multi cycle transient faults are not handled by [28] & [30]). As evident, the cost of final

solution through proposed approach is significantly lower than [28] & [30].

Table 8.8 Comparison of Proposed Approach with Approach [28] and [30] for kc=1

Benchmark
[45, 86, 98,

99, 100]

Resource Set
(proposed)

Resource
Set
[30]

Resource
Set [28]

Cost
(proposed)

Cost
[30]

Cost
[28]

IIR 1(+), 2(*) 1(+), 3(*) 2(+), 4(*) -0.12 -0.092 -0.010

BPF 1(+),2(*) 2(+), 2(*) 4(+), 4(*) -0.137 -0.084 0.0467

MPEG MV 1(+), 4(*) 3(+), 7(*) 6(+), 14(*) -0.238 -0.168 0.056

ARF 1(+), 2(*) 4(+), 2(*) 4(+), 4(*) -0.181 -0.061 -0.094

DCT 4(+), 2(*) 4(+), 2(*) 7(+), 4(*) -0.14 -0.122 -0.045

FIR 3(+), 2(*) 4(+), 4(*) 6(+), 6(*) -0.116 -0.115 -0.051

WDF 2(+), 2(*) 2(+), 2(*) 4(+), 3(*) -0.193 -0.161 -0.141

Table 8.7 Results of Proposed Fault Secure DSE approach for kc = 10

Benchmark

[45, 86, 98,

99, 100]

Resource

set

Tcons

(us)

TE
DMR

(us)

Pcons

(mW)

PT
DMR

(mW)

IIR 1(+), 2(*) 70 57.1 0.3 0.238

BPF 1(+),2(*) 175 138.7 0.3 0.238

MPEG MV 1(+), 4(*) 170 82.67 0.7 0.405

ARF 1(+), 2(*) 220 178.7 0.45 0.23

DCT 4(+), 2(*) 210 143.8 0.5 0.45

FIR 3(+), 2(*) 100 78.6 0.6 0.46

WDF 2(+), 2(*) 172 126.1 0.4 0.3

93

8.3 Experimental Results: Multi-Cycle Single Event Transient Fault

Security Aware MO-DSE for Single loop CDFGs in HLS

This section describes the experimental results of the proposed approach explained in Chapter

5 and the improvements obtained compared to recent approach [30]. The proposed approach

has been implemented in java language on Intel core i5-2450M processor with 3MB L3 cache

memory and 4GB DDR3 primary memory. The processor frequency is 2.5 GHz. Various

HLS benchmarks were chosen for experimentation such as FIR [45], FFT [86, 100],

DIFFERENTIAL EQUATION [45, 96, 100], MPEG MV[98, 99] , ARF [45, 86], WDF[45,

86]. The proposed approach can handle problems of any size. This section discusses the

results in four phases:

 Variation of exploration time with change in swarm size

 Variation of exploration time with inertia weight

 Results of the proposed approach in terms of area occupied and execution delay of the

final solution along with its associated final cost

 Comparison of proposed approach with [30] in terms of solution explored and final

cost.

8.3.1 Effect of swarm size (p) Variation on Exploration Time

A larger swarm size covers larger design space during one iteration step (with a chance to get

a better result) but is simultaneously subjected to increase in exploration time because of

larger number of particles as well as greater computational complexity per iteration. On the

contrary, a smaller swarm size needs more iteration to explore a better result for larger

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on

exploration time are reported. (Note:-based on this analysis, the selected swarm sizes for

benchmarks used as our base line parameter are underlined).

Table 8.9, presents the increase in exploration time with the increase in swarm size at

the cost of no improvement in the final explored solution. In other words, final solution

explored is optimal for all different swarm sizes. However, exploration time increases due to

increase in computation complexity per iteration. As evident from Table 8.9, the best tradeoff

between fast exploration and searching optimal solution can be obtained by setting p =3. For

example, in case of MPEG MV, p = 3 gives a minimum exploration time of 16482 ms in

comparison to p =5 and 7.

94

8.3.2 Results of Variation of Exploration Time with Inertia Weight

Inertia weight controls to the exploration drift process of the particle by weighing the

involvement of the previous exploration drift. During the experiment, the following three

variations of ‘ɷ’ have been analysed and its impact on the performance of exploration

process has been reported:

 Linearly decreasing ‘ɷ’ in every iteration between [0.9- 0.1] throughout the

exploration process.

 b) A constant value of ɷ = 1 throughout the exploration process.

 c) A constant value of ɷ = 0.5 throughout the exploration process.

Table 8.9 Variation of Exploration Time with Swarm Size (p) in ms

Benchmark [45, 86,

98, 99, 100] p =3 p =5 p =7

FIR 1216 1621 1853

FFT 3999 6370 7496

Differential 1819 1924 2415

MPEG MV 16482 24624 31604

ARF 17666 29993 43515

WDF 10911 17299 24781

 Table 8.10 Exploration Time vs. Inertia Weight (at p =3)

Benchmark [45, 86,

98, 99, 100]

Linearly

decreasing

(ms)

ω=0.5 (ms) ω =1.0 (ms)

FIR 1216 1259 1514

FFT 3999 4810 4827

Differential 1819 1776 1872

MPEG MV 16482 17194 18484

ARF 17666 19670 18881

WDF 10911 11736 11624

95

As evident from Table 8.9, for all benchmarks the exploration time of proposed fault

detectable DSE process is generally better with linearly decreasing value of ‘ɷ’. For instance

in Table 8.9, exploration time for FFT in case of linearly decreasing inertia weight (from 0.9

to 0.1) is 3999 ms and is much less as compared to exploration time of 4810mS and 4827 ms

attained in constant inertia weight (ɷ =0.5 and ɷ =1). Similar trend is observed for other

benchmarks. Further, in case of ARF, the exploration time for finding the optimal solution is

17666 ms when ‘ɷ’ is linearly decreased between [0.9 – 0.1] compared to 19670ms and

18881ms when ‘ɷ’ = 0.5 and ‘ɷ’ = 1 respectively as shown in Table 8.10.

