

# **Triple-Phase Watermarking for Reusable IP Core Protection During Architecture Synthesis**

**Published in IEEE Transactions on Computer-Aided  
Design of Integrated Circuits and Systems  
(TCAD)**

A. Sengupta, D. Roy and S. P. Mohanty, "Triple-Phase Watermarking for Reusable IP Core Protection During Architecture Synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 4, pp. 742-755, April 2018.

## • Introduction

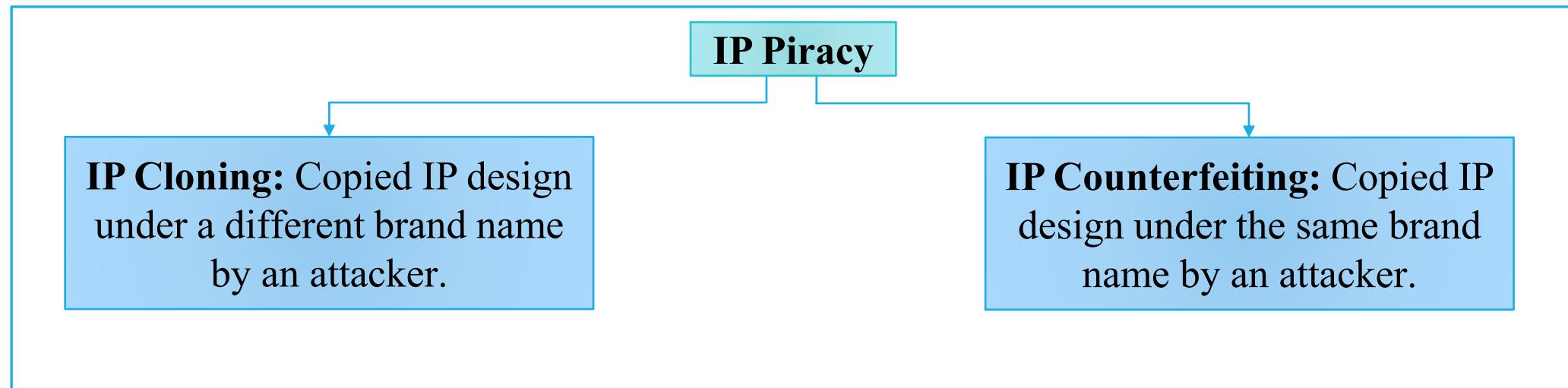

- Consumer electronics (CE) play a pivotal role in transforming the vision of emerging smart cities into reality.
- The current generation of CE design process is massively dependent on global IP supply chains.
- In such a CE-based framework, security and protection of its' intellectual property (IP) cores are considered as major challenges.
- Thus, the use of secured IPs is of paramount importance.



Fig. 1. IP protection of CE hardware

- Threat Model

- With the rise of globalization in hardware design and manufacturing, along with increasing competition among IP vendors, threats such as:
  1. IP piracy
  2. False claim of ownership.



# • Novel contribution of this paper

- The novel contributions of this paper in terms of improving the state-of-art are as follows.
  - 1) Proposes a novel triple-phase watermarking methodology to protect the reusable IP core during HLS.
  - 2) Proposes a novel highly robust 7-variable signature encoding scheme for embedding watermark during consecutive phases of HLS.
  - 3) Yields lower cost overhead in terms of hardware and latency compared to state of the art [4], [5].
- Motivation: Embedding Watermark at High Level [20]–[22].

- [4] F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral synthesis techniques for intellectual property protection,” *ACM Trans. Design Autom. Electron. Syst.*, vol. 10, no. 3, pp. 523–545, 2005.
- [5] A. Sengupta, S. Bhaduria, and S. P. Mohanty, “Embedding low cost optimal watermark during high level synthesis for reusable IP core protection,” in *Proc. 48th IEEE Int. Symp. Circuits Syst. (ISCAS)*, Montreal, QC, Canada, 2016, pp. 974–977.
- [20] A. Sengupta, “Protection of IP-core designs for CE products,” *IEEE Consum. Electron. Mag.*, vol. 5, no. 1, pp. 83–89, Dec. 2015.
- [21] A. Sengupta, “Hardware security of CE devices: Threat models and defence against IP trojans and IP piracy,” *IEEE Consum. Electron. Mag.*, vol. 6, no. 1, pp. 130–133, Jan. 2017.
- [22] A. Sengupta and D. Roy, “Antipiracy-aware IP chipset design for CE devices: A Robust watermarking approach [hardware matters],” *IEEE Consum. Electron. Mag.*, vol. 6, no. 2, pp. 118–124, Apr. 2017.

