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Introduction
Intellectual Property (DSP IP cores)

» Chips, Integrated circuits, and other designs owned by a company, designer, or manufacturer.
» Processors, Co- Processors(DSP) and other Consumer Electronics hardware.

> These co-processors performs various data-intensive and power-hungry applications involving
massive computations like data compression-decompression, digital data filtering, and different
complex mathematical calculations.

» Due to globalization of design supply chain, the reusable IP cores or ICs are prone to various
hardware threats [1], [2].
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Hardware Threats

Security Issues associated with hardware IP Cores

Using different products under the same brand
name.
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Previous works

Related Work

2. A. Sengupta and
S. Bhadauria [7]
(2016)
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Hardware watermarking using four variable
(1, I, T, !) signature encoding process to
implant additional security constraints in the
colored interval graph (CIG) of respective
DSP applications using the HLS framework.
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The watermark (original signature) inserted
by watermarking technique becomes
vulnerable if relevant information (like
signature size, digit encoding, and digit
combination) gets leaked.
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Proposed work

» The proposed approach based on a low-cost steganography technique for protection of complex
reusable IP Cores used in CE Systems.

» The proposed approach is signature-free and capable of generating hardware security
constraints for securing a DSP Kernel application.

» It makes use of the register allocation table of DSP kernel application itself to generate hardware
security constraints.

» The generated hardware security constraints then embedded in the IP Cores design to
authenticate genuine IP Maker.

» Threshold entropy option in the approach provides more control to designer as compared to
signature based approach.

» Particle swarm optimization based design space exploration (PSO-DSE) is used to in the
proposed approach to generate a low-cost optimized solution corresponding to secured DSP IP
core.
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PSO-DSE module

PSO-DSE module

» The integration of the PSO-DSE block with the steganography based security methodology serves the objective
of determining an optimized architectural solution.

» PSO prunes the design search space based on IP vendor specified high level specification such as area, delay,
energy, power, etc. corresponding to secured DSP design to generate an optimized low-cost design.

Advantage of PSO-DSE [8] over others such as genetic algorithm [4] and bacterial foraging [5] based DSE:

» PSO-DSE considers the magnitude of the previously computed velocity with the help of a parameter called
inertia weight, while [4] and [5] do not consider the momentum of prior iterations, which increases the
probability of getting stuck in the local minima during architecture exploration.

» PSO-DSE creates a balance between exploitation and exploration time with the help of linearly decreasing the
value of inertia from 0.9 to 0.1. The algorithm takes more significant steps at the beginning and smaller steps
on reaching higher fitness solutions, which is missing in [4]and [5]. This also enhances the chance of reaching
global optimal solution.

» The inclusion of various other factors (hyperparameters), such as social and cognitive factors in PSO-DSE, helps
achieve higher fitness solution within a very low exploration time.
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Flow Diagram

Flow Diagram
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Fig. 2. Flow-chart of the proposed a low-cost PSO-driven DSE steganography approach
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Proposed Work : Extraction of security constraints from SDFG of DSP

application
Determination of hardware security constraints and their corresponding entropy value based o
scheduled data flow graph of DSP application

TAELE 1
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Cs Red(R) Teal Pink (P) Yellow Green Indigo Blue Violet Lime X0 X1 X2 X3 X4 X5 X6 X7| _Co
(™ @9 (S 0) (BL) W @D
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® Some examples of possible edges between same-colored storage 18 X14 e
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from SDFG). gm /
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X8, X16, X17), E (entropy)=5, (BL < R)), ([CS:4,5,6] (X14 < X18, g X/
C7

X19, X20), E (entropy)=4, (BL < R))). So, the maximum entropy for
embedding edge <X6, X14> is 5.

® Similarly, entropy for all possible edges are computed and final
hardware security constraints are generated based on IP vendor Fig‘;:Scheduledwaﬂowgraphofs_pomma with 1¢+) and 209
selected value of threshold entropy. obtained through PSO-driven DSE
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Proposed Work : Embedding of generated security

constraints

Embedding of generated security constraints using colored interval graph framework
(Extra embedded security constraints are in red colored edges)

Fig.4. CIG of 8-point DCT befqre embedc_ling steganographic Fig.5. CIG of 8-point DCT post embedding steganographic hardware
hardware security constraints security constraints
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Security metrics

Evaluation parameters

> Evaluation of Robustness Using Probability of Coincidence (P):
_ 1\¢ ‘I denotes the number of registers used in the CIG and ‘e’ denotes the
P=(1--= .
l number of hardware constraints added.

> Design cost:

Lmax

Area(A) Latency (L)
—_— 2
Amax ) +a2x(

Design cost = q1 * (

where q1=0.5 and q2=0.5 are designer-defined weighing factors used to
provide equal weightage to design area (A) and execution time (latency (L))
during design cost function evaluation. Further, A,,4, and L,,,, represents
maximum design area (determined with available maximum functional
resources) and time (delay) (determined with available minimum functional
resources)
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Comparative Analysis
Comparison of Probability of coincidence (P) between proposed and [6] and [7]
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mRelated work [6] mRelated work [7] m Proposed approach

Fig.6. Comparison of probability of coincidence between the proposed
approach and [6], [7]
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Comparative Analysis : Design cost comparison

Design cost comparison (before and after embedding stego-security constraints)

TABLE II
Area, Latency, Cost, and Resource configuration of proposed low-cost steganography-based hardware security methodology

Signature embedded design

Benchmarks Baseline design (before signature
Resource embedding) Design cost
configur Design Design Design Design area Design Design cost overhead
ation area (um?) latency (ps) cost (um?) latency (ps) %
8-point DCT L(+), 2(%) 176.16 1324.856 0.443 176.947 1324.856 0.443 0
MESA 4(+), 4(*) 415.235 3113.412 0.216 416.808 3113.412 0.216 ~0
8-point IDCT 1(+), 2(*) 176.16 1324.856 0.443 176.947 1324.856 0.443 0
MPEG 2015 2(%) 200.54 1987.284 0.418 200.54 1987.284 0.418 0
TABLEIIL

CONVERGENCE AND EXPLORATION TIME IN PSO-DSE AFTER SECURITY
CONSTRAINTS EMBEDDING (PARTICLE SIZE=3)
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Benchmark Resource Convergence Exploration
configuration time(ms) time(ms)
8-point DCT 1(+), 2(*) 41 329
MESA 4(+). 4(%) 3646 15178
8-point IDCT 1(+), 2(%) 642 436
MPEG 2(+), 2(*%) 1283 2349
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Comparative Analysis

Design cost and area reduction for the proposed approach compared to [7]
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Fig.7. Reduction in design cost for Fig.8. Reduction in design area for the
the proposed approach than [7] proposed approach than [7]
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