8.3.3 Results of the proposed approach

As evident from Table 8.11 and 8.12 the solution explored by the proposed approach

comprehensively meets the user defined constraints for power and execution time as well as

Table 8.11 Experimental Results of the Proposed Approach for kc = 1

Benchmark

[45, 86, 98,

99, 100]

Final solution Acons AT
DMR

Tcons

(us)

TE
DMR

(us)
Cost

FIR 2(+),3(*),1(<),UF=2 23058 16506 78.54 46.24 -0.208

FFT 2(+),2(-),4(*),1(<),UF=1 53739 36638 273.14 184.4 -0.218

Differential 1(+),2(-),5(*),1(<),UF=1 36379 24976 308.7 137.6 -0.262

MPEG MV 1(+), 4(*) 24000 13776 170 82.67 -0.240

ARF 1(+), 2(*) 15500 8092 220 178.7 -0.179

WDF 2(+), 2(*) 14000 10500 172 125.3 -0.196

 Table 8.12 Experimental Results of the Proposed Approach for kc = 4

Benchmark

[45, 86, 98,

99, 100]

Final solution Acons AT
DMR

Tcons

(us)

TE
DMR

(us)
Cost

FIR 1(+),4(*),1(<),UF=2 23058 16940 78.54 49.6 -0.189

FFT 3(+),2(-),3(*),1(<),UF=2 53739 36638 278.78 186.08 -0.222

Differential 1(+),2(-),6(*),1(<),UF=1 36379 27440 308.7 139.84 -0.238

MPEG MV 1(+), 4(*) 24000 13776 170 82.67 -0.24

ARF 1(+), 2(*) 15500 8092 220 178.7 -0.179

WDF 2(+), 2(*) 14000 10500 172 125.3 -0.196

96

minimizes the hybrid cost. The proposed approach was evaluated both for single cycle faults

and multi cycle faults. (i.e. kc = 1and kc = 4). Further, the solutions obtained for the tested

benchmarks are real optimal solutions which were verified by comparing with the golden

solutions found by exhaustive analysis. For exploration, a swarm size of 3 was used also the

acceleration coefficients were initialized to 2.0.

8.3.4 Comparison of proposed approach

The proposed approach has been compared with fault secured approach [28] in terms of final

solution for faults secured DMR and its associated cost. Table 8.13 indicates the

improvement in final solution cost of the proposed approach obtained over [28] for various

benchmarks at kc = 1 (Note: kc = 1 is only considered during comparison as multi cycle

transient faults are not handled by [28]). As evident, the cost of final solution found through

proposed approach is significantly lower than [28].

Table 8.13 Variation of Proposed Approach with [28]

Note: For proposed approach Φ1 = Φ 2 = 0.5 in the fitness function

Benchmark

[45, 86, 98,

99, 100]

Final solution

(proposed)

Final solution

[28]

Cost

proposed

Final

Cost [28]

FIR
2(+),3(*),

1(<),UF=2

2(+), 4(*),

1(<),UF=8
-0.208 -0.121

FFT
2(+),2(-),

4(*),1(<), UF=1

4(+), 2(-),4(*),

1(<),UF=3
-0.218 -0.15

Differential
1(+),2(-),

5(*),1(<), UF=1

2(+), 2(-),4(*),

1(<),UF=4
-0.262 -0.123

MPEG MV 1(+), 4(*) 3(+), 7(*) -0.24 -0.168

ARF 1(+), 2(*) 4(+), 2(*) -0.179 -0.061

WDF 2(+), 2(*) 2(+), 2(*) -0.196 -0.161

97

8.4 Experimental Results: Bacterial Foraging Driven Exploration of Multi

Cycle Fault Tolerant Datapath based on Power-Performance Tradeoff

in High Level Synthesis

This section describes the experimental results of the proposed approach explained in Chapter

7 and the improvements obtained compared to recent approaches [28, 32]. The proposed

MCFT BFOA-DSE and the approaches compared with [28, 32] all have been implemented

in java and run on Intel Core-i5-3210M CPU with 3 MB L3 cache memory and 4 GB DDR3

primary memory during experimentation. The processor has frequency of 2.5 GHz.

Experimentation was done for various HLS benchmarks such as IIR Butterworth filter [86],

BPF[98,86], MPEG MV [45], ARF [45, 100], DCT [99], FIR [45, 100], WDF [86, 45]. The

proposed approach can handle problem of any size. The library is given in chapter 3 Table

3.1.

From the results it has been observed that, the proposed approach has always yielded

optimal results for all tested applications. Also, the results generated are fault tolerant in

nature. This chapter covers the following details:

 Results and comparison of proposed algorithm and existing approach [28, 32],

generated by varying the kc fault value.

 Comparison of MCFT-BFOA-DSE with previous Fault tolerant approaches in terms

of Quality of Results and resource set utilized.

The QoR is calculated as:

max max

1

2

DMR DMR

T E

DMR DMR

P T
QoR

P T

 
  

 
 (8.2)

8.4.1 Pre-tuning of Parameters

During experimentation, following settings were made for fault tolerant approach of design

exploration: φ1= φ2=0.5, p = 3, Nc = 120, Ned = 5.

8.4.2 Comparison of Proposed Approach with [32]

This section describes the results obtained by comparing the proposed approach with existing

approach [32].

98

8.4.2.1 Analysis of Results by Varying kc Value

The proposed approach when compared with [32] for different kc values, gave substantially

better results in terms of cost of solutions and the resource solutions obtained. Table 8.14,

illustrates the results obtained by making the design system tolerable to 1-cycle faults i.e., for

kc = 1. As evident from Table 8.15, the applications when tested through the proposed

approach require less hardware usage than the existing approach [32]. In [32], the hardware

usage is almost (sometimes more than) tripled for most of the applications. For instance, in

BPF application, the proposed approach generated 1(+), 2(*) as the final solution, which has

Table 8.14 Results of Proposed Fault Tolerant DSE Approach for kc = 1

Benchmark

[45, 86, 98, 99,

100]

Tcons

(us)

TE
DMR

(us)

Pcons

(uW)

PT
DMR

(uW)
Cost

IIR 66.00 55.00 308.90 205.96 -0.151

BPF 173.00 149.70 301.19 205.59 -0.155

MPEG_MV 165.00 82.90 727.78 352.25 -0.276

ARF 220.00 179.50 450.97 205.93 -0.217

DCT 207.00 154.54 450.37 384.65 -0.132

FIR 108.00 89.60 596.19 325.20 -0.180

WDF 172.00 137.60 330.00 265.19 -0.145

Table 8.15 Comparison of Proposed Approach with [32] in Terms of Resource

(Hardware) Utilized for Fault Tolerant Datapath for (kc = 1)

Benchmark [45,

86, 98, 99, 100]

Resource

found [32]

kc = 1

Resource

utilized

kc = 1

% reduction in

area

IIR 3(+), 5(*) 1(+), 2(*) 62.5

BPF 6(+), 5(*) 1(+),2(*) 72.7

MPEG_MV 9(+), 14(*) 1(+), 4(*) 78.2

ARF 5(+), 6(*) 1(+), 2(*) 72.7

DCT 12(+),6(*) 4(+), 2(*) 66.6

FIR 9(+), 8(*) 3(+), 2(*) 70.5

WDF 6(+), 4(*) 2(+), 2(*) 60.0

99

a cost of -0.155. While, [32] yielded a solution set of 6(+), 5(*) which is much higher (more

than triple) compared to proposed. This shows that since the hardware usage is much greater

in [32], therefore, the solutions obtained do not satisfy the power budget or the time budget,

thereby, generating higher cost of the solution (design). On the other hand, the final solutions

of the proposed approach involving DMR are fault tolerant and satisfy the user specified

power and time constraints.