# • Proposed Watermarking Methodology

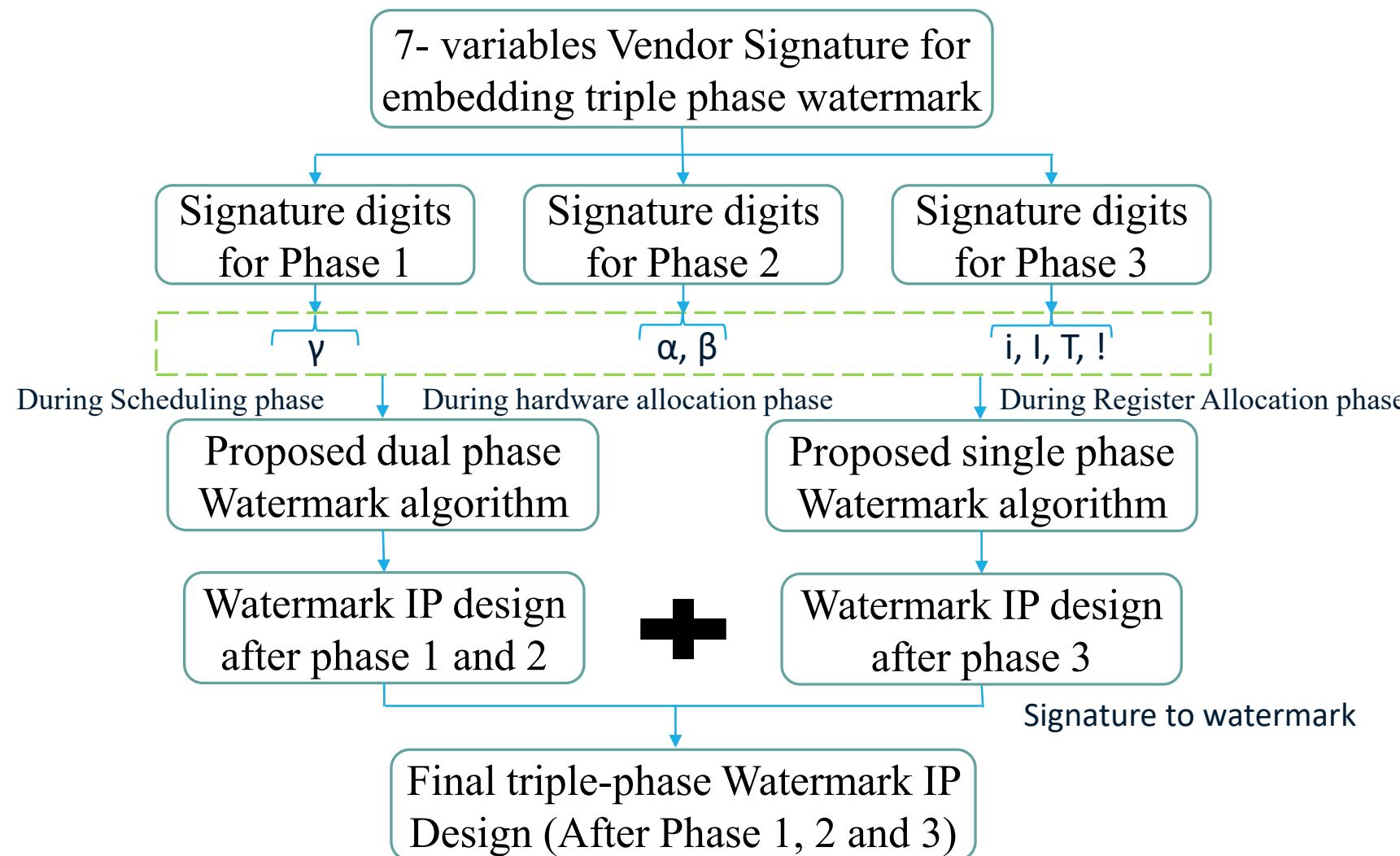



Fig. 3. Proposed triple-phase watermark at architecture level.

# • Proposed Watermarking Methodology

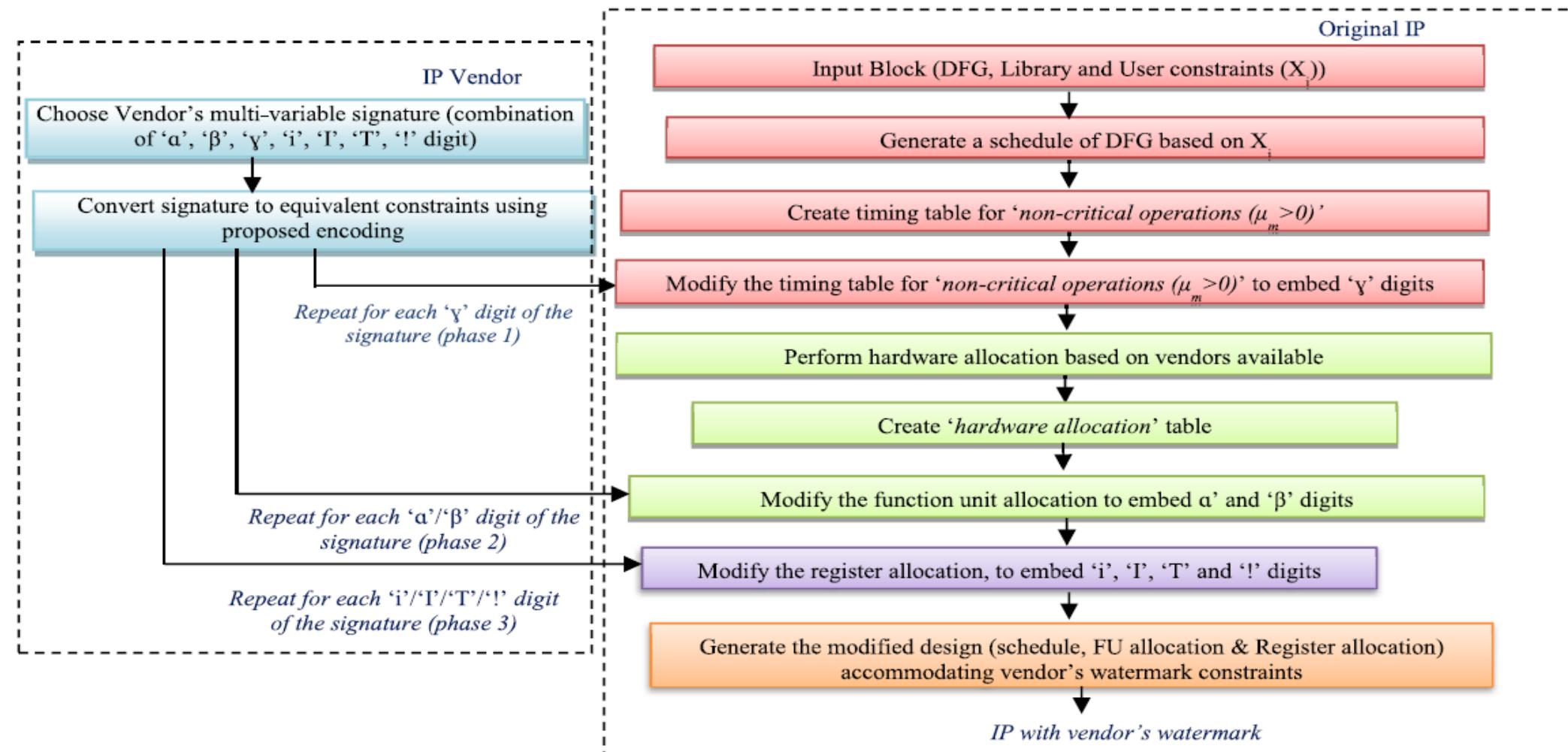



Fig. 4. Proposed HLS flow for reusable IP core protection using triple-phase watermark.

# • Proposed Watermarking Methodology

- The encoding rules of all seven signature digits are defined as follows.
  - 1)  $\alpha$  = *For Odd Control Step*: Odd operation will be assigned to hardware of vendor type 1 (U1) and even operation will be assigned to hardware of vendor type 2 (U2).
  - 2)  $\beta$  = *For Even Control Step*: Odd operation is assigned to hardware of vendor type 2 (U2) and even operation is assigned to hardware of vendor type 1 (U1).
  - 3)  $\gamma$  = Move an operation of noncritical path with highest mobility into immediate next control step (cs).
  - 4)  $i$  = encoded value of edge with node pair as (prime, prime).
  - 5)  $I$  = encoded value of edge with node pair as (even, even).
  - 6)  $T$  = encoded value of edge with node pair as (odd, even).
  - 7)  $!$  = encoded value of edge with node pair as (0, any integer).