Table 8.16 Results of Proposed Fault Tolerant DSE Approach for kc = 2

Benchmark

[45, 86, 98, 99,

100]

Tcons

(us)

TE
DMR

(us)

Pcons

(uW)

PT
DMR

(uW)
Cost

IIR 66.00 66.00 308.94 205.65 -0.101

BPF 179.00 149.70 301.11 205.59 -0.168

MPEG_MV 165.00 93.60 727.78 351.82 -0.258

ARF 221.00 179.70 450.95 205.93 -0.218

DCT 213.00 165.50 450.26 384.52 -0.124

FIR 108.00 89.80 596.19 325.20 -0.180

WDF 172.00 137.60 330.00 265.19 -0.145

Table 8.17 Results of Proposed Fault Tolerant DSE Approach For kc = 3

Benchmark

[45, 86, 98, 99,

100]

Tcons

(us)

TE
DMR

(us)

Pcons

(uW)

PT
DMR

(uW)
Cost

IIR 66.00 66.00 350.00 205.65 -0.148

BPF 173.00 150.00 301.18 205.58 -0.152

MPEG_MV 165.00 93.60 727.78 351.82 -0.258

ARF 221.00 180.00 450.95 205.92 -0.217

DCT 213.00 165.80 450.26 384.52 -0.124

FIR 108.00 90.10 596.19 325.20 -0.177

WDF 172.00 137.60 330.00 265.19 -0.145

100

 Similar results are observed for the approaches when tested for multi-cycle faults in

the system. Table 8.16 and Table 8.17, shows the results of the proposed for 2-cycle (kc = 2)

and 3-cycle faults (kc = 3). As seen from Table 8.18, the proposed approach generates more

efficient results than the [32] approach against faults with kc = 2 and 3. The solutions

generated through proposed approach have much lower cost, then the [32] approach

employing TMR scheme.

Table 8.18 Comparison of Proposed Approach With [32] in Terms of Resource (Hardware)

Utilized for Fault Tolerant Datapath for (kc = 2 and 3)

Benchmark

[45, 86, 98,

99, 100]

Resource

found [32]

kc = 2

Resource

utilized

kc = 2

%

reductio

n in area

Resource

found [32]

kc = 3

Resource

utilized

kc = 3

%

reduction

in area

IIR 3(+), 5(*) 1(+), 2(*) 62.5 2(+), 5(*) 1(+), 2(*) 57.1

BPF 6(+), 4(*) 1(+),2(*) 70.0 6(+), 4(*) 1(+),2(*) 70.0

MPEG_MV 9(+),14(*) 1(+), 4(*) 78.2 8(+), 14(*) 1(+), 4(*) 77.2

ARF 5(+), 6(*) 1(+), 2(*) 72.7 6(+), 6(*) 1(+), 2(*) 75.0

DCT 12(+),6(*) 4(+), 2(*) 66.6 12(+),6(*) 4(+), 2(*) 66.6

FIR 8(+), 8(*) 3(+), 2(*) 68.7 8(+), 8(*) 3(+), 2(*) 68.7

WDF 6(+), 5(*) 2(+), 2(*) 63.6 6(+), 5(*) 2(+), 2(*) 63.6

Table 8.19 Results of Proposed Approach (for kc = 1) in Terms of Optimality

Benchmarks

[45, 86, 98, 99,

100]

GD MFE
Spacing

(S)

Spread

(Δ)

Weighted

Metric (Wm)

IIR 0.00 0.32 0.00 0.60 0.30

BPF 0.00 0.26 0.11 0.84 0.42

MPEG_MV 0.00 0.54 0.18 0.89 0.45

ARF 0.00 0.65 0.07 0.78 0.39

DCT 0.00 0.14 0.00 0.66 0.33

FIR 0.00 0.33 0.01 0.63 0.31

WDF 0.00 0.46 0.00 0.74 0.37

101

8.4.2.2 Results of Proposed Approach in Terms of Optimality

Table 8.19 and Table 8.20 show the analysis of proposed approach in terms of quality metrics

such as generational distance (GD), maximum pareto-optimal front error (MFE), spacing (S),

spread (Δ) and weighted sum (W). Table 8.19 illustrates the results of proposed approach in

terms of optimality for kc = 1, while Table 8.20 is for kc = 3.

Table 8.20 Results of Proposed Approach (for kc = 3) in Terms of

Optimality

Benchmarks

[45, 86, 98, 99,

100]

GD MFE
Spacing

(S)

Spread

(Δ)

Weighted

Metric (Wm)

IIR 0.00 0.17 0.00 0.66 0.33

BPF 0.00 0.27 0.11 0.85 0.42

MPEG_MV 0.00 0.98 0.03 0.82 0.41

ARF 0.00 0.68 0.00 071 0.35

DCT 0.00 0.34 0.10 0.81 0.40

FIR 0.00 0.42 0.00 0.70 0.35

WDF 0.00 0.47 0.04 0.73 0.36

 Table 8.21 Comparison of Proposed Approach With [32] Fault Tolerant Approach

Benchmark

[45, 86, 98,

99, 100]

kc = 1 kc = 2

QoR

proposed

QoR

[32]

%

Improve-

ment

QoR

proposed

QoR

[32]

%

Improve-

ment

IIR 0.46 0.76 39.4 0.51 0.86 40.5

BPF 0.55 1.01 45.5 0.55 1.00 44.9

MPEG_MV 0.26 0.66 60.6 0.28 0.69 58.8

ARF 0.38 0.65 41.5 0.38 0.68 42.9

DCT 0.51 0.91 43.9 0.53 0.95 44.1

FIR 0.40 0.65 38.4 0.40 0.68 40.5

WDF 0.58 0.91 36.2 0.58 0.98 40.5

For kc = 1 average improvement in QoR w.r.t [32] = 43.4 %

For kc = 2 average improvement in QoR w.r.t [32] = 44.3 %

102

As seen from Table 8.19, the GD is zero for all the benchmarks, indicating that the

solutions generated through the proposed approach lie on true pareto front. A spacing of zero

(or a little higher than zero) for an application states that, the proposed approach is able to

have uniform distribution of Pareto points on the curve. Similar pattern of results is evident

from Table 8.20 where optimality of proposed approach for kc = 3 is evaluated. It can also be

seen that, the results obtained by the proposed approach are real optimal solution as

discovered by verifying with the golden solution found through exhaustive analysis.

8.4.3 Comparison of Proposed Approach in Terms of Quality of Results

8.4.3.1 Comparison with [32]

Table 8.21 and 8.22 shows the comparison of [32] with the proposed MCFT-BFOA

driven DSE approach. In approach [32] there was no concept of exploration of a fault tolerant

datapath based on power-performance constraint presented in the paper, unlike the proposed

approach. Further, the authors did not provide any concept of multi-cycle faults. Moreover,

the approach presented a TMR (triple modular redundant) system for k-cycle fault tolerance

for single event transient (SET). The outputs of the units were voted upon by the help of

voter, to mask the errors. Additionally, comparators were used to detect the difference in the

outputs of the units. However, the proposed approach uses Double Modular Redundancy

(DMR) scheme to explore a fault tolerant design without using voters to extract the correct

Table 8.22 Comparison of Proposed Approach With [32] Fault Tolerant Approach

Benchmark [45,

86, 98, 99, 100]

kc = 3

QoR

proposed

QoR

[32]

%

Improve-

ment

IIR 0.51 0.80 36.2

BPF 0.55 1.05 47.6

MPEG_MV 0.28 0.67 58.2

ARF 0.38 0.73 47.9

DCT 0.53 0.99 46.4

FIR 0.40 0.70 42.8

WDF 0.58 1.03 43.6

For kc = 3 average improvement in QoR w.r.t [32] = 45.8 %

103

output. Therefore, [32] involved higher degree of redundancy in their system which

sometimes involved a TMR system almost tripling the resource usage.

Therefore, from Table 8.21 and 8.22 it is evident that proposed approach achieves a

better QoR in comparison to [32] for all the benchmarks. The average improvement in QoR is

more than 43%. Also, an average reduction of 70% is attained in the hardware usage of

proposed approach as observed in Table 8.21 and 8.22.

8.4.3.2 Comparison with [28]

Table 8.23 shows the comparison of QoR (cost units) between the proposed approach

(MCFT-BFOA-DSE) and fault secured approach [28]. It should be noted that [28] is just a

fault secured approach and does not have ability to mask the fault. Therefore it has ability to

only detect the fault but not correct it. Moreover, [28], does not have ability to explore a

datapath circuit based on conflicting user constraint. After experimentation, it has been found

that there is an average improvement in QoR of 7% and a reduction of 29.1 % in hardware

usage through proposed approach. For example, in case of DCT and WDF, there is no

reduction in hardware area observed compared to [28], however, the proposed approach with

the same resource achieves fault tolerance as well as minimizes the hybrid cost of power and

execution time which [28] is unable to perform.

Table 8.23 Comparison of Proposed Approach with [28] Fault Secured Approach

Benchmark

[45, 86, 98, 99,

100]

QoR

proposed
QoR [28]

Resource Set

(proposed)

Resource

Set [28]

% reduction

in area

IIR 0.46 0.49 1(+), 2(*) 1(+), 3(*) 25.0

BPF 0.55 0.58 1(+),2(*) 2(+), 2(*) 25.0

MPEG_MV 0.26 0.33 1(+), 4(*) 3(+), 7(*) 50.0

ARF 0.38 0.50 1(+), 2(*) 4(+), 2(*) 50.0

DCT 0.51 0.51 4(+), 2(*) 4(+), 2(*) 0.0

FIR 0.40 0.40 3(+), 2(*) 4(+), 4(*) 37.5

WDF 0.58 0.57 2(+), 2(*) 2(+), 2(*) 0.0

Average improvement in QoR = 7.10%

104

8.5 Experimental Results: Untrusted Third Party Digital IP cores: Power-

Delay Trade-off Driven Exploration of Hardware Trojan Secured

Datapath during High Level Synthesis

The proposed approach as well as [35] both have been implemented in java and run on Intel

Core-i5-3210M CPU with 3MB L3 cache memory, 4GB DDR3 primary memory and

processor frequency of 2.5 GHz. An average of 10 runs was reported for proposed BFOA

DSE with equal weightage to both user objectives of power and delay (W1 = W2 = ½).

Various HLS benchmarks were chosen for experimentation such as JPEG Downsample,

JPEG IDCT2, IDCT, Feedback Points, ARF, BPF, FIR, and MESA Matrix Multiplication.

As found during the experiments, the proposed approach is scalable and is able to handle

problems of any size. The results are divided into three phases.

 Sensitivity Analysis

 Results of proposed approach

 Comparison of proposed approach with existing approaches.

8.5.1 Sensitivity Analysis

8.5.1.1 Pre-tuning

During experimentation, following settings were kept for proposed approach: p= 3, 5 and 7,

Nc = 120.

8.5.1.2 Bacterium Size, p

Table 8.24 shows the effect of bacterium size ‘p’ on the exploration time of proposed DSE

method. As evident, it indicates that for all benchmarks with the increase in bacterium size,

the exploration time of the proposed approach to find the final solution increases (with the

cost of the final solution remaining the same for all bacterium size). The exploration time

increase is because of increase in computational complexity per iteration (i.e. the total

number of positions evaluated in a run increases with the increase in ‘p’). Figure 8.5 and 8.6

shows a graphical representation of the variation of exploration time with respect to increase

in the bacterium size ‘p’.

105

8.5.2 Results of proposed Approach

As shown Table 8.25, the proposed approach comprehensively meets the user constraints of

delay and power (and minimizes the hybrid cost for all benchmarks. For example, in case of

IIR benchmark, the proposed approach generates the final optimal solution with power

(PT
DMR

) = 0.58mW and LT
DMR

 = 23080ns, which is with the specified user constraints of

power and delay (Pcons = 0.55mW and Lcons = 38945 ns). Also, the proposed approach is able

Table 8.24 Comparison of Exploration Time with respect to

Bacterium size ‘p’ for Proposed Approach

Benchmark

[45, 86, 98,

99, 100]

Bacterium

Size

Exploration

time (ms)

Cost of final

solution

IIR

3 640 -0.125

5 703 -0.125

7 1250 -0.125

MPEG MV

3 7043 -0.251

5 7657 -0.251

7 11422 -0.251

ARF

3 1907 -0.192

5 2156 -0.192

7 3786 -0.192

IDCT

3 7156 -0.154

5 7998 -0.154

7 8328 -0.154

DCT

3 3516 -0.106

5 3891 -0.106

7 5977 -0.106

FIR

3 6500 -0.245

5 7282 -0.245

7 12532 -0.245

106

to achieve the real optimal solution for all benchmarks as verified with the golden solution

found through brute force.

8.5.3 Comparison of proposed approach

Metric such as QoR indicating the quality of final solution (lower cost solution explored)

0

200

400

600

800

1000

1200

1400

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

IIR

Exploration time (ms)

0

2000

4000

6000

8000

10000

12000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

MPEG MV

Exploration time (ms)

0

500

1000

1500

2000

2500

3000

3500

4000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

ARF

Exploration time (ms)

Figure 8.5 Graphical Representation of Variation of Exploration Time (in ms)

with respect to Change in Bacterium size (p)

107

yielded by both approaches (proposed and [35]) is an important tool for comparison. The

QoR for both the approaches (proposed and [35]) is evaluated by the following function:

max max

1
()

2

DMR DMR

T T

DMR DMR

P L
QoR

P L
  (8.3)

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

IDCT

Exploration time (ms)

0

1000

2000

3000

4000

5000

6000

7000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

DCT

Exploration time (ms)

0

2000

4000

6000

8000

10000

12000

14000

3 5 7

E

x

p

l

o

r

a

t

i

o

n

T

i

m

e
Bacterium size (p)

FIR

Exploration time (ms)

Figure 8.6 Graphical Representation of Variation of Exploration Time (in ms)

with respect to Change in Bacterium size (p)

108

The area of the single comparator/error detection block responsible to runtime Trojan

detection at the final output is also considered in the above QoR function when evaluating its

magnitude for both [35] and proposed approach. However, since only a single

comparator/error detection block is used in both approaches, hence it has no impact on the

QoR of both approaches. However, during QoR comparison, power overhead due to internal

buffering (temporary storage of operation output), has been considered for both proposed

approach and [35].