# • Proposed Watermarking Methodology

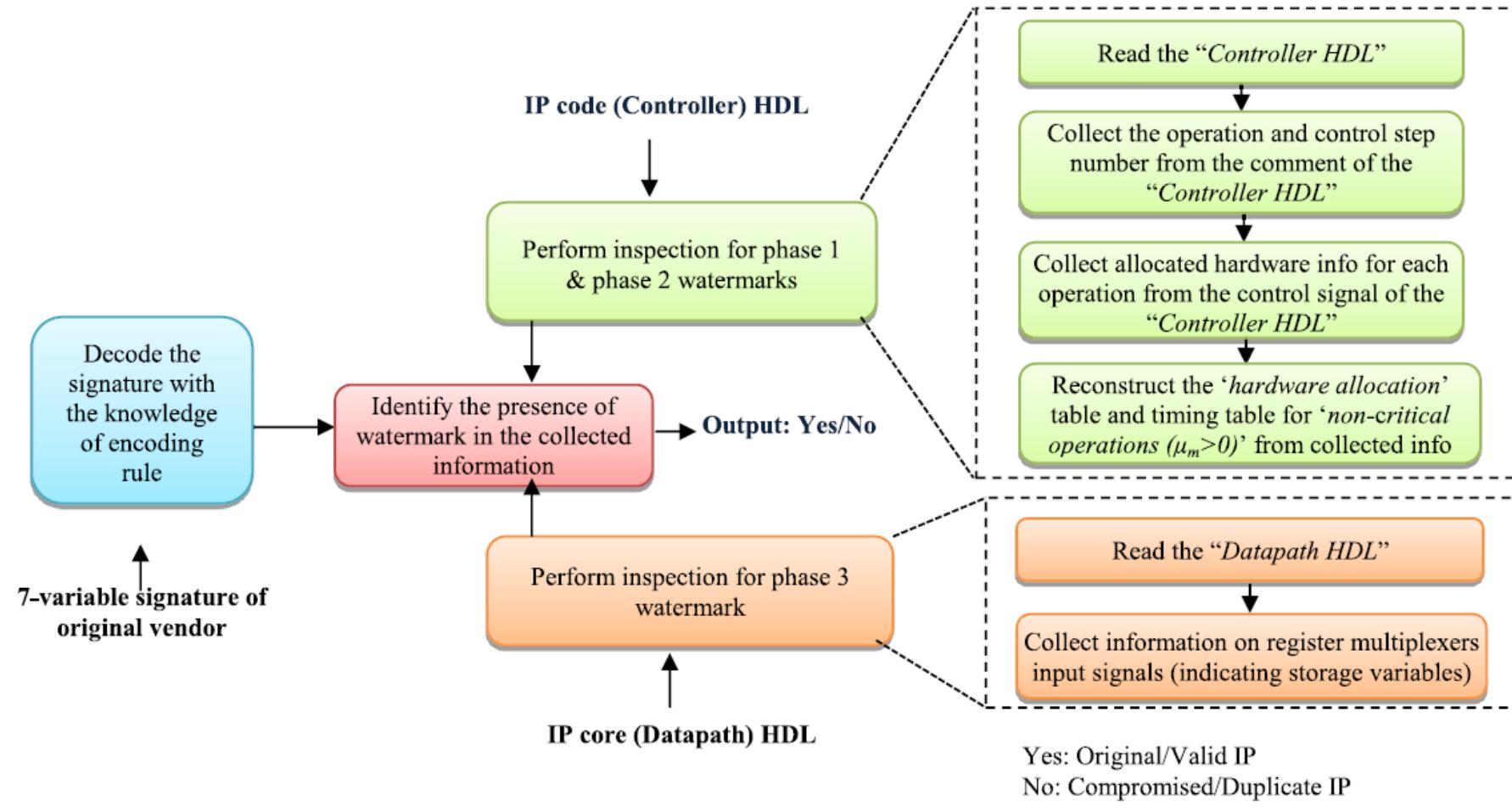



Fig. 5. Signature detection process.

# • Proposed Watermarking Methodology

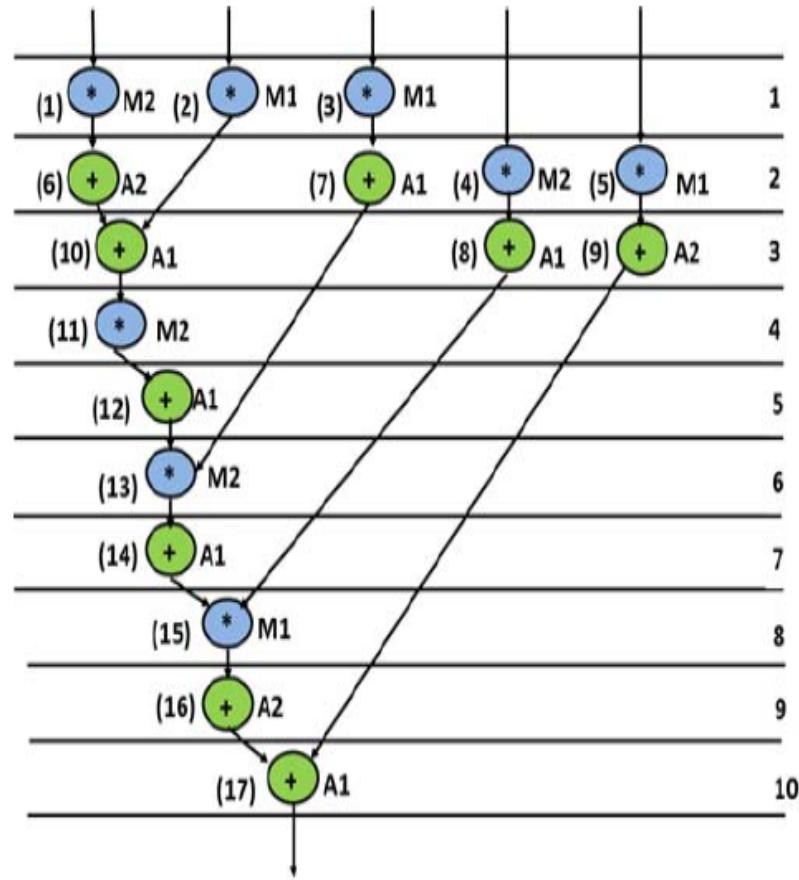



Fig. 6. Scheduled DFG (using three adders and three multipliers) of DWT with random FU allocation before embedding watermark.

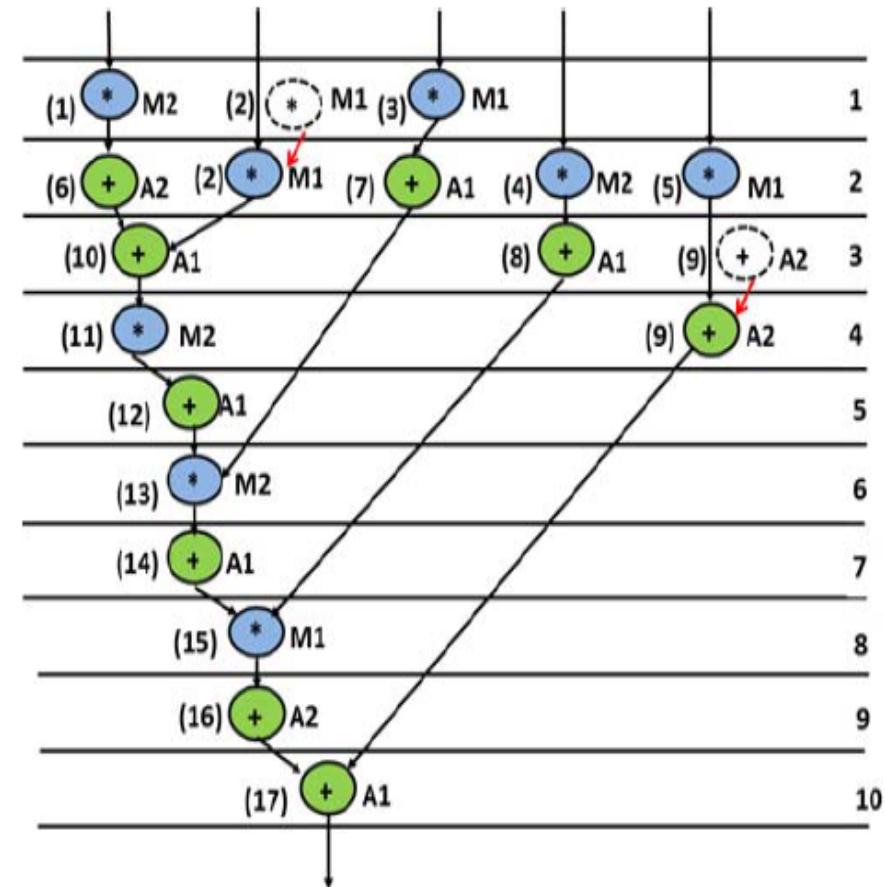



Fig. 7. Modified scheduled DFG after embedding phase 1 watermark ( $\gamma$  digits).

# • Proposed Watermarking Methodology

TABLE I  
VENDOR SIGNATURE AND ITS DECODED MEANING (WATERMARK CONSTRAINTS)

| Desired Signature | Corresponding operation to shift (Phase 1) | Allocate FU type (Phase 2) | Additional edges to insert between nodes in the colored interval graph (Phase 3) | Observations               |
|-------------------|--------------------------------------------|----------------------------|----------------------------------------------------------------------------------|----------------------------|
| Y                 | opn 2 from c.s. 1 to 2                     | ----                       | —                                                                                | c.s. shift to be done      |
| Y                 | opn 9 from c.s. 3 to 4                     | ----                       | —                                                                                | c.s. shift to be done      |
| a                 | ---                                        | opn 1 with vendor 1        | —                                                                                | FU reallocation to be done |
| b                 | ---                                        | opn 2 with vendor 1        | —                                                                                | No change occurred         |
| a                 | ---                                        | opn 3 with vendor 1        | —                                                                                | No change occurred         |
| b                 | ---                                        | opn 4 with vendor 1        | —                                                                                | FU reallocation to be done |
| b                 | ---                                        | opn 5 with vendor 2        | —                                                                                | FU reallocation to be done |
| i                 | ---                                        | ----                       | (v2, v3)                                                                         | Exists by default          |
| I                 | ---                                        | ----                       | (v2, v4)                                                                         | Exists by default          |
| I                 | ---                                        | ----                       | (v2, v6)                                                                         | New edge to be added       |
| T                 | ---                                        | ----                       | (v1, v2)                                                                         | Exists by default          |
| !                 | ---                                        | ----                       | (v0, v1)                                                                         | Exists by default          |

- Proposed Watermarking Methodology

TABLE II  
TIMING TABLE FOR NONCRITICAL OPERATIONS ( $\mu_m > 0$ ) SORTED IN  
INCREASING ORDER OF MOBILITY (BEFORE EMBEDDING WATERMARK)

| Operation No. | 3 | 2 | 5 | 4 | 7 | 9 | 8 |
|---------------|---|---|---|---|---|---|---|
| Control Step  | 1 |   | 2 |   |   | 3 |   |

TABLE III  
TIMING TABLE FOR NONCRITICAL OPERATION ( $\mu_m > 0$ )  
(AFTER EMBEDDING WATERMARK IN PHASE 1)

| Operation    | 3 | 5 | 4 | 7 | 2 | 8 | 9 |
|--------------|---|---|---|---|---|---|---|
| Control Step | 1 |   | 2 |   | 3 | 4 |   |