Table 8.26, illustrates the comparative results of the proposed approach and [35] when

evaluated on the standard benchmarks. As seen from the results in Table 8.26, with the

introduction of exploration for vendor allocation procedure type ‘Av’ and user constraint

Table 8.25 Results of Proposed Trojan Secured Approach

Benchmark [45,

86, 98, 99, 100]

Lcons

(ns)

LT
DMR

(ns)

Pcons

(mW)

PT
DMR

(mW)
Cost

IIR 38945 23080 0.58 0.58 -0.125

IDCT 119160 77080 1.02 0.93 -0.154

ARF 130810 89890 0.63 0.48 -0.192

MPEG MV 88307 36240 1.48 1.03 -0.251

DCT 175442 153540 0.77 0.59 -0.106

FIR 76387 34890 1.22 0.85 -0.245

Note: mW = miliwatt, ns = nanoseconds

Table 8.26 Comparison of Proposed Approach With [35]

Benchmark

[45, 86, 98,

99, 100]

Final solution

for Trojan

Secured

datapath

(proposed)

Final

solution for

Trojan

Secured

datapath

[35]

Cost of final

solution

(proposed)

Cost of

final

solution

[35]

QoR in

cost units

(proposed)

QoR

in cost

units

[35]

IIR
2(+), 5(*), 0 2(+), 3(*),1 -0.125 -0.016 0.53 0.64

IDCT
6(+), 4(*), 0 5(+), 3(*),1 -0.154 -0.027 0.50 0.63

ARF
2(+), 4(*),0 3(+), 3(*),1 -0.192 -0.056 0.49 0.63

MPEG MV
2(+), 10(*), 0 3(+), 8(*),1 -0.251 -0.226 0.30 0.33

DCT
4(+), 4(*), 0 5(+), 3(*),1 -0.106 -0.064 0.50 0.54

FIR
6(+), 6(*), 0 5(+), 5(*),1 -0.245 -0.209 0.33 0.36

109

driven exploration, the proposed approach generates better results in comparison to [35]. For

example, in ARF benchmark, the proposed approach generates 2(+), 4(*), 0 as the solution

(cost of -0.192) which is lesser than the cost of [35] (cost = -0.056). This is because, in

previous approach

there is no provision of exploring an optimal ‘vendor allocation procedure’ during scheduling

in DMR as well as no optimization scheme based on user power- delay constraint for finding

a better alternative solution. Figure 8.7 shows the comparison of the QoR (in cost units) of

the proposed approach with [35].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IIR BPF ARF MPEG

MV

DCT FIR

Q
o

R
 (

C
o

st
 u

n
it

s)

Benchmarks

QoR Comparison

QoR (Proposed) QoR [35]

Figure 8.7 Comparison of QoR (cost units) of proposed

and [35] approach

110

Chapter 9

Conclusion and Future work

9.1 Conclusion
This thesis presented novel methodologies for designing reliability aware and hardware

security aware designs at behavioural level for data intensive and control intensive

applications during design of application specific datapath processor. Therefore, the

following objectives were accomplished in this thesis work:

 Proposed a methodology to solve the problem of DSE during power-performance

trade-off for data intensive applications that produces high quality design solutions.

The proposed approach provided an average improvement in QoR of > 35% and

reduction in runtime of > 4% compared to recent approaches.

 Proposed an approach to solve the problem of exploration of low cost optimal k-cycle

transient fault secured datapath during power-performance trade-off for data intensive

applications. Results of comparison of proposed approach with recent approaches

indicated significant reduction of final cost.

 Proposed an automated approach to solve the problem of simultaneous exploration of

low cost optimal k-cycle transient fault secured datapath and unrolling factor for

control intensive applications during area-delay trade-off. Results of proposed

approach when compared to similar approach indicated better quality solution within

acceptable runtime.

 Proposed an execution time prediction model for faster exploration process in case of

single loop based CDFGs without tediously unrolling CDFG loop completely.

 Proposed an approach to solve the problem of exploration of low cost optimal k-cycle

transient fault tolerant datapath based on power-performance tradeoff for data

intensive applications. The results in chapter 8 showed that the proposed MCFT-

BFOA based DSE provided higher an average reduction of 7% in final cost and 29%

in hardware utilization compared to recent approaches.

 Proposed an approach that solves the problem of exploration of low cost optimal

Trojan secured datapath during behavioural synthesis for data intensive applications.

111

The proposed approach achieves an improvement of 14.1% in QoR in comparison to

existing approaches.

Therefore, this thesis presented multiple novel methodologies for designing reliability aware

and hardware security aware designs at behavioural level for data intensive and control

intensive applications during design of application specific datapath processor. The proposed

methodologies can be efficiently applied for any exploration problem in HLS based on any

user criteria.

9.2 Future Work

However, generating highly reliable and secured HLS designs for application specific

processors still requires a lot of effort in the future. Some of the important aspects which

require future attention by the researchers area as follows:

 Consideration of multi-checkpointing technique can be considered during transient

fault security in HLS.

 Development of low cost Trojan secured schedule for nested-loop based applications.

 Consideration of other class of Trojans than the one handeled in this thesis, during

development of Trojan security aware HLS methodology.

112

References

[1] Mohanty S. P., Ranganathan N., Kougianos E., Patra, P. (2008). Low-power highlevel

synthesis for nanoscale CMOS circuits. Springer Science & Business Media.

[2] Marwedel P. (1984). The MIMOLA design system: Tools for the design of digital

processors. In Proceedings of Design Automation Conference, pp. 587–593.

[3] Granacki J., Knapp D., Parker A. (1985). The ADAM advanced design automation

system: Overview, planner and natural language interface. In Proceedings of Design

Automation Conference, pp 727–730.

[4] Jain R., Kucukcakar K., Mlinar M., Parker A. (1989). Experience with the ADAM

synthesis system. In Proceedings of Design Automation Conference, pages 56–61.

[5] Paulin P. G., Knight J. P., Girczyc E. F. (1986). Hal: a multi-paradigm approach to

automatic data path synthesis. In Proceedings of Design Automation Conference, pp.

263– 270.

[6] Chandrakasan A. P., Potkonjak M., Rabaey J., Brodersen R. W. (1992). HYPERLP: a

system for power minimization using architectural transformations. In Proc. Int. Conf.

on Computer-Aided Design, pp. 300–303.

[7] Micheli G. De, D. Ku. (1988). HERCULES-a system for high-level synthesis. In

Proceedings of Design Automation Conference, pp. 483–488.

[8] Micheli G. De, Ku D., Mailhot F., Truong T. (1990, Oct). The Olympus synthesis

system. IEEE Design & Test of Computers, 7(5):37–53.