# • Proposed Watermarking Methodology

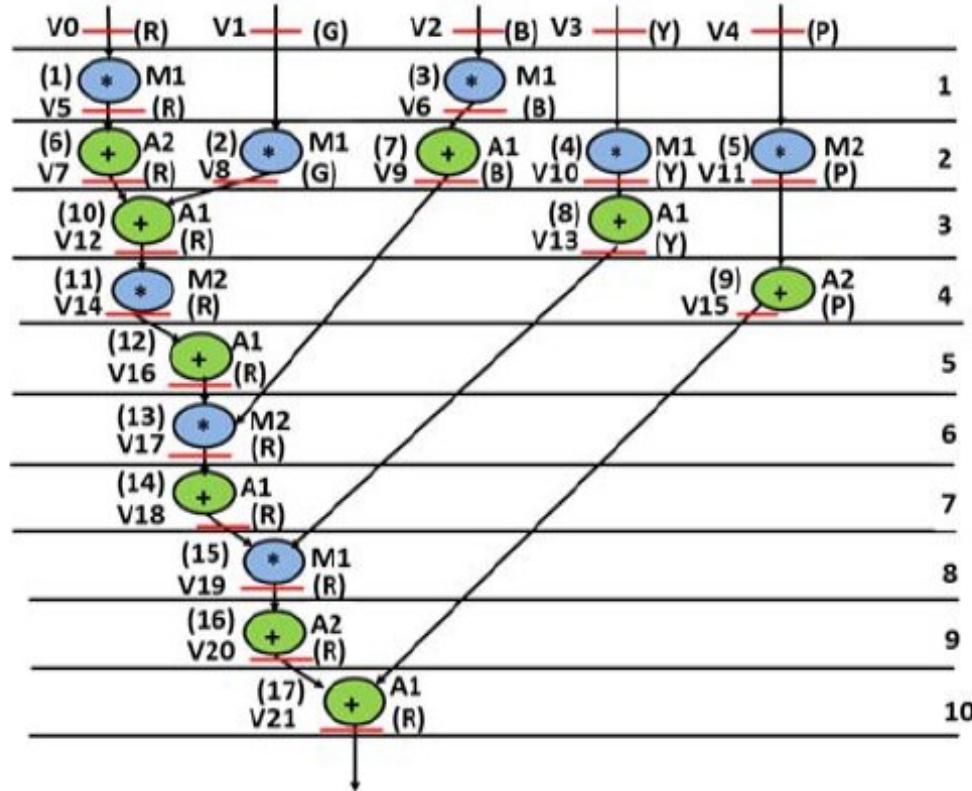



Fig. 8. Modified scheduled DFG after embedding phases 1 and 2 watermarks ( $\alpha, \beta$ , and  $\gamma$  digits).

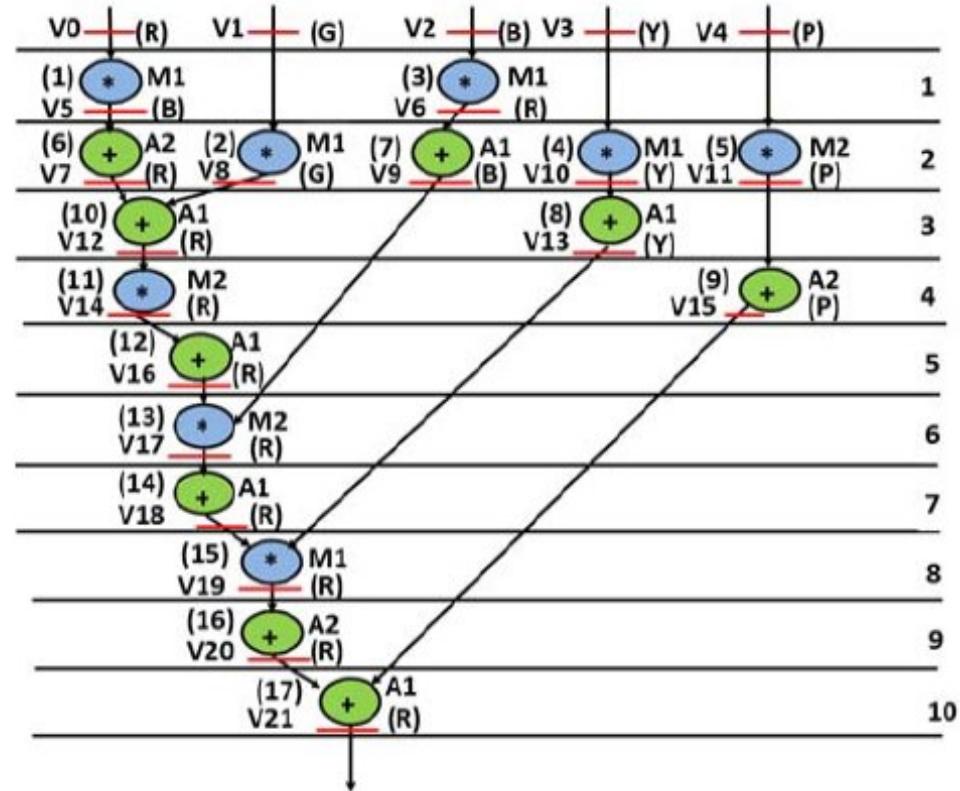



Fig. 9. Final scheduled DFG after embedding phases 1, 2, and 3 watermarks ( $\alpha, \beta, \gamma, i, I, T$ , and ! digits).

# • Proposed Watermarking Methodology

TABLE IV  
FU ALLOCATION TABLE (BEFORE EMBEDDING WATERMARK)

| ODD<br>C.S.  | Operation       | 1  | 2  | 3  | 8  | 9  | 10 | 12 | 14 | 16 |
|--------------|-----------------|----|----|----|----|----|----|----|----|----|
|              | Allocated<br>FU | M2 | M1 | M1 | A1 | A2 | A1 | A1 | A1 | A2 |
| EVEN<br>C.S. | Operation       | 4  | 5  | 6  | 7  | 11 | 13 | 15 | 17 | -  |
|              | Allocated<br>FU | M2 | M1 | A2 | A1 | M2 | M2 | M1 | A1 | -  |

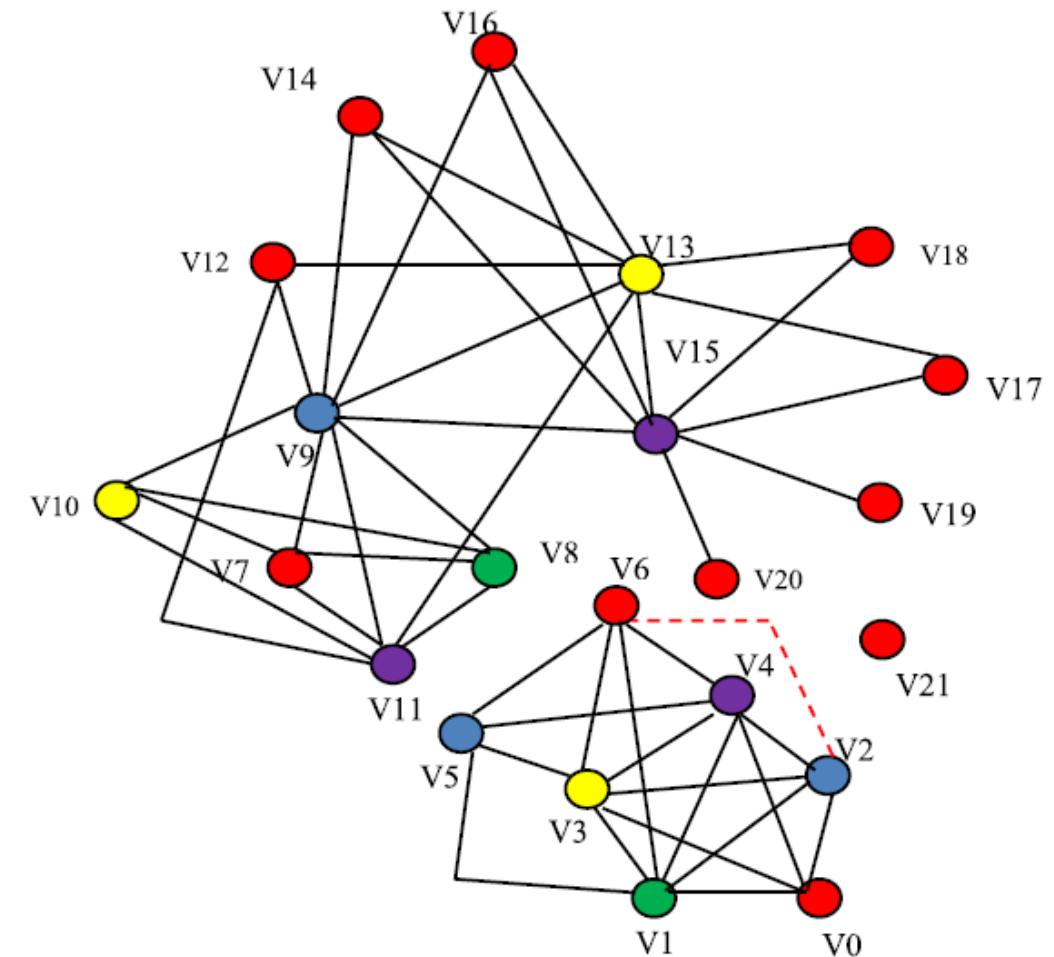



Fig. 10. Colored interval graph embedded with additional edges as per 3rd phase watermark.

# • Proposed Watermarking Methodology

TABLE V  
HARDWARE ALLOCATION TABLE (AFTER EMBEDDING WATERMARK IN PHASE 2 DURING FU ALLOCATION)

| C.S.<br>Count | Functional Unit Allocation |    |    |    |    | Register Allocation |                  |     |    |     |     |
|---------------|----------------------------|----|----|----|----|---------------------|------------------|-----|----|-----|-----|
|               |                            |    |    |    |    |                     | R                | G   | B  | Y   | P   |
| 0             | Operation                  | —  | —  | -- | —  | —                   | Storage Variable | V0  | V1 | V2  | V3  |
|               | Allocated Hardware         | —  | —  | -- | —  | —                   |                  |     |    |     |     |
| 1             | Operation                  | 1  | 3  | -- | —  | —                   | Storage Variable | V5  | V1 | V6  | V3  |
|               | Allocated Hardware         | M1 | M1 | -- | —  | —                   |                  |     |    |     |     |
| 2             | Operation                  | 2  | 4  | 5  | 6  | 7                   | Storage Variable | V7  | V8 | V9  | V10 |
|               | Allocated Hardware         | M1 | M1 | M2 | A2 | A1                  |                  |     |    |     |     |
| 3             | Operation                  | 8  | 10 | -- | —  | —                   | Storage Variable | V12 | —  | V9  | V13 |
|               | Allocated Hardware         | A1 | A1 | -- | —  | —                   |                  |     | —  |     |     |
| 4             | Operation                  | 9  | 11 | -- | —  | —                   | Storage Variable | V14 | —  | V9  | V13 |
|               | Allocated Hardware         | A2 | M2 | -- | —  | —                   |                  |     | —  |     |     |
| 5             | Operation                  | 12 | —  | -- | —  | —                   | Storage Variable | V16 | —  | V9  | V13 |
|               | Allocated Hardware         | A1 | —  | -- | —  | —                   |                  |     | —  |     |     |
| 6             | Operation                  | 13 | —  | -- | —  | —                   | Storage Variable | V17 | —  | V13 | V15 |
|               | Allocated Hardware         | M2 | —  | -- | —  | —                   |                  |     | —  |     |     |
| 7             | Operation                  | 14 | —  | -- | —  | —                   | Storage Variable | V18 | —  | V13 | V15 |
|               | Allocated Hardware         | A1 | —  | -- | —  | —                   |                  |     | —  |     |     |
| 8             | Operation                  | 15 | —  | -- | —  | —                   | Storage Variable | V19 | —  | —   | V15 |
|               | Allocated Hardware         | M1 | —  | -- | —  | —                   |                  |     | —  |     |     |
| 9             | Operation                  | 16 | —  | -- | —  | —                   | Storage Variable | V20 | —  | —   | V15 |
|               | Allocated Hardware         | A2 | —  | -- | —  | —                   |                  |     | —  |     |     |
| 10            | Operation                  | 17 | —  | -- | —  | —                   | Storage Variable | V21 | —  | —   | —   |
|               | Allocated Hardware         | A1 | —  | -- | —  | —                   |                  |     | —  |     |     |

# • Proposed Watermarking Methodology

TABLE VI  
FINAL HARDWARE ALLOCATION TABLE (AFTER EMBEDDING WATERMARK IN PHASES 1, 2, AND 3)

| C.S. Count | Functional Unit Allocation |    |    |    |    | Register Allocation |     |    |    |     |
|------------|----------------------------|----|----|----|----|---------------------|-----|----|----|-----|
|            |                            |    |    |    |    | R                   | G   | B  | Y  | P   |
| 0          | Operation                  | -- | -- | -- | -- | Storage Variable    | V0  | V1 | V2 | V3  |
|            | Allocated Hardware         | -- | -- | -- | -- |                     |     |    |    |     |
| 1          | Operation                  | 1  | 3  | -- | -- | Storage Variable    | V6  | V1 | V5 | V3  |
|            | Allocated Hardware         | M1 | M1 | -- | -- |                     |     |    |    |     |
| 2          | Operation                  | 2  | 4  | 5  | 6  | Storage Variable    | V7  | V8 | V9 | V10 |
|            | Allocated Hardware         | M1 | M1 | M2 | A2 |                     |     |    |    |     |
| 3          | Operation                  | 8  | 10 | -- | -- | Storage Variable    | V12 | -- | V9 | V13 |
|            | Allocated Hardware         | A1 | A1 | -- | -- |                     |     |    |    |     |
| 4          | Operation                  | 9  | 11 | -- | -- | Storage Variable    | V14 | -- | V9 | V13 |
|            | Allocated Hardware         | A2 | M2 | -- | -- |                     |     |    |    |     |
| 5          | Operation                  | 12 | -- | -- | -- | Storage Variable    | V16 | -- | V9 | V13 |
|            | Allocated Hardware         | A1 | -- | -- | -- |                     |     |    |    |     |
| 6          | Operation                  | 13 | -- | -- | -- | Storage Variable    | V17 | -- | -- | V13 |
|            | Allocated Hardware         | M2 | -- | -- | -- |                     |     |    |    |     |
| 7          | Operation                  | 14 | -- | -- | -- | Storage Variable    | V18 | -- | -- | V13 |
|            | Allocated Hardware         | A1 | -- | -- | -- |                     |     |    |    |     |
| 8          | Operation                  | 15 | -- | -- | -- | Storage Variable    | V19 | -- | -- | V15 |
|            | Allocated Hardware         | M1 | -- | -- | -- |                     |     |    |    |     |
| 9          | Operation                  | 16 | -- | -- | -- | Storage Variable    | V20 | -- | -- | V15 |
|            | Allocated Hardware         | A2 | -- | -- | -- |                     |     |    |    |     |
| 10         | Operation                  | 17 | -- | -- | -- | Storage Variable    | V21 | -- | -- | --  |
|            | Allocated Hardware         | A1 | -- | -- | -- |                     |     |    |    |     |

- Threat Scenarios of False Claim of Ownership

*A. Extracting Unintended Signature:*

An attacker may claim “all operations of CS 1 should be allocated to Vendor 1” as his signature encoding rule, which may work for a single design, but will prove to be nonmeaningful for other watermarked designs.