[9] Rabaey J. M., Chu C., Hoang P., Potkonjak M. (1991, April). Fast prototyping of

datapathintensive architectures. IEEE Design & Test of Computers, 8(2):40–51.

[10] Elliott J. P.(1999). Understanding Behavioral Synthesis: A Practical Guide to High-

Level Design. Kluwer Academic Publishers.

[11] Knapp D. W. (1996). Behavioral synthesis: digital system design using the synopsys

behavioral compiler. Prentice-Hall, Inc.

[12] Kress R., Pyttel A., Sedlmeier A. (2000). FPGA-based prototyping for product

definition. In Proceedings of Int. Conference on Field Programmable Logic and

Applications, pp. 78–86.

[13] Gerez, S.H. (2004) Algorithms for VLSI Design Automation. Wiley

113

[14] Paulin P.G., Knight J.P. (1989) Force directed scheduling for the behavioral synthesis

of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 8(6), pp.661–679.

[15] Mohanty, S.P. (2003) Energy and Transient Power Minimization During Behavioral

Synthesis. Ph.D. thesis, University of South Florida.

[16] Mohanty, S.P., Rangnathan, N., Chappidi, S.K. (2003) An ILP-based scheduling

scheme for energy efficient high performance datapath synthesis. In: Proceedings of the

International Symposium on Circuits and Systems (ISCAS), pp. 313–316.

[17] Ram, D. S., Bhuvaneswari, M. C., & Prabhu, S. S. (2012). A novel framework for

applying multi objective GA and PSO based approaches for simultaneous area, delay,

and power optimization in high level synthesis of datapaths. VLSI design, 2012, pages-

12.

[18] Heijlingers MJM, Cluitmans LJM, Jess JAG. (1995). High-level synthesis scheduling

and allocation using genetic algorithms. In: Proceedings of Asia South Pacific design

automation conference, pp. 61–66.

[19] Palermo G, Silvano C, Zaccaria V. (2008). Discrete particle swarm optimization for

multi-objective design space exploration. In: Proceedings of the 11th EUROMICRO

IEEE digital system design architectures, methods and tools, pp. 641–644.

[20] Krishnan V, Katkoori S. (2006). A genetic algorithm for the design space exploration

of datapaths during high-level synthesis. IEEE Trans. on Evolutionary Computation,

Vol.10, No.3.

[21] Sengupta A, Sedaghat R, Sarkar P. (2012). A multi structure genetic algorithm for

integrated design space exploration of scheduling and allocation in high level synthesis

for DSP kernels. Elsevier Journal on Swarm and Evolutionary Computation, Vol. 7, pp.

35–46.

[22] Haubelt C, Schlichter T, Keinert J, Meredith M. (2008). SystemCoDesigner: Automatic

design space exploration and rapid prototyping from behavioral models. In:

Proceedings of the 45th annual ACM/ IEEE Design Automation Conference, pp. 580-

585.

[23] Coussy P, Chavet C, Bomel P, Heller D, Senn E, Martin E. (2008). GAUT: A High-

Level Synthesis tool for DSP applications. In High-Level Synthesis From Algorithm to

Digital Circuits, Springer Netherlands, pp. 147-69.

[24] Canis A, Choi J, Aldham M, Zhang V, Kammoona A, Czajkowski T, Brown S D,

Anderson J H. (2013). LegUp: An open-source high-level synthesis tool for FPGA-

114

based processor/accelerator systems. In: Proceedings of ACM Trans. Embedd. Comput.

Syst., Vol.13, No. 2, Article 24, 27 pages.

[25] Villarreal J, Park A, Najjar W, Halstead R. (2010). Designing modular hardware

accelerators in C with ROCCC 2.0. In: Proceedings of the IEEE International

Symposium on Field-Programmable Custom Computing Machines, pp. 127–34.

[26] CatapultC : //calypto.com/en/products/catapult/overview

[27] Cong J., Bin L., Neuendorffer S., Noguera J., Vissers K., Zhang Z. (2011, April)

High-Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 30, No.4, pp. 473-

91.

[28] Karri R., Orailoglu A. (1996). Time-constrained scheduling during high-level synthesis

of fault-secure VLSI digital signal processors. In Proceedings of IEEE Transactions on

Reliability, Vol.45, No.3, pp.404-412.

[29] Karri R., Orailoˇglu A. (1992). Transformation-based high-level synthesis of fault

tolerant ASICs. In IEEE Design Automation Conference, pp. 662–665.

[30] Wu K., Karri R. (2004). Fault Secure Datapath Synthesis Using Hybrid Time and

Hardware Redundancy. IEEE Trans. Computer-Aided Design of Integrated Circuits

and Systems, Vol.23, No.10, pp.1476-1485.

[31] Wu K., Karri R. (2001, Nov). Algorithm level recomputing—a register transfer level

concurrent error detection technique. In Proc. IEEE/ACM Int. Conf. Computer-Aided

Design, pp. 537–543.

[32] Inoue T., Henmi H., Yoshikawa Y., Ichihara H. (2011). High-level synthesis for multi-

cycle transient fault tolerant datapaths. In Proceedings of the 17th IEEE international

on-line testing symposium, pp 13–18.

[33] Bhunia S., Abramovici M., Agrawal D., Bradley P., Hsiao M., Plusquellic J.,

Tehranipoor M. (2013). Protection against hardware Trojan attacks: Towards a

comprehensive solution. In Proceedings of IEEE Design & Test, Vol. 99, pp. 1–1.

[34] Zhang X., Tehranipoor M. (2011). Case study: Detecting hardware Trojans in third-

party digital IP cores. In Proc. of IEEE International Symposium on Hardware-Oriented

Security and Trust, pp. 67–70.

[35] Rajendran J., Huan Z., Sinanoglu O., Karri R. (2013). High-level synthesis for security

and trust. In Proceedings of 19th IEEE Intl On-Line Testing Symposium (IOLTS), pp.

232-233.

115

[36] Sengupta A, Sedaghat R. (2011). Integrated scheduling, allocation and binding in high

level synthesis, using multi structure genetic algorithm based design space exploration

system. In: Proceedings of the 12th IEEE/ ACM international symposium on quality

electronic design (ISQED), California, USA, pp. 486–94.

[37] Passino K. M. (2002). Biomimicry of Bacterial Foraging for Distributed Optimization

and Control. IEEE Control Systems Magazine, pp. 52-67.

[38] Pierucci O. (1972, Feb). Chromosome replication and cell division in Escherichia coli

at various temperatures of growth. J. Bacteriol, Vol.109, No.2, pp. 848–854.

[39] Maeda K, Imae Y, Shioi J I, Oosawa F. (1976, Sept). Effect of Temperature on

Motility and Chemotaxis of Escherichia coli. J. Bacteriol. Vol. 127, No. 3, pp. 1039-46.

[40] Doyle M.P., Shoeni J.L. (1984). Survival and growth characteristics of Escherichia coli

associated with hemorrhagic colitis. Applied Environmental Microbiology, Vol.48, pp.