*B. Inserting Unauthorized Signature:*

Entity B may insert his own signature into the original watermarked design of A and claim ownership. In such a conflict the actual owner A can prove his ownership as A’s design only contains his watermark, however, B’s design contains watermark of both A and B.

# • Results and Analysis

TABLE VII

COMPARISON OF STRENGTH OF WATERMARK INDICATED THROUGH PROBABILITY OF COINCIDENCE (AS PROOF OF AUTHORSHIP) BETWEEN PROPOSED [4] AND [5] FOR SIGNATURE SIZE (80 DIGITS)

| Benchmarks<br>[4,5] | # of<br>register<br>before<br>watermark | P <sub>c</sub>        |                       |                       | # of times lower P <sub>c</sub><br>of proposed<br>approach compared<br>to [4] & [5] |
|---------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------|
|                     |                                         | Proposed              | [4]                   | [5]                   |                                                                                     |
| ARF                 | 8                                       | $3.3 \times 10^{-27}$ | $2.2 \times 10^{-5}$  | $2.2 \times 10^{-5}$  | $6.9 \times 10^{21}$                                                                |
| DCT                 | 8                                       | $3.7 \times 10^{-21}$ | $2.2 \times 10^{-5}$  | $2.2 \times 10^{-5}$  | $6.1 \times 10^{15}$                                                                |
| DWT                 | 5                                       | $8.3 \times 10^{-35}$ | $1.7 \times 10^{-8}$  | $1.7 \times 10^{-8}$  | $2.1 \times 10^{26}$                                                                |
| EWF                 | 4                                       | $6.8 \times 10^{-39}$ | $1.0 \times 10^{-10}$ | $1.0 \times 10^{-10}$ | $1.5 \times 10^{28}$                                                                |
| IDCT                | 8                                       | $3.3 \times 10^{-27}$ | $2.2 \times 10^{-5}$  | $2.2 \times 10^{-5}$  | $6.9 \times 10^{21}$                                                                |
| MPEG MV             | 14                                      | $3.8 \times 10^{-31}$ | $2.6 \times 10^{-3}$  | $2.6 \times 10^{-3}$  | $6.9 \times 10^{27}$                                                                |
| JPEG IDCT           | 12                                      | $1.9 \times 10^{-23}$ | $9.4 \times 10^{-4}$  | $9.4 \times 10^{-4}$  | $5.0 \times 10^{19}$                                                                |

TABLE VIII

COMPARISON OF TAMPER TOLERANCE BETWEEN PROPOSED, [4] AND [5] FOR DIFFERENT SIGNATURE STRENGTH

| Signature<br>Size<br>(digits) | # of possible signature<br>combination |                      |                      | # of times higher<br>tamper-tolerance of<br>proposed approach<br>compared to [4] & [5] |                      |
|-------------------------------|----------------------------------------|----------------------|----------------------|----------------------------------------------------------------------------------------|----------------------|
|                               | Proposed                               | [4]                  | [5]                  | [4]                                                                                    | [5]                  |
| 15                            | $4.8 \times 10^{12}$                   | 32768                | $10.7 \times 10^8$   | $14.5 \times 10^7$                                                                     | 4421                 |
| 30                            | $2.3 \times 10^{25}$                   | $1.1 \times 10^9$    | $1.2 \times 10^{18}$ | $2.1 \times 10^{16}$                                                                   | $19.5 \times 10^6$   |
| 45                            | $1.1 \times 10^{38}$                   | $3.5 \times 10^{13}$ | $1.2 \times 10^{27}$ | $3.0 \times 10^{24}$                                                                   | $8.6 \times 10^{10}$ |
| 60                            | $5.1 \times 10^{50}$                   | $1.2 \times 10^{18}$ | $1.3 \times 10^{36}$ | $4.4 \times 10^{32}$                                                                   | $3.8 \times 10^{14}$ |
| 80                            | $4.1 \times 10^{67}$                   | $1.2 \times 10^{24}$ | $1.5 \times 10^{48}$ | $3.4 \times 10^{43}$                                                                   | $2.8 \times 10^{19}$ |

# • Results and Analysis

TABLE IX  
COMPARISON OF PROPOSED APPROACH WITH BASELINE IN TERMS OF AREA, LATENCY, COST, AND COST OVERHEAD %

| Benchmarks | Resource Configuration | Area ( $\mu\text{m}^2$ ) |          | Latency (ns) |          | Cost     |          | Cost Overhead %<br>Proposed approach with respect to baseline |
|------------|------------------------|--------------------------|----------|--------------|----------|----------|----------|---------------------------------------------------------------|
|            |                        | Baseline                 | Proposed | Baseline     | Proposed | Baseline | Proposed |                                                               |
| ARF        | 5(+), 3(*)             | 191.1                    | 209.19   | 2.67         | 3.11     | 0.77     | 0.87     | 12.98                                                         |
| DCT        | 6(+), 3(*)             | 250.87                   | 263.45   | 3.95         | 4.19     | 0.80     | 0.84     | 5.00                                                          |
| DWT        | 2(+), 4(*)             | 162.79                   | 165.94   | 1.98         | 2.08     | 0.78     | 0.81     | 3.85                                                          |
| EWF        | 3(+), 2(*)             | 184.81                   | 197.39   | 3.24         | 3.82     | 0.85     | 0.95     | 11.76                                                         |
| IDCT       | 5(+), 3(*)             | 246.15                   | 253.23   | 3.77         | 4.16     | 0.78     | 0.83     | 6.41                                                          |
| MPEG       | 3(+), 8(*)             | 280.76                   | 287.05   | 2.44         | 2.59     | 0.73     | 0.76     | 4.11                                                          |
| JPEG       | 5(+), 5(*)             | 747.9                    | 756.55   | 14.9         | 15.92    | 0.72     | 0.76     | 5.56                                                          |