855-856.

[41] Adler J., Templeton B. (1967, Feb). The Effect of Environmental conditions on the

Motility of Escherichia coli. Microbiology. Vol. 46, No. 2, pp. 175-84.

[42] Sengupta A, Sedaghat R, Zeng Z. (2010). A high level synthesis design flow with a

novel approach for efficient design space exploration in case of multi parametric

optimization objective. Microelectronics Reliability, Vol.50, No.3, pp. 424–37.

[43] Chang, Jui-Ming, Massoud P. (1997) Energy minimization using multiple supply

voltages, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.5,

No. 4, pp. 436-443.

[44] Das S., Biswas A., Dasgupta S., Abraham A. (2009). Bacterial Foraging Optimization

Algorithm: Theoretical Foundations, Analysis, and Applications. Studies in

Computational Intelligence, Vol. 203, pp. 23-55.

[45] University of California, Santa Barbara, Express Benchmarks:

http://express.ece.ucsb.edu/benchmark/.

[46] Gajski D., Dutt N.D., Wu A., Lin S. (1992). High level synthesis: introduction to chip

and system design. Norwell (MA): Kluwer Publishers, pp. 52-67.

[47] Lakshminarayana G., Raghunathan A., Jha N. K. (2000, Sep). Behavioral synthesis of

fault secure controller/datapaths based on aliasing probability analysis. IEEE Trans.

Comput., Vol. 49, pp. 865–885.

[48] Normand E. (1996, April). Single-event effects in avionics. IEEE Trans. Nucl. Science,

Vol. 43, pp. 461–474.

[49] Lala P.K. (1985). Fault-Tolerant and Fault-Testable Hardware Design, Prentice-Hall.

116

[50] Choi Y.H., Malek M. (1988, May). A fault-tolerant FFT processor. IEEE Trans.

Computers, Vol 37, pp 617-621.

[51] Jou J.Y., Abraham J.A. (1988, May). Fault-tolerant FFT networks”, IEEE Trans.

Computers, vol 37, 1988 May, pp 548-561.

[52] R. Geist, Trivedi K. (1990, July). Reliability estimation of fault-tolerant systems: Tools

and techniques. IEEE Computer, Vol 23, pp 52-61.

[53] Eberhart R.C, Shi Yuhui. (2001). Particle swarm optimization: developments,

applications and resources. In Proceedings of the 2001 Congress on Evolutionary

Computation, pp. 81-86.

[54] Mishra V.K., Sengupta A. (2014, Jan). MO-PSE: Adaptive Multi Objective Particle

Swarm Optimization Based Design Space Exploration in Architectural Synthesis for

Application Specific Processor Design. Elsevier Journal on Advances in Engineering

Software, Vol. 67, pp. 111 - 124.

[55] Sengupta A., Mishra V.K. (2014, March). Integrated Particle Swarm Optimization (i-

PSO): An Adaptive Design Space Exploration Framework for Power-Performance

Tradeoff in Architectural Synthesis. In Proceedings of IEEE 15th International

Symposium on Quality Electronic Design (ISQED 2014), California, USA, pp.60 – 67.

[56] Trelea, Cristian I. (2003). The particle swarm optimization algorithm: convergence

analysis and parameter selection. Elsevier Information processing letters, Vol. 85 No. 6,

pp. 317-325.

[57] Sengupta A., Mishra V.K. (2014, Aug). Automated Exploration of Datapath and

Unrolling Factor during Power-Performance Tradeoff in Architectural Synthesis Using

Multi-Dimensional PSO Algorithm. Elsevier Journal on Expert Systems With

Applications, Vol. 41, No. 10, pp. 4691- 4703.

[58] Lisboa C. A., Carro L. (2007, May). System Level Approaches for Mitigation of Long

Duration Transient Faults in Future Technologies. In Proceedings of 12th IEEE

European Test Symposium – ETS 2007, in Freiburg, Germany, pp. 165 – 172.

[59] Dodd P. E, et al. (2004). Production and propagation of Single-Event Transients in

High-Speed Digital Logic ICs. IEEE Transactions on Nuclear Science, Vol. 51, No 6,

Part 2, pp. 3278-3284.

[60] Coussy P., Morawiec A. (2008). High-Level Synthesis: From Algorithm to Digital

Circuits. Springer, Berlin, Germany.

[61] Micheli G. D. (1994). Synthesis and optimization of digital circuits. McGraw-Hill

Higher Education. New York.

117

[62] Yassa F. F., Jasica J. R., Hartley R. I., Noujaim S. E. (1987). A silicon compiler for

digital signal processing: Methodology, implementation, and applications. In

Proceedings of IEEE, 75(9), pp. 1272-1282.

[63] Weste N., Harris D. (2010). CMOS VLSI Design: A Circuits And Systems Perspective

Author: Neil Weste, David Harris, Publisher: Addison We, pp. 1-5.

[64] Coussy P., Gajski D. D., Meredith M., Takach A. (2009). An introduction to high-level

synthesis. IEEE Design & Test of Computers, (4), pp. 8-17.

[65] Torbey E., Knight J. (1998, May). High-level synthesis of digital circuits using genetic

algorithms. In Proceedings of the IEEE International Conference on Evolutionary

Computation, IEEE World Congress on Computational Intelligence, pp. 224-229.

[66] Torbey E., Knight J. (1998, August). Performing scheduling and storage optimization

simultaneously using genetic algorithms. In Proceedings of the Midwest Symposium on

Circuits and Systems, pp. 284-287.

[67] Wang G., Gong W., DeRenzi B., Kastner R. (2006, July). Design space exploration

using time and resource duality with the ant colony optimization. In Proceedings of the

43rd annual Design Automation Conference, pp. 451-454.

[68] Kopuri S., Mansouri N. (2004) Enhancing scheduling solutions through ant colony

optimization. In: Proceedings of the International Symposium on Circuits and Systems

(ISCAS), pp. 257–260.

[69] Mohanty S.P., Velagapudi R., Kougianos E. (2006) Physical-aware simulated annealing

optimization of gate leakage in nanoscale datapath circuits. In: Proceedings of the

Conference on Design, Automation and Test in Europe (DATE), pp. 1191–1196.

[70] Al-Mouhamed M., Al-Massarani A. (2000). Scheduling optimization through iterative

refinement. Journal of systems architecture, 46(10), pp. 851-871.

[71] Springer D.L., Thomas D.E. (1994) Exploiting the special structure of conflict and

compatibility graphs in high-level synthesis. IEEE Transactions on CAD of Integrated

Circuits and Systems 13(7), pp.843–856.

[72] Pilato C., Loiacono D., Ferrandi F., Lanzi P. L., Sciuto D. (2008, June). Highlevel

synthesis with multi-objective genetic algorithm: A comparative encoding analysis. In

Proceedings of the IEEE World Congress on Computational Intelligence. pp. 3334-

3341.

[73] Ferrandi F., Lanzi P. L., Loiacono D., Pilato C., Sciuto D. (2008, April). A

multiobjective genetic algorithm for design space exploration in high-level synthesis. In

118

Proceedings of the IEEE Computer Society Annual Symposium on VLSI, ISVLSI'08.

pp. 417-422.

[74] Yang H., Wang C., Du N. (2012). High Level Synthesis using Learning Automata

Genetic Algorithm. Journal of Computers, 7(10), pp. 2534-2541.

[75] Micalewicz Z. (1996). Genetic Algorithms + Data Structures = Evolution programs, 3rd

ed., Springer-Verlag.

[76] Patel B., Pradhan D. K., Koren I. (1991, Sep). High level synthesis of data driven

ASICs. In Proceedings of Fourth Annual IEEE International ASIC Conf. and Exhibit,

Vol. 13, No. 3, pp 1-4, 23-27.

[77] Dhodhi M. K., Hielscher F. H., Storer R. H., Bhasker J. (1995, Aug). Datapath

synthesis using a problem-space genetic algorithm. IEEE Trans. on Computer Aided

Design of Integrated Circuits and Systems, Vol. 14, No.8, pp. 934–944.

[78] Nestor J. A, Krishnamoorthy G. (1993). SALSA: A new approach to scheduling with

timing constraints. IEEE Trans. on Comput. Aided Design of Integrated circuits and

Systems, Vol. 12, No.8, pp. 1107–1122.

[79] Mandal C., Chakrabarti P. P., Ghose S. (2000, Dec). GABIND: a GA approach to

allocation and binding for the high-level synthesis of data paths. In Proceedings of

IEEE Trans. on VLSI Systems, Vol. 8, No. 6, pp. 747-750.

[80] Zhang Z., Fan Y., Jiang W., Han G., Yang C., Cong J. (2008). AutoPilot: a platform-

based ESL synthesis system. In High-Level Synthesis Springer, pp. 99-112.

[81] Williams A.C., Brown A.D., Zwolinski M. (2008). Simultaneous optimisation of

dynamic power, area and delay in behavioural synthesis. In Proceedings of IEEE

computers and digital techniques, Vol. 147, No. 6, pp. 383–90.

[82] Lebreton L., Coussy G., Martin P. (2010). Hierarchical and Multiple-Clock Domain

High-Level Synthesis for Low-Power Design on FPGA. In Proceedings of International

Conference on Field Programmable Logic and Applications, pp.464-468.

[83] Liu, Hung-Yi, Carloni L. P. (2013). On learning-based methods for design-space

exploration with high-level synthesis. In Proceedings of Design Automation

Conference, pp. 1-7.

[84] Kennedy J., Eberhart R. C. (1995). Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, pp. 1942–1948.

[85] Engelbrecht A.P. (2005). Fundamental of computational swarm intelligence. John

Wiley and sons limited, England.

[86] http://www.cbl.ncsu.edu/benchmarks/, 2015.

119

[87] Oikonomakos P., Zwolinski M., (2006, Nov). An Integrated High-Level On-Line Test

Synthesis Tool. In Proceedings of IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol.25, No.11, pp.2479 – 2491.

[88] Deb K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &

Sons, ISBN 047187339.

[89] Agrawal D., Baktir S., Karakoyunlu D., Rohatgi P., Sunar B. (2007). Trojan Detection

using IC Fingerprinting. In Proceedings of IEEE Symposium on Security and Privacy,

pp. 296-310.

[90] Tehranipoor M., Koushanfar F. (2010). A Survey of Hardware Trojan Taxonomy and

Detection. IEEE Design & Test of Computers, pp. 10-25.

[91] Narasimhan S., Dongdong Du., Chakraborty R.S., Paul S., Wolff F., Papachristou C.,

Roy K., Bhunia S. (2010). Multiple-parameter side-channel analysis: A non-invasive

hardware Trojan detection approach. In Proceedings of IEEE International Symposium

on Hardware-Oriented Security and Trust, pp. 13-18.

[92] Karri R., Rajendran J., Rosenfeld K., Tehranipoor M. (2010). Trustworthy Hardware:

dentifying and Classifying Hardware Trojans. Computer, pp. 39-46.

[93] Yier J., Makris Y. (2008). Hardware Trojan detection using path delay fingerprint. In

Proceedings of IEEE International Workshop on Hardware-Oriented Security and

Trust, pp. 51 - 57.

[94] Xiaoxiao W., Salmani H., Tehranipoor M., Plusquellic J. (2008). Hardware Trojan

Detection and Isolation Using Current Integration and Localized Current Analysis. In

Proceedings of IEEE International Symposium on Defect and Fault Tolerance of VLSI

Systems, pp. 87-95.

[95] Mohanty S. P., Gomathisankaran M., Kougianos E. (2014). Variability-Aware

Architecture Level Optimization Techniques for Robust Nanoscale Chip Design.

Elsevier International Journal on Computers and Electrical Engineering (IJCEE), Vol.

40 No. 1, pp. 168-193.

[96] Cui X., Ma K., Shi L., Wu K. (2014). High-level synthesis for run-time hardware

Trojan detection and recovery. In Proceedings of 51
st
 IEEE Design Automation

Conference (DAC), pp. 1 – 6.

[97] Banga M., Hsiao M.S. (2009). A Novel Sustained Vector Technique for the Detection

of Hardware Trojans. In Proceedings of 22
nd

 International Conference on VLSI Design,

pp. 327-332.

120

[98] Texas Instruments: ’Benchmarks - C674x Low Power DSP - TI.Com’, Aug 2014,

http://www.ti.com/lsds/ti/dsp/c6000dsp/c674x/benchmarks.page.

[99] Nikara, J., Takola, J., Akopian, D., & Saarinen, J. (2001, May). Pipeline architecture

for DCT/IDCT. In Proceedings of the IEEE International Symposium on Circuits and

Systems, pp. 902-905.

[100] Elgamel, M., & Bayoumi, M. A. (2002). On low power high level synthesis using

genetic algorithms. In Proceedings of the 9th International Conference on Electronics,

Circuits and Systems, pp. 725-728.

[101] Kumar, A.K., Somasundareswari, D., Duraisamy, V. and Pradeepkumar, M. (2010).

Low power multiplier design using complementary pass-transistor asynchronous

adiabatic logic. In Proceedings of International Journal on Computer Science and

Engineering, Vol. 2 No. 7, pp. 2291–2297.

[102] Crop, J., Fairbanks, S., Pawlowski, R., and Chiang, P. (2010). 150mV subthreshold

Asynchronous multiplier for low-power sensor applications. In Proceedings of the

International Symposium on VLSI Design Automation and Test (VLSI-DAT), pp. 254–

257.

[103] Reynders, N., and Dehaene, W. (2011). A 190mV supply, 10MHz, 90nm CMOS,

pipelined sub-threshold adder using variation-resilient circuit techniques. In

Proceedings of the IEEE Asian Solid State Circuits Conference (A-SSCC), pp. 113–

116.