# • Results and Analysis

TABLE X  
COMPARISON OF PROPOSED APPROACH WITH [4] AND [5] IN TERMS OF REDUCED WATERMARK DESIGN AREA,  
LATENCY, AND COST FOR SIGNATURE STRENGTH: 80

| Benchmarks | Hardware configuration | Watermark Design Area ( $\mu\text{m}^2$ ) |        |        | Watermark Design Latency (ns) |       |       | Watermark Design Cost |      |      |
|------------|------------------------|-------------------------------------------|--------|--------|-------------------------------|-------|-------|-----------------------|------|------|
|            |                        | Proposed                                  | [4]    | [5]    | Proposed                      | [4]   | [5]   | Proposed              | [4]  | [5]  |
| ARF        | 5(+), 3(*)             | 209.19                                    | 225.71 | 223.35 | 3.11                          | 3.11  | 3.11  | 0.87                  | 0.92 | 0.90 |
| DCT        | 6(+), 3(*)             | 263.45                                    | 290.98 | 288.62 | 4.19                          | 4.51  | 4.51  | 0.84                  | 0.94 | 0.92 |
| DWT        | 2(+), 4(*)             | 165.94                                    | 182.37 | 180.01 | 2.08                          | 2.43  | 2.43  | 0.81                  | 0.93 | 0.92 |
| EWF        | 3(+), 2(*)             | 197.39                                    | 209.19 | 204.47 | 3.82                          | 3.89  | 3.89  | 0.95                  | 0.99 | 0.98 |
| IDCT       | 5(+), 3(*)             | 253.23                                    | 280.96 | 278.4  | 4.16                          | 4.34  | 4.34  | 0.83                  | 0.91 | 0.89 |
| MPEG       | 3(+), 8(*)             | 287.05                                    | 309.85 | 309.85 | 2.59                          | 2.77  | 2.77  | 0.76                  | 0.81 | 0.81 |
| JPEG       | 5(+), 5(*)             | 756.55                                    | 783.29 | 783.29 | 15.92                         | 16.52 | 16.52 | 0.76                  | 0.79 | 0.79 |

# • References

- [1] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities: The Internet of Things is the backbone,” *IEEE Consum. Electron. Mag.*, vol. 5, no. 3, pp. 60–70, Jul. 2016.
- [2] R. Maes, D. Schellekens, and I. Verbauwhede, “A pay-per-use licensing scheme for hardware IP cores in recent SRAM-based FPGAs,” *IEEE Trans. Inf. Forensics Security*, vol. 7, no. 1, pp. 98–108, Feb. 2012.
- [3] A. Cui, G. Qu, and Y. Zhang, “Ultra-low overhead dynamic watermarking on scan design for hard IP protection,” *IEEE Trans. Inf. Forensics Security*, vol. 10, no. 11, pp. 2298–2313, Nov. 2015.
- [4] F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral synthesis techniques for intellectual property protection,” *ACM Trans. Design Autom. Electron. Syst.*, vol. 10, no. 3, pp. 523–545, 2005.
- [5] A. Sengupta, S. Bhaduria, and S. P. Mohanty, “Embedding low cost optimal watermark during high level synthesis for reusable IP core protection,” in *Proc. 48th IEEE Int. Symp. Circuits Syst. (ISCAS)*, Montreal, QC, Canada, 2016, pp. 974–977.
- [6] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs for piracy prevention and digital right management,” in *Proc. IEEE/ACM Int. Conf. Comput.-Aided Design*, San Jose, CA, USA, 2007, pp. 674–677.
- [7] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” *IEEE Trans. Circuits Syst. Video Technol.*, vol. 16, no. 3, pp. 354–362, Mar. 2006.
- [8] L. M. Marvel, “Information hiding: Steganography and watermarking,” in *Optical and Digital Techniques for Information Security (Advanced Sciences and Technologies for Security Applications)*, vol. 1, B. Javidi, Ed. New York, NY, USA: Springer, 2005, pp. 113–133.
- [9] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, *Digital Watermarking and Steganography*. San Mateo, CA, USA: Morgan Kaufmann, 2007.
- [10] Y.-T. Wu and F. Y. Shih, “Digital watermarking based on chaotic map and reference register,” *Pattern Recognit.*, vol. 40, no. 12, pp. 3753–3763, 2007.
- [11] E. Kougianos, S. P. Mohanty, and R. N. Mahapatra, “Hardware assisted watermarking for multimedia,” *Comput. Elect. Eng.*, vol. 35, no. 2, pp. 339–358, 2009.

# • Results and Analysis

- [12] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, *Handbook of Fingerprint Recognition*. New York, NY, USA: Springer, 2009.
- [13] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of integrated circuits,” in *Proc. Design Autom. Test Europe (DATE)*, Munich, Germany, 2008, pp. 1069–1074.
- [14] Y. Alkabani and F. Koushanfar, “Active control and digital rights management of integrated circuit IP cores,” in *Proc. Int. Conf. Compilers Archit. Synthesis Embedded Syst. (CASES)*, Atlanta, GA, USA, 2008, pp. 227–234.
- [15] T. Nie, L. Zhou, and Y. Li, “Hierarchical watermarking method for FPGA IP protection,” *IETE Tech. Rev.*, vol. 30, no. 5, pp. 367–374, 2013.
- [16] B. Le Gal and L. Bossuet, “Automatic low-cost IP watermarking technique based on output mark insertions,” *Design Autom. Embedded Syst.*, vol. 16, no. 2, pp. 71–92, 2012.
- [17] Y. M. Alkabani and F. Koushanfar, “Active hardware metering for intellectual property protection and security,” in *Proc. 16th USENIX Security Symp.*, Boston, MA, USA, 2007, Art. no. 20.
- [18] R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscationbased SoC design methodology for hardware protection,” *IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.*, vol. 28, no. 10, pp. 1493–1502, Oct. 2009.
- [19] (2016). NanGate 15 nm Library. [Online]. Available: <http://www.nangate.com/?pageid=2328>
- [20] A. Sengupta, “Protection of IP-core designs for CE products,” *IEEE Consum. Electron. Mag.*, vol. 5, no. 1, pp. 83–89, Dec. 2015.
- [21] A. Sengupta, “Hardware security of CE devices: Threat models and defence against IP trojans and IP piracy,” *IEEE Consum. Electron. Mag.*, vol. 6, no. 1, pp. 130–133, Jan. 2017.
- [22] A. Sengupta and D. Roy, “Antipiracy-aware IP chipset design for CE devices: A Robust watermarking approach [hardware matters],” *IEEE Consum. Electron. Mag.*, vol. 6, no. 2, pp. 118–124, Apr. 2017.

# THANK YOU